xref: /freebsd/sys/kern/subr_smr.c (revision edf8578117e8844e02c0121147f45e4609b30680)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/counter.h>
32 #include <sys/kernel.h>
33 #include <sys/limits.h>
34 #include <sys/proc.h>
35 #include <sys/smp.h>
36 #include <sys/smr.h>
37 #include <sys/sysctl.h>
38 
39 #include <vm/uma.h>
40 
41 /*
42  * Global Unbounded Sequences (GUS)
43  *
44  * This is a novel safe memory reclamation technique inspired by
45  * epoch based reclamation from Samy Al Bahra's concurrency kit which
46  * in turn was based on work described in:
47  *   Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
48  *   of Cambridge Computing Laboratory.
49  * And shares some similarities with:
50  *   Wang, Stamler, Parmer. 2016 Parallel Sections: Scaling System-Level
51  *   Data-Structures
52  *
53  * This is not an implementation of hazard pointers or related
54  * techniques.  The term safe memory reclamation is used as a
55  * generic descriptor for algorithms that defer frees to avoid
56  * use-after-free errors with lockless datastructures or as
57  * a mechanism to detect quiescence for writer synchronization.
58  *
59  * The basic approach is to maintain a monotonic write sequence
60  * number that is updated on some application defined granularity.
61  * Readers record the most recent write sequence number they have
62  * observed.  A shared read sequence number records the lowest
63  * sequence number observed by any reader as of the last poll.  Any
64  * write older than this value has been observed by all readers
65  * and memory can be reclaimed.  Like Epoch we also detect idle
66  * readers by storing an invalid sequence number in the per-cpu
67  * state when the read section exits.  Like Parsec we establish
68  * a global write clock that is used to mark memory on free.
69  *
70  * The write and read sequence numbers can be thought of as a two
71  * handed clock with readers always advancing towards writers.  GUS
72  * maintains the invariant that all readers can safely access memory
73  * that was visible at the time they loaded their copy of the sequence
74  * number.  Periodically the read sequence or hand is polled and
75  * advanced as far towards the write sequence as active readers allow.
76  * Memory which was freed between the old and new global read sequence
77  * number can now be reclaimed.  When the system is idle the two hands
78  * meet and no deferred memory is outstanding.  Readers never advance
79  * any sequence number, they only observe them.  The shared read
80  * sequence number is consequently never higher than the write sequence.
81  * A stored sequence number that falls outside of this range has expired
82  * and needs no scan to reclaim.
83  *
84  * A notable distinction between GUS and Epoch, qsbr, rcu, etc. is
85  * that advancing the sequence number is decoupled from detecting its
86  * observation.  That is to say, the delta between read and write
87  * sequence numbers is not bound.  This can be thought of as a more
88  * generalized form of epoch which requires them at most one step
89  * apart.  This results in a more granular assignment of sequence
90  * numbers even as read latencies prohibit all or some expiration.
91  * It also allows writers to advance the sequence number and save the
92  * poll for expiration until a later time when it is likely to
93  * complete without waiting.  The batch granularity and free-to-use
94  * latency is dynamic and can be significantly smaller than in more
95  * strict systems.
96  *
97  * This mechanism is primarily intended to be used in coordination with
98  * UMA.  By integrating with the allocator we avoid all of the callout
99  * queue machinery and are provided with an efficient way to batch
100  * sequence advancement and waiting.  The allocator accumulates a full
101  * per-cpu cache of memory before advancing the sequence.  It then
102  * delays waiting for this sequence to expire until the memory is
103  * selected for reuse.  In this way we only increment the sequence
104  * value once for n=cache-size frees and the waits are done long
105  * after the sequence has been expired so they need only be verified
106  * to account for pathological conditions and to advance the read
107  * sequence.  Tying the sequence number to the bucket size has the
108  * nice property that as the zone gets busier the buckets get larger
109  * and the sequence writes become fewer.  If the coherency of advancing
110  * the write sequence number becomes too costly we can advance
111  * it for every N buckets in exchange for higher free-to-use
112  * latency and consequently higher memory consumption.
113  *
114  * If the read overhead of accessing the shared cacheline becomes
115  * especially burdensome an invariant TSC could be used in place of the
116  * sequence.  The algorithm would then only need to maintain the minimum
117  * observed tsc.  This would trade potential cache synchronization
118  * overhead for local serialization and cpu timestamp overhead.
119  */
120 
121 /*
122  * A simplified diagram:
123  *
124  * 0                                                          UINT_MAX
125  * | -------------------- sequence number space -------------------- |
126  *              ^ rd seq                            ^ wr seq
127  *              | ----- valid sequence numbers ---- |
128  *                ^cpuA  ^cpuC
129  * | -- free -- | --------- deferred frees -------- | ---- free ---- |
130  *
131  *
132  * In this example cpuA has the lowest sequence number and poll can
133  * advance rd seq.  cpuB is not running and is considered to observe
134  * wr seq.
135  *
136  * Freed memory that is tagged with a sequence number between rd seq and
137  * wr seq can not be safely reclaimed because cpuA may hold a reference to
138  * it.  Any other memory is guaranteed to be unreferenced.
139  *
140  * Any writer is free to advance wr seq at any time however it may busy
141  * poll in pathological cases.
142  */
143 
144 static uma_zone_t smr_shared_zone;
145 static uma_zone_t smr_zone;
146 
147 #ifndef INVARIANTS
148 #define	SMR_SEQ_INIT	1		/* All valid sequence numbers are odd. */
149 #define	SMR_SEQ_INCR	2
150 
151 /*
152  * SMR_SEQ_MAX_DELTA is the maximum distance allowed between rd_seq and
153  * wr_seq.  For the modular arithmetic to work a value of UNIT_MAX / 2
154  * would be possible but it is checked after we increment the wr_seq so
155  * a safety margin is left to prevent overflow.
156  *
157  * We will block until SMR_SEQ_MAX_ADVANCE sequence numbers have progressed
158  * to prevent integer wrapping.  See smr_advance() for more details.
159  */
160 #define	SMR_SEQ_MAX_DELTA	(UINT_MAX / 4)
161 #define	SMR_SEQ_MAX_ADVANCE	(SMR_SEQ_MAX_DELTA - 1024)
162 #else
163 /* We want to test the wrapping feature in invariants kernels. */
164 #define	SMR_SEQ_INCR	(UINT_MAX / 10000)
165 #define	SMR_SEQ_INIT	(UINT_MAX - 100000)
166 /* Force extra polls to test the integer overflow detection. */
167 #define	SMR_SEQ_MAX_DELTA	(SMR_SEQ_INCR * 32)
168 #define	SMR_SEQ_MAX_ADVANCE	SMR_SEQ_MAX_DELTA / 2
169 #endif
170 
171 /*
172  * The grace period for lazy (tick based) SMR.
173  *
174  * Hardclock is responsible for advancing ticks on a single CPU while every
175  * CPU receives a regular clock interrupt.  The clock interrupts are flushing
176  * the store buffers and any speculative loads that may violate our invariants.
177  * Because these interrupts are not synchronized we must wait one additional
178  * tick in the future to be certain that all processors have had their state
179  * synchronized by an interrupt.
180  *
181  * This assumes that the clock interrupt will only be delayed by other causes
182  * that will flush the store buffer or prevent access to the section protected
183  * data.  For example, an idle processor, or an system management interrupt,
184  * or a vm exit.
185  */
186 #define	SMR_LAZY_GRACE		2
187 #define	SMR_LAZY_INCR		(SMR_LAZY_GRACE * SMR_SEQ_INCR)
188 
189 /*
190  * The maximum sequence number ahead of wr_seq that may still be valid.  The
191  * sequence may not be advanced on write for lazy or deferred SMRs.  In this
192  * case poll needs to attempt to forward the sequence number if the goal is
193  * within wr_seq + SMR_SEQ_ADVANCE.
194  */
195 #define	SMR_SEQ_ADVANCE		SMR_LAZY_INCR
196 
197 static SYSCTL_NODE(_debug, OID_AUTO, smr, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
198     "SMR Stats");
199 static COUNTER_U64_DEFINE_EARLY(advance);
200 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance, CTLFLAG_RW, &advance, "");
201 static COUNTER_U64_DEFINE_EARLY(advance_wait);
202 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance_wait, CTLFLAG_RW, &advance_wait, "");
203 static COUNTER_U64_DEFINE_EARLY(poll);
204 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll, CTLFLAG_RW, &poll, "");
205 static COUNTER_U64_DEFINE_EARLY(poll_scan);
206 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_scan, CTLFLAG_RW, &poll_scan, "");
207 static COUNTER_U64_DEFINE_EARLY(poll_fail);
208 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_fail, CTLFLAG_RW, &poll_fail, "");
209 
210 /*
211  * Advance a lazy write sequence number.  These move forward at the rate of
212  * ticks.  Grace is SMR_LAZY_INCR (2 ticks) in the future.
213  *
214  * This returns the goal write sequence number.
215  */
216 static smr_seq_t
217 smr_lazy_advance(smr_t smr, smr_shared_t s)
218 {
219 	union s_wr s_wr, old;
220 	int t, d;
221 
222 	CRITICAL_ASSERT(curthread);
223 
224 	/*
225 	 * Load the stored ticks value before the current one.  This way the
226 	 * current value can only be the same or larger.
227 	 */
228 	old._pair = s_wr._pair = atomic_load_acq_64(&s->s_wr._pair);
229 	t = ticks;
230 
231 	/*
232 	 * The most probable condition that the update already took place.
233 	 */
234 	d = t - s_wr.ticks;
235 	if (__predict_true(d == 0))
236 		goto out;
237 	/* Cap the rate of advancement and handle long idle periods. */
238 	if (d > SMR_LAZY_GRACE || d < 0)
239 		d = SMR_LAZY_GRACE;
240 	s_wr.ticks = t;
241 	s_wr.seq += d * SMR_SEQ_INCR;
242 
243 	/*
244 	 * This can only fail if another thread races to call advance().
245 	 * Strong cmpset semantics mean we are guaranteed that the update
246 	 * happened.
247 	 */
248 	atomic_cmpset_64(&s->s_wr._pair, old._pair, s_wr._pair);
249 out:
250 	return (s_wr.seq + SMR_LAZY_INCR);
251 }
252 
253 /*
254  * Increment the shared write sequence by 2.  Since it is initialized
255  * to 1 this means the only valid values are odd and an observed value
256  * of 0 in a particular CPU means it is not currently in a read section.
257  */
258 static smr_seq_t
259 smr_shared_advance(smr_shared_t s)
260 {
261 
262 	return (atomic_fetchadd_int(&s->s_wr.seq, SMR_SEQ_INCR) + SMR_SEQ_INCR);
263 }
264 
265 /*
266  * Advance the write sequence number for a normal smr section.  If the
267  * write sequence is too far behind the read sequence we have to poll
268  * to advance rd_seq and prevent undetectable wraps.
269  */
270 static smr_seq_t
271 smr_default_advance(smr_t smr, smr_shared_t s)
272 {
273 	smr_seq_t goal, s_rd_seq;
274 
275 	CRITICAL_ASSERT(curthread);
276 	KASSERT((zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
277 	    ("smr_default_advance: called with lazy smr."));
278 
279 	/*
280 	 * Load the current read seq before incrementing the goal so
281 	 * we are guaranteed it is always < goal.
282 	 */
283 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
284 	goal = smr_shared_advance(s);
285 
286 	/*
287 	 * Force a synchronization here if the goal is getting too
288 	 * far ahead of the read sequence number.  This keeps the
289 	 * wrap detecting arithmetic working in pathological cases.
290 	 */
291 	if (SMR_SEQ_DELTA(goal, s_rd_seq) >= SMR_SEQ_MAX_DELTA) {
292 		counter_u64_add(advance_wait, 1);
293 		smr_wait(smr, goal - SMR_SEQ_MAX_ADVANCE);
294 	}
295 	counter_u64_add(advance, 1);
296 
297 	return (goal);
298 }
299 
300 /*
301  * Deferred SMRs conditionally update s_wr_seq based on an
302  * cpu local interval count.
303  */
304 static smr_seq_t
305 smr_deferred_advance(smr_t smr, smr_shared_t s, smr_t self)
306 {
307 
308 	if (++self->c_deferred < self->c_limit)
309 		return (smr_shared_current(s) + SMR_SEQ_INCR);
310 	self->c_deferred = 0;
311 	return (smr_default_advance(smr, s));
312 }
313 
314 /*
315  * Advance the write sequence and return the value for use as the
316  * wait goal.  This guarantees that any changes made by the calling
317  * thread prior to this call will be visible to all threads after
318  * rd_seq meets or exceeds the return value.
319  *
320  * This function may busy loop if the readers are roughly 1 billion
321  * sequence numbers behind the writers.
322  *
323  * Lazy SMRs will not busy loop and the wrap happens every 25 days
324  * at 1khz and 60 hours at 10khz.  Readers can block for no longer
325  * than half of this for SMR_SEQ_ macros to continue working.
326  */
327 smr_seq_t
328 smr_advance(smr_t smr)
329 {
330 	smr_t self;
331 	smr_shared_t s;
332 	smr_seq_t goal;
333 	int flags;
334 
335 	/*
336 	 * It is illegal to enter while in an smr section.
337 	 */
338 	SMR_ASSERT_NOT_ENTERED(smr);
339 
340 	/*
341 	 * Modifications not done in a smr section need to be visible
342 	 * before advancing the seq.
343 	 */
344 	atomic_thread_fence_rel();
345 
346 	critical_enter();
347 	/* Try to touch the line once. */
348 	self = zpcpu_get(smr);
349 	s = self->c_shared;
350 	flags = self->c_flags;
351 	goal = SMR_SEQ_INVALID;
352 	if ((flags & (SMR_LAZY | SMR_DEFERRED)) == 0)
353 		goal = smr_default_advance(smr, s);
354 	else if ((flags & SMR_LAZY) != 0)
355 		goal = smr_lazy_advance(smr, s);
356 	else if ((flags & SMR_DEFERRED) != 0)
357 		goal = smr_deferred_advance(smr, s, self);
358 	critical_exit();
359 
360 	return (goal);
361 }
362 
363 /*
364  * Poll to determine the currently observed sequence number on a cpu
365  * and spinwait if the 'wait' argument is true.
366  */
367 static smr_seq_t
368 smr_poll_cpu(smr_t c, smr_seq_t s_rd_seq, smr_seq_t goal, bool wait)
369 {
370 	smr_seq_t c_seq;
371 
372 	c_seq = SMR_SEQ_INVALID;
373 	for (;;) {
374 		c_seq = atomic_load_int(&c->c_seq);
375 		if (c_seq == SMR_SEQ_INVALID)
376 			break;
377 
378 		/*
379 		 * There is a race described in smr.h:smr_enter that
380 		 * can lead to a stale seq value but not stale data
381 		 * access.  If we find a value out of range here we
382 		 * pin it to the current min to prevent it from
383 		 * advancing until that stale section has expired.
384 		 *
385 		 * The race is created when a cpu loads the s_wr_seq
386 		 * value in a local register and then another thread
387 		 * advances s_wr_seq and calls smr_poll() which will
388 		 * oberve no value yet in c_seq and advance s_rd_seq
389 		 * up to s_wr_seq which is beyond the register
390 		 * cached value.  This is only likely to happen on
391 		 * hypervisor or with a system management interrupt.
392 		 */
393 		if (SMR_SEQ_LT(c_seq, s_rd_seq))
394 			c_seq = s_rd_seq;
395 
396 		/*
397 		 * If the sequence number meets the goal we are done
398 		 * with this cpu.
399 		 */
400 		if (SMR_SEQ_LEQ(goal, c_seq))
401 			break;
402 
403 		if (!wait)
404 			break;
405 		cpu_spinwait();
406 	}
407 
408 	return (c_seq);
409 }
410 
411 /*
412  * Loop until all cores have observed the goal sequence or have
413  * gone inactive.  Returns the oldest sequence currently active;
414  *
415  * This function assumes a snapshot of sequence values has
416  * been obtained and validated by smr_poll().
417  */
418 static smr_seq_t
419 smr_poll_scan(smr_t smr, smr_shared_t s, smr_seq_t s_rd_seq,
420     smr_seq_t s_wr_seq, smr_seq_t goal, bool wait)
421 {
422 	smr_seq_t rd_seq, c_seq;
423 	int i;
424 
425 	CRITICAL_ASSERT(curthread);
426 	counter_u64_add_protected(poll_scan, 1);
427 
428 	/*
429 	 * The read sequence can be no larger than the write sequence at
430 	 * the start of the poll.
431 	 */
432 	rd_seq = s_wr_seq;
433 	CPU_FOREACH(i) {
434 		/*
435 		 * Query the active sequence on this cpu.  If we're not
436 		 * waiting and we don't meet the goal we will still scan
437 		 * the rest of the cpus to update s_rd_seq before returning
438 		 * failure.
439 		 */
440 		c_seq = smr_poll_cpu(zpcpu_get_cpu(smr, i), s_rd_seq, goal,
441 		    wait);
442 
443 		/*
444 		 * Limit the minimum observed rd_seq whether we met the goal
445 		 * or not.
446 		 */
447 		if (c_seq != SMR_SEQ_INVALID)
448 			rd_seq = SMR_SEQ_MIN(rd_seq, c_seq);
449 	}
450 
451 	/*
452 	 * Advance the rd_seq as long as we observed a more recent value.
453 	 */
454 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
455 	if (SMR_SEQ_GT(rd_seq, s_rd_seq)) {
456 		atomic_cmpset_int(&s->s_rd_seq, s_rd_seq, rd_seq);
457 		s_rd_seq = rd_seq;
458 	}
459 
460 	return (s_rd_seq);
461 }
462 
463 /*
464  * Poll to determine whether all readers have observed the 'goal' write
465  * sequence number.
466  *
467  * If wait is true this will spin until the goal is met.
468  *
469  * This routine will updated the minimum observed read sequence number in
470  * s_rd_seq if it does a scan.  It may not do a scan if another call has
471  * advanced s_rd_seq beyond the callers goal already.
472  *
473  * Returns true if the goal is met and false if not.
474  */
475 bool
476 smr_poll(smr_t smr, smr_seq_t goal, bool wait)
477 {
478 	smr_shared_t s;
479 	smr_t self;
480 	smr_seq_t s_wr_seq, s_rd_seq;
481 	smr_delta_t delta;
482 	int flags;
483 	bool success;
484 
485 	/*
486 	 * It is illegal to enter while in an smr section.
487 	 */
488 	KASSERT(!wait || !SMR_ENTERED(smr),
489 	    ("smr_poll: Blocking not allowed in a SMR section."));
490 	KASSERT(!wait || (zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
491 	    ("smr_poll: Blocking not allowed on lazy smrs."));
492 
493 	/*
494 	 * Use a critical section so that we can avoid ABA races
495 	 * caused by long preemption sleeps.
496 	 */
497 	success = true;
498 	critical_enter();
499 	/* Attempt to load from self only once. */
500 	self = zpcpu_get(smr);
501 	s = self->c_shared;
502 	flags = self->c_flags;
503 	counter_u64_add_protected(poll, 1);
504 
505 	/*
506 	 * Conditionally advance the lazy write clock on any writer
507 	 * activity.
508 	 */
509 	if ((flags & SMR_LAZY) != 0)
510 		smr_lazy_advance(smr, s);
511 
512 	/*
513 	 * Acquire barrier loads s_wr_seq after s_rd_seq so that we can not
514 	 * observe an updated read sequence that is larger than write.
515 	 */
516 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
517 
518 	/*
519 	 * If we have already observed the sequence number we can immediately
520 	 * return success.  Most polls should meet this criterion.
521 	 */
522 	if (SMR_SEQ_LEQ(goal, s_rd_seq))
523 		goto out;
524 
525 	/*
526 	 * wr_seq must be loaded prior to any c_seq value so that a
527 	 * stale c_seq can only reference time after this wr_seq.
528 	 */
529 	s_wr_seq = atomic_load_acq_int(&s->s_wr.seq);
530 
531 	/*
532 	 * This is the distance from s_wr_seq to goal.  Positive values
533 	 * are in the future.
534 	 */
535 	delta = SMR_SEQ_DELTA(goal, s_wr_seq);
536 
537 	/*
538 	 * Detect a stale wr_seq.
539 	 *
540 	 * This goal may have come from a deferred advance or a lazy
541 	 * smr.  If we are not blocking we can not succeed but the
542 	 * sequence number is valid.
543 	 */
544 	if (delta > 0 && delta <= SMR_SEQ_ADVANCE &&
545 	    (flags & (SMR_LAZY | SMR_DEFERRED)) != 0) {
546 		if (!wait) {
547 			success = false;
548 			goto out;
549 		}
550 		/* LAZY is always !wait. */
551 		s_wr_seq = smr_shared_advance(s);
552 		delta = 0;
553 	}
554 
555 	/*
556 	 * Detect an invalid goal.
557 	 *
558 	 * The goal must be in the range of s_wr_seq >= goal >= s_rd_seq for
559 	 * it to be valid.  If it is not then the caller held on to it and
560 	 * the integer wrapped.  If we wrapped back within range the caller
561 	 * will harmlessly scan.
562 	 */
563 	if (delta > 0)
564 		goto out;
565 
566 	/* Determine the lowest visible sequence number. */
567 	s_rd_seq = smr_poll_scan(smr, s, s_rd_seq, s_wr_seq, goal, wait);
568 	success = SMR_SEQ_LEQ(goal, s_rd_seq);
569 out:
570 	if (!success)
571 		counter_u64_add_protected(poll_fail, 1);
572 	critical_exit();
573 
574 	/*
575 	 * Serialize with smr_advance()/smr_exit().  The caller is now free
576 	 * to modify memory as expected.
577 	 */
578 	atomic_thread_fence_acq();
579 
580 	KASSERT(success || !wait, ("%s: blocking poll failed", __func__));
581 	return (success);
582 }
583 
584 smr_t
585 smr_create(const char *name, int limit, int flags)
586 {
587 	smr_t smr, c;
588 	smr_shared_t s;
589 	int i;
590 
591 	s = uma_zalloc(smr_shared_zone, M_WAITOK);
592 	smr = uma_zalloc_pcpu(smr_zone, M_WAITOK);
593 
594 	s->s_name = name;
595 	s->s_rd_seq = s->s_wr.seq = SMR_SEQ_INIT;
596 	s->s_wr.ticks = ticks;
597 
598 	/* Initialize all CPUS, not just those running. */
599 	for (i = 0; i <= mp_maxid; i++) {
600 		c = zpcpu_get_cpu(smr, i);
601 		c->c_seq = SMR_SEQ_INVALID;
602 		c->c_shared = s;
603 		c->c_deferred = 0;
604 		c->c_limit = limit;
605 		c->c_flags = flags;
606 	}
607 	atomic_thread_fence_seq_cst();
608 
609 	return (smr);
610 }
611 
612 void
613 smr_destroy(smr_t smr)
614 {
615 
616 	smr_synchronize(smr);
617 	uma_zfree(smr_shared_zone, smr->c_shared);
618 	uma_zfree_pcpu(smr_zone, smr);
619 }
620 
621 /*
622  * Initialize the UMA slab zone.
623  */
624 void
625 smr_init(void)
626 {
627 
628 	smr_shared_zone = uma_zcreate("SMR SHARED", sizeof(struct smr_shared),
629 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, 0);
630 	smr_zone = uma_zcreate("SMR CPU", sizeof(struct smr),
631 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, UMA_ZONE_PCPU);
632 }
633