xref: /freebsd/sys/kern/subr_smr.c (revision 53071ed1c96db7f89defc99c95b0ad1031d48f45)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/counter.h>
34 #include <sys/kernel.h>
35 #include <sys/limits.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/smr.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/uma.h>
42 
43 /*
44  * This is a novel safe memory reclamation technique inspired by
45  * epoch based reclamation from Samy Al Bahra's concurrency kit which
46  * in turn was based on work described in:
47  *   Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
48  *   of Cambridge Computing Laboratory.
49  * And shares some similarities with:
50  *   Wang, Stamler, Parmer. 2016 Parallel Sections: Scaling System-Level
51  *   Data-Structures
52  *
53  * This is not an implementation of hazard pointers or related
54  * techniques.  The term safe memory reclamation is used as a
55  * generic descriptor for algorithms that defer frees to avoid
56  * use-after-free errors with lockless datastructures.
57  *
58  * The basic approach is to maintain a monotonic write sequence
59  * number that is updated on some application defined granularity.
60  * Readers record the most recent write sequence number they have
61  * observed.  A shared read sequence number records the lowest
62  * sequence number observed by any reader as of the last poll.  Any
63  * write older than this value has been observed by all readers
64  * and memory can be reclaimed.  Like Epoch we also detect idle
65  * readers by storing an invalid sequence number in the per-cpu
66  * state when the read section exits.  Like Parsec we establish
67  * a global write clock that is used to mark memory on free.
68  *
69  * The write and read sequence numbers can be thought of as a two
70  * handed clock with readers always advancing towards writers.  SMR
71  * maintains the invariant that all readers can safely access memory
72  * that was visible at the time they loaded their copy of the sequence
73  * number.  Periodically the read sequence or hand is polled and
74  * advanced as far towards the write sequence as active readers allow.
75  * Memory which was freed between the old and new global read sequence
76  * number can now be reclaimed.  When the system is idle the two hands
77  * meet and no deferred memory is outstanding.  Readers never advance
78  * any sequence number, they only observe them.  The shared read
79  * sequence number is consequently never higher than the write sequence.
80  * A stored sequence number that falls outside of this range has expired
81  * and needs no scan to reclaim.
82  *
83  * A notable distinction between this SMR and Epoch, qsbr, rcu, etc. is
84  * that advancing the sequence number is decoupled from detecting its
85  * observation.  This results in a more granular assignment of sequence
86  * numbers even as read latencies prohibit all or some expiration.
87  * It also allows writers to advance the sequence number and save the
88  * poll for expiration until a later time when it is likely to
89  * complete without waiting.  The batch granularity and free-to-use
90  * latency is dynamic and can be significantly smaller than in more
91  * strict systems.
92  *
93  * This mechanism is primarily intended to be used in coordination with
94  * UMA.  By integrating with the allocator we avoid all of the callout
95  * queue machinery and are provided with an efficient way to batch
96  * sequence advancement and waiting.  The allocator accumulates a full
97  * per-cpu cache of memory before advancing the sequence.  It then
98  * delays waiting for this sequence to expire until the memory is
99  * selected for reuse.  In this way we only increment the sequence
100  * value once for n=cache-size frees and the waits are done long
101  * after the sequence has been expired so they need only be verified
102  * to account for pathological conditions and to advance the read
103  * sequence.  Tying the sequence number to the bucket size has the
104  * nice property that as the zone gets busier the buckets get larger
105  * and the sequence writes become fewer.  If the coherency of advancing
106  * the write sequence number becomes too costly we can advance
107  * it for every N buckets in exchange for higher free-to-use
108  * latency and consequently higher memory consumption.
109  *
110  * If the read overhead of accessing the shared cacheline becomes
111  * especially burdensome an invariant TSC could be used in place of the
112  * sequence.  The algorithm would then only need to maintain the minimum
113  * observed tsc.  This would trade potential cache synchronization
114  * overhead for local serialization and cpu timestamp overhead.
115  */
116 
117 /*
118  * A simplified diagram:
119  *
120  * 0                                                          UINT_MAX
121  * | -------------------- sequence number space -------------------- |
122  *              ^ rd seq                            ^ wr seq
123  *              | ----- valid sequence numbers ---- |
124  *                ^cpuA  ^cpuC
125  * | -- free -- | --------- deferred frees -------- | ---- free ---- |
126  *
127  *
128  * In this example cpuA has the lowest sequence number and poll can
129  * advance rd seq.  cpuB is not running and is considered to observe
130  * wr seq.
131  *
132  * Freed memory that is tagged with a sequence number between rd seq and
133  * wr seq can not be safely reclaimed because cpuA may hold a reference to
134  * it.  Any other memory is guaranteed to be unreferenced.
135  *
136  * Any writer is free to advance wr seq at any time however it may busy
137  * poll in pathological cases.
138  */
139 
140 static uma_zone_t smr_shared_zone;
141 static uma_zone_t smr_zone;
142 
143 #ifndef INVARIANTS
144 #define	SMR_SEQ_INIT	1		/* All valid sequence numbers are odd. */
145 #define	SMR_SEQ_INCR	2
146 
147 /*
148  * SMR_SEQ_MAX_DELTA is the maximum distance allowed between rd_seq and
149  * wr_seq.  For the modular arithmetic to work a value of UNIT_MAX / 2
150  * would be possible but it is checked after we increment the wr_seq so
151  * a safety margin is left to prevent overflow.
152  *
153  * We will block until SMR_SEQ_MAX_ADVANCE sequence numbers have progressed
154  * to prevent integer wrapping.  See smr_advance() for more details.
155  */
156 #define	SMR_SEQ_MAX_DELTA	(UINT_MAX / 4)
157 #define	SMR_SEQ_MAX_ADVANCE	(SMR_SEQ_MAX_DELTA - 1024)
158 #else
159 /* We want to test the wrapping feature in invariants kernels. */
160 #define	SMR_SEQ_INCR	(UINT_MAX / 10000)
161 #define	SMR_SEQ_INIT	(UINT_MAX - 100000)
162 /* Force extra polls to test the integer overflow detection. */
163 #define	SMR_SEQ_MAX_DELTA	(SMR_SEQ_INCR * 32)
164 #define	SMR_SEQ_MAX_ADVANCE	SMR_SEQ_MAX_DELTA / 2
165 #endif
166 
167 static SYSCTL_NODE(_debug, OID_AUTO, smr, CTLFLAG_RW, NULL, "SMR Stats");
168 static counter_u64_t advance = EARLY_COUNTER;
169 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance, CTLFLAG_RD, &advance, "");
170 static counter_u64_t advance_wait = EARLY_COUNTER;
171 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance_wait, CTLFLAG_RD, &advance_wait, "");
172 static counter_u64_t poll = EARLY_COUNTER;
173 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll, CTLFLAG_RD, &poll, "");
174 static counter_u64_t poll_scan = EARLY_COUNTER;
175 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_scan, CTLFLAG_RD, &poll_scan, "");
176 
177 
178 /*
179  * Advance the write sequence and return the new value for use as the
180  * wait goal.  This guarantees that any changes made by the calling
181  * thread prior to this call will be visible to all threads after
182  * rd_seq meets or exceeds the return value.
183  *
184  * This function may busy loop if the readers are roughly 1 billion
185  * sequence numbers behind the writers.
186  */
187 smr_seq_t
188 smr_advance(smr_t smr)
189 {
190 	smr_shared_t s;
191 	smr_seq_t goal, s_rd_seq;
192 
193 	/*
194 	 * It is illegal to enter while in an smr section.
195 	 */
196 	KASSERT(curthread->td_critnest == 0,
197 	    ("smr_advance: Not allowed in a critical section."));
198 
199 	/*
200 	 * Modifications not done in a smr section need to be visible
201 	 * before advancing the seq.
202 	 */
203 	atomic_thread_fence_rel();
204 
205 	/*
206 	 * Load the current read seq before incrementing the goal so
207 	 * we are guaranteed it is always < goal.
208 	 */
209 	s = zpcpu_get(smr)->c_shared;
210 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
211 
212 	/*
213 	 * Increment the shared write sequence by 2.  Since it is
214 	 * initialized to 1 this means the only valid values are
215 	 * odd and an observed value of 0 in a particular CPU means
216 	 * it is not currently in a read section.
217 	 */
218 	goal = atomic_fetchadd_int(&s->s_wr_seq, SMR_SEQ_INCR) + SMR_SEQ_INCR;
219 	counter_u64_add(advance, 1);
220 
221 	/*
222 	 * Force a synchronization here if the goal is getting too
223 	 * far ahead of the read sequence number.  This keeps the
224 	 * wrap detecting arithmetic working in pathological cases.
225 	 */
226 	if (SMR_SEQ_DELTA(goal, s_rd_seq) >= SMR_SEQ_MAX_DELTA) {
227 		counter_u64_add(advance_wait, 1);
228 		smr_wait(smr, goal - SMR_SEQ_MAX_ADVANCE);
229 	}
230 
231 	return (goal);
232 }
233 
234 smr_seq_t
235 smr_advance_deferred(smr_t smr, int limit)
236 {
237 	smr_seq_t goal;
238 	smr_t csmr;
239 
240 	critical_enter();
241 	csmr = zpcpu_get(smr);
242 	if (++csmr->c_deferred >= limit) {
243 		goal = SMR_SEQ_INVALID;
244 		csmr->c_deferred = 0;
245 	} else
246 		goal = smr_shared_current(csmr->c_shared) + SMR_SEQ_INCR;
247 	critical_exit();
248 	if (goal != SMR_SEQ_INVALID)
249 		return (goal);
250 
251 	return (smr_advance(smr));
252 }
253 
254 /*
255  * Poll to determine whether all readers have observed the 'goal' write
256  * sequence number.
257  *
258  * If wait is true this will spin until the goal is met.
259  *
260  * This routine will updated the minimum observed read sequence number in
261  * s_rd_seq if it does a scan.  It may not do a scan if another call has
262  * advanced s_rd_seq beyond the callers goal already.
263  *
264  * Returns true if the goal is met and false if not.
265  */
266 bool
267 smr_poll(smr_t smr, smr_seq_t goal, bool wait)
268 {
269 	smr_shared_t s;
270 	smr_t c;
271 	smr_seq_t s_wr_seq, s_rd_seq, rd_seq, c_seq;
272 	int i;
273 	bool success;
274 
275 	/*
276 	 * It is illegal to enter while in an smr section.
277 	 */
278 	KASSERT(!wait || curthread->td_critnest == 0,
279 	    ("smr_poll: Blocking not allowed in a critical section."));
280 
281 	/*
282 	 * Use a critical section so that we can avoid ABA races
283 	 * caused by long preemption sleeps.
284 	 */
285 	success = true;
286 	critical_enter();
287 	s = zpcpu_get(smr)->c_shared;
288 	counter_u64_add_protected(poll, 1);
289 
290 	/*
291 	 * Acquire barrier loads s_wr_seq after s_rd_seq so that we can not
292 	 * observe an updated read sequence that is larger than write.
293 	 */
294 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
295 
296 	/*
297 	 * wr_seq must be loaded prior to any c_seq value so that a stale
298 	 * c_seq can only reference time after this wr_seq.
299 	 */
300 	s_wr_seq = atomic_load_acq_int(&s->s_wr_seq);
301 
302 	/*
303 	 * This may have come from a deferred advance.  Consider one
304 	 * increment past the current wr_seq valid and make sure we
305 	 * have advanced far enough to succeed.  We simply add to avoid
306 	 * an additional fence.
307 	 */
308 	if (goal == s_wr_seq + SMR_SEQ_INCR) {
309 		atomic_add_int(&s->s_wr_seq, SMR_SEQ_INCR);
310 		s_wr_seq = goal;
311 	}
312 
313 	/*
314 	 * Detect whether the goal is valid and has already been observed.
315 	 *
316 	 * The goal must be in the range of s_wr_seq >= goal >= s_rd_seq for
317 	 * it to be valid.  If it is not then the caller held on to it and
318 	 * the integer wrapped.  If we wrapped back within range the caller
319 	 * will harmlessly scan.
320 	 *
321 	 * A valid goal must be greater than s_rd_seq or we have not verified
322 	 * that it has been observed and must fall through to polling.
323 	 */
324 	if (SMR_SEQ_GEQ(s_rd_seq, goal) || SMR_SEQ_LT(s_wr_seq, goal))
325 		goto out;
326 
327 	/*
328 	 * Loop until all cores have observed the goal sequence or have
329 	 * gone inactive.  Keep track of the oldest sequence currently
330 	 * active as rd_seq.
331 	 */
332 	counter_u64_add_protected(poll_scan, 1);
333 	rd_seq = s_wr_seq;
334 	CPU_FOREACH(i) {
335 		c = zpcpu_get_cpu(smr, i);
336 		c_seq = SMR_SEQ_INVALID;
337 		for (;;) {
338 			c_seq = atomic_load_int(&c->c_seq);
339 			if (c_seq == SMR_SEQ_INVALID)
340 				break;
341 
342 			/*
343 			 * There is a race described in smr.h:smr_enter that
344 			 * can lead to a stale seq value but not stale data
345 			 * access.  If we find a value out of range here we
346 			 * pin it to the current min to prevent it from
347 			 * advancing until that stale section has expired.
348 			 *
349 			 * The race is created when a cpu loads the s_wr_seq
350 			 * value in a local register and then another thread
351 			 * advances s_wr_seq and calls smr_poll() which will
352 			 * oberve no value yet in c_seq and advance s_rd_seq
353 			 * up to s_wr_seq which is beyond the register
354 			 * cached value.  This is only likely to happen on
355 			 * hypervisor or with a system management interrupt.
356 			 */
357 			if (SMR_SEQ_LT(c_seq, s_rd_seq))
358 				c_seq = s_rd_seq;
359 
360 			/*
361 			 * If the sequence number meets the goal we are
362 			 * done with this cpu.
363 			 */
364 			if (SMR_SEQ_GEQ(c_seq, goal))
365 				break;
366 
367 			/*
368 			 * If we're not waiting we will still scan the rest
369 			 * of the cpus and update s_rd_seq before returning
370 			 * an error.
371 			 */
372 			if (!wait) {
373 				success = false;
374 				break;
375 			}
376 			cpu_spinwait();
377 		}
378 
379 		/*
380 		 * Limit the minimum observed rd_seq whether we met the goal
381 		 * or not.
382 		 */
383 		if (c_seq != SMR_SEQ_INVALID && SMR_SEQ_GT(rd_seq, c_seq))
384 			rd_seq = c_seq;
385 	}
386 
387 	/*
388 	 * Advance the rd_seq as long as we observed the most recent one.
389 	 */
390 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
391 	do {
392 		if (SMR_SEQ_LEQ(rd_seq, s_rd_seq))
393 			goto out;
394 	} while (atomic_fcmpset_int(&s->s_rd_seq, &s_rd_seq, rd_seq) == 0);
395 
396 out:
397 	critical_exit();
398 
399 	/*
400 	 * Serialize with smr_advance()/smr_exit().  The caller is now free
401 	 * to modify memory as expected.
402 	 */
403 	atomic_thread_fence_acq();
404 
405 	return (success);
406 }
407 
408 smr_t
409 smr_create(const char *name)
410 {
411 	smr_t smr, c;
412 	smr_shared_t s;
413 	int i;
414 
415 	s = uma_zalloc(smr_shared_zone, M_WAITOK);
416 	smr = uma_zalloc(smr_zone, M_WAITOK);
417 
418 	s->s_name = name;
419 	s->s_rd_seq = s->s_wr_seq = SMR_SEQ_INIT;
420 
421 	/* Initialize all CPUS, not just those running. */
422 	for (i = 0; i <= mp_maxid; i++) {
423 		c = zpcpu_get_cpu(smr, i);
424 		c->c_seq = SMR_SEQ_INVALID;
425 		c->c_shared = s;
426 	}
427 	atomic_thread_fence_seq_cst();
428 
429 	return (smr);
430 }
431 
432 void
433 smr_destroy(smr_t smr)
434 {
435 
436 	smr_synchronize(smr);
437 	uma_zfree(smr_shared_zone, smr->c_shared);
438 	uma_zfree(smr_zone, smr);
439 }
440 
441 /*
442  * Initialize the UMA slab zone.
443  */
444 void
445 smr_init(void)
446 {
447 
448 	smr_shared_zone = uma_zcreate("SMR SHARED", sizeof(struct smr_shared),
449 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, 0);
450 	smr_zone = uma_zcreate("SMR CPU", sizeof(struct smr),
451 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, UMA_ZONE_PCPU);
452 }
453 
454 static void
455 smr_init_counters(void *unused)
456 {
457 
458 	advance = counter_u64_alloc(M_WAITOK);
459 	advance_wait = counter_u64_alloc(M_WAITOK);
460 	poll = counter_u64_alloc(M_WAITOK);
461 	poll_scan = counter_u64_alloc(M_WAITOK);
462 }
463 SYSINIT(smr_counters, SI_SUB_CPU, SI_ORDER_ANY, smr_init_counters, NULL);
464