xref: /freebsd/sys/kern/subr_smr.c (revision 473957941922d17be72089e385e2e2a995fd0e1c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/counter.h>
34 #include <sys/kernel.h>
35 #include <sys/limits.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/smr.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/uma.h>
42 
43 /*
44  * Global Unbounded Sequences (GUS)
45  *
46  * This is a novel safe memory reclamation technique inspired by
47  * epoch based reclamation from Samy Al Bahra's concurrency kit which
48  * in turn was based on work described in:
49  *   Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
50  *   of Cambridge Computing Laboratory.
51  * And shares some similarities with:
52  *   Wang, Stamler, Parmer. 2016 Parallel Sections: Scaling System-Level
53  *   Data-Structures
54  *
55  * This is not an implementation of hazard pointers or related
56  * techniques.  The term safe memory reclamation is used as a
57  * generic descriptor for algorithms that defer frees to avoid
58  * use-after-free errors with lockless datastructures or as
59  * a mechanism to detect quiescence for writer synchronization.
60  *
61  * The basic approach is to maintain a monotonic write sequence
62  * number that is updated on some application defined granularity.
63  * Readers record the most recent write sequence number they have
64  * observed.  A shared read sequence number records the lowest
65  * sequence number observed by any reader as of the last poll.  Any
66  * write older than this value has been observed by all readers
67  * and memory can be reclaimed.  Like Epoch we also detect idle
68  * readers by storing an invalid sequence number in the per-cpu
69  * state when the read section exits.  Like Parsec we establish
70  * a global write clock that is used to mark memory on free.
71  *
72  * The write and read sequence numbers can be thought of as a two
73  * handed clock with readers always advancing towards writers.  GUS
74  * maintains the invariant that all readers can safely access memory
75  * that was visible at the time they loaded their copy of the sequence
76  * number.  Periodically the read sequence or hand is polled and
77  * advanced as far towards the write sequence as active readers allow.
78  * Memory which was freed between the old and new global read sequence
79  * number can now be reclaimed.  When the system is idle the two hands
80  * meet and no deferred memory is outstanding.  Readers never advance
81  * any sequence number, they only observe them.  The shared read
82  * sequence number is consequently never higher than the write sequence.
83  * A stored sequence number that falls outside of this range has expired
84  * and needs no scan to reclaim.
85  *
86  * A notable distinction between GUS and Epoch, qsbr, rcu, etc. is
87  * that advancing the sequence number is decoupled from detecting its
88  * observation.  That is to say, the delta between read and write
89  * sequence numbers is not bound.  This can be thought of as a more
90  * generalized form of epoch which requires them at most one step
91  * apart.  This results in a more granular assignment of sequence
92  * numbers even as read latencies prohibit all or some expiration.
93  * It also allows writers to advance the sequence number and save the
94  * poll for expiration until a later time when it is likely to
95  * complete without waiting.  The batch granularity and free-to-use
96  * latency is dynamic and can be significantly smaller than in more
97  * strict systems.
98  *
99  * This mechanism is primarily intended to be used in coordination with
100  * UMA.  By integrating with the allocator we avoid all of the callout
101  * queue machinery and are provided with an efficient way to batch
102  * sequence advancement and waiting.  The allocator accumulates a full
103  * per-cpu cache of memory before advancing the sequence.  It then
104  * delays waiting for this sequence to expire until the memory is
105  * selected for reuse.  In this way we only increment the sequence
106  * value once for n=cache-size frees and the waits are done long
107  * after the sequence has been expired so they need only be verified
108  * to account for pathological conditions and to advance the read
109  * sequence.  Tying the sequence number to the bucket size has the
110  * nice property that as the zone gets busier the buckets get larger
111  * and the sequence writes become fewer.  If the coherency of advancing
112  * the write sequence number becomes too costly we can advance
113  * it for every N buckets in exchange for higher free-to-use
114  * latency and consequently higher memory consumption.
115  *
116  * If the read overhead of accessing the shared cacheline becomes
117  * especially burdensome an invariant TSC could be used in place of the
118  * sequence.  The algorithm would then only need to maintain the minimum
119  * observed tsc.  This would trade potential cache synchronization
120  * overhead for local serialization and cpu timestamp overhead.
121  */
122 
123 /*
124  * A simplified diagram:
125  *
126  * 0                                                          UINT_MAX
127  * | -------------------- sequence number space -------------------- |
128  *              ^ rd seq                            ^ wr seq
129  *              | ----- valid sequence numbers ---- |
130  *                ^cpuA  ^cpuC
131  * | -- free -- | --------- deferred frees -------- | ---- free ---- |
132  *
133  *
134  * In this example cpuA has the lowest sequence number and poll can
135  * advance rd seq.  cpuB is not running and is considered to observe
136  * wr seq.
137  *
138  * Freed memory that is tagged with a sequence number between rd seq and
139  * wr seq can not be safely reclaimed because cpuA may hold a reference to
140  * it.  Any other memory is guaranteed to be unreferenced.
141  *
142  * Any writer is free to advance wr seq at any time however it may busy
143  * poll in pathological cases.
144  */
145 
146 static uma_zone_t smr_shared_zone;
147 static uma_zone_t smr_zone;
148 
149 #ifndef INVARIANTS
150 #define	SMR_SEQ_INIT	1		/* All valid sequence numbers are odd. */
151 #define	SMR_SEQ_INCR	2
152 
153 /*
154  * SMR_SEQ_MAX_DELTA is the maximum distance allowed between rd_seq and
155  * wr_seq.  For the modular arithmetic to work a value of UNIT_MAX / 2
156  * would be possible but it is checked after we increment the wr_seq so
157  * a safety margin is left to prevent overflow.
158  *
159  * We will block until SMR_SEQ_MAX_ADVANCE sequence numbers have progressed
160  * to prevent integer wrapping.  See smr_advance() for more details.
161  */
162 #define	SMR_SEQ_MAX_DELTA	(UINT_MAX / 4)
163 #define	SMR_SEQ_MAX_ADVANCE	(SMR_SEQ_MAX_DELTA - 1024)
164 #else
165 /* We want to test the wrapping feature in invariants kernels. */
166 #define	SMR_SEQ_INCR	(UINT_MAX / 10000)
167 #define	SMR_SEQ_INIT	(UINT_MAX - 100000)
168 /* Force extra polls to test the integer overflow detection. */
169 #define	SMR_SEQ_MAX_DELTA	(SMR_SEQ_INCR * 32)
170 #define	SMR_SEQ_MAX_ADVANCE	SMR_SEQ_MAX_DELTA / 2
171 #endif
172 
173 /*
174  * The grace period for lazy (tick based) SMR.
175  *
176  * Hardclock is responsible for advancing ticks on a single CPU while every
177  * CPU receives a regular clock interrupt.  The clock interrupts are flushing
178  * the store buffers and any speculative loads that may violate our invariants.
179  * Because these interrupts are not synchronized we must wait one additional
180  * tick in the future to be certain that all processors have had their state
181  * synchronized by an interrupt.
182  *
183  * This assumes that the clock interrupt will only be delayed by other causes
184  * that will flush the store buffer or prevent access to the section protected
185  * data.  For example, an idle processor, or an system management interrupt,
186  * or a vm exit.
187  *
188  * We must wait one additional tick if we are around the wrap condition
189  * because the write seq will move forward by two with one interrupt.
190  */
191 #define	SMR_LAZY_GRACE		2
192 #define	SMR_LAZY_GRACE_MAX	(SMR_LAZY_GRACE + 1)
193 
194 /*
195  * The maximum sequence number ahead of wr_seq that may still be valid.  The
196  * sequence may not be advanced on write for lazy or deferred SMRs.  In this
197  * case poll needs to attempt to forward the sequence number if the goal is
198  * within wr_seq + SMR_SEQ_ADVANCE.
199  */
200 #define	SMR_SEQ_ADVANCE		MAX(SMR_SEQ_INCR, SMR_LAZY_GRACE_MAX)
201 
202 static SYSCTL_NODE(_debug, OID_AUTO, smr, CTLFLAG_RW, NULL, "SMR Stats");
203 static counter_u64_t advance = EARLY_COUNTER;
204 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance, CTLFLAG_RW, &advance, "");
205 static counter_u64_t advance_wait = EARLY_COUNTER;
206 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance_wait, CTLFLAG_RW, &advance_wait, "");
207 static counter_u64_t poll = EARLY_COUNTER;
208 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll, CTLFLAG_RW, &poll, "");
209 static counter_u64_t poll_scan = EARLY_COUNTER;
210 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_scan, CTLFLAG_RW, &poll_scan, "");
211 static counter_u64_t poll_fail = EARLY_COUNTER;
212 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_fail, CTLFLAG_RW, &poll_fail, "");
213 
214 /*
215  * Advance a lazy write sequence number.  These move forward at the rate of
216  * ticks.  Grace is two ticks in the future.  lazy write sequence numbers can
217  * be even but not SMR_SEQ_INVALID so we pause time for a tick when we wrap.
218  *
219  * This returns the _current_ write sequence number.  The lazy goal sequence
220  * number is SMR_LAZY_GRACE ticks ahead.
221  */
222 static smr_seq_t
223 smr_lazy_advance(smr_t smr, smr_shared_t s)
224 {
225 	smr_seq_t s_rd_seq, s_wr_seq, goal;
226 	int t;
227 
228 	CRITICAL_ASSERT(curthread);
229 
230 	/*
231 	 * Load s_wr_seq prior to ticks to ensure that the thread that
232 	 * observes the largest value wins.
233 	 */
234 	s_wr_seq = atomic_load_acq_int(&s->s_wr_seq);
235 
236 	/*
237 	 * We must not allow a zero tick value.  We go back in time one tick
238 	 * and advance the grace period forward one tick around zero.
239 	 */
240 	t = ticks;
241 	if (t == SMR_SEQ_INVALID)
242 		t--;
243 
244 	/*
245 	 * The most probable condition that the update already took place.
246 	 */
247 	if (__predict_true(t == s_wr_seq))
248 		goto out;
249 
250 	/*
251 	 * After long idle periods the read sequence may fall too far
252 	 * behind write.  Prevent poll from ever seeing this condition
253 	 * by updating the stale rd_seq.  This assumes that there can
254 	 * be no valid section 2bn ticks old.  The rd_seq update must
255 	 * be visible before wr_seq to avoid races with other advance
256 	 * callers.
257 	 */
258 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
259 	if (SMR_SEQ_GT(s_rd_seq, t))
260 		atomic_cmpset_rel_int(&s->s_rd_seq, s_rd_seq, t);
261 
262 	/*
263 	 * Release to synchronize with the wr_seq load above.  Ignore
264 	 * cmpset failures from simultaneous updates.
265 	 */
266 	atomic_cmpset_rel_int(&s->s_wr_seq, s_wr_seq, t);
267 	counter_u64_add(advance, 1);
268 	/* If we lost either update race another thread did it. */
269 	s_wr_seq = t;
270 out:
271 	goal = s_wr_seq + SMR_LAZY_GRACE;
272 	/* Skip over the SMR_SEQ_INVALID tick. */
273 	if (goal < SMR_LAZY_GRACE)
274 		goal++;
275 	return (goal);
276 }
277 
278 /*
279  * Increment the shared write sequence by 2.  Since it is initialized
280  * to 1 this means the only valid values are odd and an observed value
281  * of 0 in a particular CPU means it is not currently in a read section.
282  */
283 static smr_seq_t
284 smr_shared_advance(smr_shared_t s)
285 {
286 
287 	return (atomic_fetchadd_int(&s->s_wr_seq, SMR_SEQ_INCR) + SMR_SEQ_INCR);
288 }
289 
290 /*
291  * Advance the write sequence number for a normal smr section.  If the
292  * write sequence is too far behind the read sequence we have to poll
293  * to advance rd_seq and prevent undetectable wraps.
294  */
295 static smr_seq_t
296 smr_default_advance(smr_t smr, smr_shared_t s)
297 {
298 	smr_seq_t goal, s_rd_seq;
299 
300 	CRITICAL_ASSERT(curthread);
301 	KASSERT((zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
302 	    ("smr_default_advance: called with lazy smr."));
303 
304 	/*
305 	 * Load the current read seq before incrementing the goal so
306 	 * we are guaranteed it is always < goal.
307 	 */
308 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
309 	goal = smr_shared_advance(s);
310 
311 	/*
312 	 * Force a synchronization here if the goal is getting too
313 	 * far ahead of the read sequence number.  This keeps the
314 	 * wrap detecting arithmetic working in pathological cases.
315 	 */
316 	if (SMR_SEQ_DELTA(goal, s_rd_seq) >= SMR_SEQ_MAX_DELTA) {
317 		counter_u64_add(advance_wait, 1);
318 		smr_wait(smr, goal - SMR_SEQ_MAX_ADVANCE);
319 	}
320 	counter_u64_add(advance, 1);
321 
322 	return (goal);
323 }
324 
325 /*
326  * Deferred SMRs conditionally update s_wr_seq based on an
327  * cpu local interval count.
328  */
329 static smr_seq_t
330 smr_deferred_advance(smr_t smr, smr_shared_t s, smr_t self)
331 {
332 
333 	if (++self->c_deferred < self->c_limit)
334 		return (smr_shared_current(s) + SMR_SEQ_INCR);
335 	self->c_deferred = 0;
336 	return (smr_default_advance(smr, s));
337 }
338 
339 /*
340  * Advance the write sequence and return the value for use as the
341  * wait goal.  This guarantees that any changes made by the calling
342  * thread prior to this call will be visible to all threads after
343  * rd_seq meets or exceeds the return value.
344  *
345  * This function may busy loop if the readers are roughly 1 billion
346  * sequence numbers behind the writers.
347  *
348  * Lazy SMRs will not busy loop and the wrap happens every 49.6 days
349  * at 1khz and 119 hours at 10khz.  Readers can block for no longer
350  * than half of this for SMR_SEQ_ macros to continue working.
351  */
352 smr_seq_t
353 smr_advance(smr_t smr)
354 {
355 	smr_t self;
356 	smr_shared_t s;
357 	smr_seq_t goal;
358 	int flags;
359 
360 	/*
361 	 * It is illegal to enter while in an smr section.
362 	 */
363 	SMR_ASSERT_NOT_ENTERED(smr);
364 
365 	/*
366 	 * Modifications not done in a smr section need to be visible
367 	 * before advancing the seq.
368 	 */
369 	atomic_thread_fence_rel();
370 
371 	critical_enter();
372 	/* Try to touch the line once. */
373 	self = zpcpu_get(smr);
374 	s = self->c_shared;
375 	flags = self->c_flags;
376 	goal = SMR_SEQ_INVALID;
377 	if ((flags & (SMR_LAZY | SMR_DEFERRED)) == 0)
378 		goal = smr_default_advance(smr, s);
379 	else if ((flags & SMR_LAZY) != 0)
380 		goal = smr_lazy_advance(smr, s);
381 	else if ((flags & SMR_DEFERRED) != 0)
382 		goal = smr_deferred_advance(smr, s, self);
383 	critical_exit();
384 
385 	return (goal);
386 }
387 
388 /*
389  * Poll to determine the currently observed sequence number on a cpu
390  * and spinwait if the 'wait' argument is true.
391  */
392 static smr_seq_t
393 smr_poll_cpu(smr_t c, smr_seq_t s_rd_seq, smr_seq_t goal, bool wait)
394 {
395 	smr_seq_t c_seq;
396 
397 	c_seq = SMR_SEQ_INVALID;
398 	for (;;) {
399 		c_seq = atomic_load_int(&c->c_seq);
400 		if (c_seq == SMR_SEQ_INVALID)
401 			break;
402 
403 		/*
404 		 * There is a race described in smr.h:smr_enter that
405 		 * can lead to a stale seq value but not stale data
406 		 * access.  If we find a value out of range here we
407 		 * pin it to the current min to prevent it from
408 		 * advancing until that stale section has expired.
409 		 *
410 		 * The race is created when a cpu loads the s_wr_seq
411 		 * value in a local register and then another thread
412 		 * advances s_wr_seq and calls smr_poll() which will
413 		 * oberve no value yet in c_seq and advance s_rd_seq
414 		 * up to s_wr_seq which is beyond the register
415 		 * cached value.  This is only likely to happen on
416 		 * hypervisor or with a system management interrupt.
417 		 */
418 		if (SMR_SEQ_LT(c_seq, s_rd_seq))
419 			c_seq = s_rd_seq;
420 
421 		/*
422 		 * If the sequence number meets the goal we are done
423 		 * with this cpu.
424 		 */
425 		if (SMR_SEQ_LEQ(goal, c_seq))
426 			break;
427 
428 		if (!wait)
429 			break;
430 		cpu_spinwait();
431 	}
432 
433 	return (c_seq);
434 }
435 
436 /*
437  * Loop until all cores have observed the goal sequence or have
438  * gone inactive.  Returns the oldest sequence currently active;
439  *
440  * This function assumes a snapshot of sequence values has
441  * been obtained and validated by smr_poll().
442  */
443 static smr_seq_t
444 smr_poll_scan(smr_t smr, smr_shared_t s, smr_seq_t s_rd_seq,
445     smr_seq_t s_wr_seq, smr_seq_t goal, bool wait)
446 {
447 	smr_seq_t rd_seq, c_seq;
448 	int i;
449 
450 	CRITICAL_ASSERT(curthread);
451 	counter_u64_add_protected(poll_scan, 1);
452 
453 	/*
454 	 * The read sequence can be no larger than the write sequence at
455 	 * the start of the poll.
456 	 */
457 	rd_seq = s_wr_seq;
458 	CPU_FOREACH(i) {
459 		/*
460 		 * Query the active sequence on this cpu.  If we're not
461 		 * waiting and we don't meet the goal we will still scan
462 		 * the rest of the cpus to update s_rd_seq before returning
463 		 * failure.
464 		 */
465 		c_seq = smr_poll_cpu(zpcpu_get_cpu(smr, i), s_rd_seq, goal,
466 		    wait);
467 
468 		/*
469 		 * Limit the minimum observed rd_seq whether we met the goal
470 		 * or not.
471 		 */
472 		if (c_seq != SMR_SEQ_INVALID)
473 			rd_seq = SMR_SEQ_MIN(rd_seq, c_seq);
474 	}
475 
476 	/*
477 	 * Advance the rd_seq as long as we observed a more recent value.
478 	 */
479 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
480 	if (SMR_SEQ_GEQ(rd_seq, s_rd_seq)) {
481 		atomic_cmpset_int(&s->s_rd_seq, s_rd_seq, rd_seq);
482 		s_rd_seq = rd_seq;
483 	}
484 
485 	return (s_rd_seq);
486 }
487 
488 /*
489  * Poll to determine whether all readers have observed the 'goal' write
490  * sequence number.
491  *
492  * If wait is true this will spin until the goal is met.
493  *
494  * This routine will updated the minimum observed read sequence number in
495  * s_rd_seq if it does a scan.  It may not do a scan if another call has
496  * advanced s_rd_seq beyond the callers goal already.
497  *
498  * Returns true if the goal is met and false if not.
499  */
500 bool
501 smr_poll(smr_t smr, smr_seq_t goal, bool wait)
502 {
503 	smr_shared_t s;
504 	smr_t self;
505 	smr_seq_t s_wr_seq, s_rd_seq;
506 	smr_delta_t delta;
507 	int flags;
508 	bool success;
509 
510 	/*
511 	 * It is illegal to enter while in an smr section.
512 	 */
513 	KASSERT(!wait || !SMR_ENTERED(smr),
514 	    ("smr_poll: Blocking not allowed in a SMR section."));
515 	KASSERT(!wait || (zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
516 	    ("smr_poll: Blocking not allowed on lazy smrs."));
517 
518 	/*
519 	 * Use a critical section so that we can avoid ABA races
520 	 * caused by long preemption sleeps.
521 	 */
522 	success = true;
523 	critical_enter();
524 	/* Attempt to load from self only once. */
525 	self = zpcpu_get(smr);
526 	s = self->c_shared;
527 	flags = self->c_flags;
528 	counter_u64_add_protected(poll, 1);
529 
530 	/*
531 	 * Conditionally advance the lazy write clock on any writer
532 	 * activity.  This may reset s_rd_seq.
533 	 */
534 	if ((flags & SMR_LAZY) != 0)
535 		smr_lazy_advance(smr, s);
536 
537 	/*
538 	 * Acquire barrier loads s_wr_seq after s_rd_seq so that we can not
539 	 * observe an updated read sequence that is larger than write.
540 	 */
541 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
542 
543 	/*
544 	 * If we have already observed the sequence number we can immediately
545 	 * return success.  Most polls should meet this criterion.
546 	 */
547 	if (SMR_SEQ_LEQ(goal, s_rd_seq))
548 		goto out;
549 
550 	/*
551 	 * wr_seq must be loaded prior to any c_seq value so that a
552 	 * stale c_seq can only reference time after this wr_seq.
553 	 */
554 	s_wr_seq = atomic_load_acq_int(&s->s_wr_seq);
555 
556 	/*
557 	 * This is the distance from s_wr_seq to goal.  Positive values
558 	 * are in the future.
559 	 */
560 	delta = SMR_SEQ_DELTA(goal, s_wr_seq);
561 
562 	/*
563 	 * Detect a stale wr_seq.
564 	 *
565 	 * This goal may have come from a deferred advance or a lazy
566 	 * smr.  If we are not blocking we can not succeed but the
567 	 * sequence number is valid.
568 	 */
569 	if (delta > 0 && delta <= SMR_SEQ_MAX_ADVANCE &&
570 	    (flags & (SMR_LAZY | SMR_DEFERRED)) != 0) {
571 		if (!wait) {
572 			success = false;
573 			goto out;
574 		}
575 		/* LAZY is always !wait. */
576 		s_wr_seq = smr_shared_advance(s);
577 		delta = 0;
578 	}
579 
580 	/*
581 	 * Detect an invalid goal.
582 	 *
583 	 * The goal must be in the range of s_wr_seq >= goal >= s_rd_seq for
584 	 * it to be valid.  If it is not then the caller held on to it and
585 	 * the integer wrapped.  If we wrapped back within range the caller
586 	 * will harmlessly scan.
587 	 */
588 	if (delta > 0)
589 		goto out;
590 
591 	/* Determine the lowest visible sequence number. */
592 	s_rd_seq = smr_poll_scan(smr, s, s_rd_seq, s_wr_seq, goal, wait);
593 	success = SMR_SEQ_LEQ(goal, s_rd_seq);
594 out:
595 	if (!success)
596 		counter_u64_add_protected(poll_fail, 1);
597 	critical_exit();
598 
599 	/*
600 	 * Serialize with smr_advance()/smr_exit().  The caller is now free
601 	 * to modify memory as expected.
602 	 */
603 	atomic_thread_fence_acq();
604 
605 	return (success);
606 }
607 
608 smr_t
609 smr_create(const char *name, int limit, int flags)
610 {
611 	smr_t smr, c;
612 	smr_shared_t s;
613 	int i;
614 
615 	s = uma_zalloc(smr_shared_zone, M_WAITOK);
616 	smr = uma_zalloc_pcpu(smr_zone, M_WAITOK);
617 
618 	s->s_name = name;
619 	if ((flags & SMR_LAZY) == 0)
620 		s->s_rd_seq = s->s_wr_seq = SMR_SEQ_INIT;
621 	else
622 		s->s_rd_seq = s->s_wr_seq = ticks;
623 
624 	/* Initialize all CPUS, not just those running. */
625 	for (i = 0; i <= mp_maxid; i++) {
626 		c = zpcpu_get_cpu(smr, i);
627 		c->c_seq = SMR_SEQ_INVALID;
628 		c->c_shared = s;
629 		c->c_deferred = 0;
630 		c->c_limit = limit;
631 		c->c_flags = flags;
632 	}
633 	atomic_thread_fence_seq_cst();
634 
635 	return (smr);
636 }
637 
638 void
639 smr_destroy(smr_t smr)
640 {
641 
642 	smr_synchronize(smr);
643 	uma_zfree(smr_shared_zone, smr->c_shared);
644 	uma_zfree_pcpu(smr_zone, smr);
645 }
646 
647 /*
648  * Initialize the UMA slab zone.
649  */
650 void
651 smr_init(void)
652 {
653 
654 	smr_shared_zone = uma_zcreate("SMR SHARED", sizeof(struct smr_shared),
655 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, 0);
656 	smr_zone = uma_zcreate("SMR CPU", sizeof(struct smr),
657 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, UMA_ZONE_PCPU);
658 }
659 
660 static void
661 smr_init_counters(void *unused)
662 {
663 
664 	advance = counter_u64_alloc(M_WAITOK);
665 	advance_wait = counter_u64_alloc(M_WAITOK);
666 	poll = counter_u64_alloc(M_WAITOK);
667 	poll_scan = counter_u64_alloc(M_WAITOK);
668 	poll_fail = counter_u64_alloc(M_WAITOK);
669 }
670 SYSINIT(smr_counters, SI_SUB_CPU, SI_ORDER_ANY, smr_init_counters, NULL);
671