xref: /freebsd/sys/kern/subr_smr.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/counter.h>
31 #include <sys/kernel.h>
32 #include <sys/limits.h>
33 #include <sys/proc.h>
34 #include <sys/smp.h>
35 #include <sys/smr.h>
36 #include <sys/sysctl.h>
37 
38 #include <vm/uma.h>
39 
40 /*
41  * Global Unbounded Sequences (GUS)
42  *
43  * This is a novel safe memory reclamation technique inspired by
44  * epoch based reclamation from Samy Al Bahra's concurrency kit which
45  * in turn was based on work described in:
46  *   Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
47  *   of Cambridge Computing Laboratory.
48  * And shares some similarities with:
49  *   Wang, Stamler, Parmer. 2016 Parallel Sections: Scaling System-Level
50  *   Data-Structures
51  *
52  * This is not an implementation of hazard pointers or related
53  * techniques.  The term safe memory reclamation is used as a
54  * generic descriptor for algorithms that defer frees to avoid
55  * use-after-free errors with lockless datastructures or as
56  * a mechanism to detect quiescence for writer synchronization.
57  *
58  * The basic approach is to maintain a monotonic write sequence
59  * number that is updated on some application defined granularity.
60  * Readers record the most recent write sequence number they have
61  * observed.  A shared read sequence number records the lowest
62  * sequence number observed by any reader as of the last poll.  Any
63  * write older than this value has been observed by all readers
64  * and memory can be reclaimed.  Like Epoch we also detect idle
65  * readers by storing an invalid sequence number in the per-cpu
66  * state when the read section exits.  Like Parsec we establish
67  * a global write clock that is used to mark memory on free.
68  *
69  * The write and read sequence numbers can be thought of as a two
70  * handed clock with readers always advancing towards writers.  GUS
71  * maintains the invariant that all readers can safely access memory
72  * that was visible at the time they loaded their copy of the sequence
73  * number.  Periodically the read sequence or hand is polled and
74  * advanced as far towards the write sequence as active readers allow.
75  * Memory which was freed between the old and new global read sequence
76  * number can now be reclaimed.  When the system is idle the two hands
77  * meet and no deferred memory is outstanding.  Readers never advance
78  * any sequence number, they only observe them.  The shared read
79  * sequence number is consequently never higher than the write sequence.
80  * A stored sequence number that falls outside of this range has expired
81  * and needs no scan to reclaim.
82  *
83  * A notable distinction between GUS and Epoch, qsbr, rcu, etc. is
84  * that advancing the sequence number is decoupled from detecting its
85  * observation.  That is to say, the delta between read and write
86  * sequence numbers is not bound.  This can be thought of as a more
87  * generalized form of epoch which requires them at most one step
88  * apart.  This results in a more granular assignment of sequence
89  * numbers even as read latencies prohibit all or some expiration.
90  * It also allows writers to advance the sequence number and save the
91  * poll for expiration until a later time when it is likely to
92  * complete without waiting.  The batch granularity and free-to-use
93  * latency is dynamic and can be significantly smaller than in more
94  * strict systems.
95  *
96  * This mechanism is primarily intended to be used in coordination with
97  * UMA.  By integrating with the allocator we avoid all of the callout
98  * queue machinery and are provided with an efficient way to batch
99  * sequence advancement and waiting.  The allocator accumulates a full
100  * per-cpu cache of memory before advancing the sequence.  It then
101  * delays waiting for this sequence to expire until the memory is
102  * selected for reuse.  In this way we only increment the sequence
103  * value once for n=cache-size frees and the waits are done long
104  * after the sequence has been expired so they need only be verified
105  * to account for pathological conditions and to advance the read
106  * sequence.  Tying the sequence number to the bucket size has the
107  * nice property that as the zone gets busier the buckets get larger
108  * and the sequence writes become fewer.  If the coherency of advancing
109  * the write sequence number becomes too costly we can advance
110  * it for every N buckets in exchange for higher free-to-use
111  * latency and consequently higher memory consumption.
112  *
113  * If the read overhead of accessing the shared cacheline becomes
114  * especially burdensome an invariant TSC could be used in place of the
115  * sequence.  The algorithm would then only need to maintain the minimum
116  * observed tsc.  This would trade potential cache synchronization
117  * overhead for local serialization and cpu timestamp overhead.
118  */
119 
120 /*
121  * A simplified diagram:
122  *
123  * 0                                                          UINT_MAX
124  * | -------------------- sequence number space -------------------- |
125  *              ^ rd seq                            ^ wr seq
126  *              | ----- valid sequence numbers ---- |
127  *                ^cpuA  ^cpuC
128  * | -- free -- | --------- deferred frees -------- | ---- free ---- |
129  *
130  *
131  * In this example cpuA has the lowest sequence number and poll can
132  * advance rd seq.  cpuB is not running and is considered to observe
133  * wr seq.
134  *
135  * Freed memory that is tagged with a sequence number between rd seq and
136  * wr seq can not be safely reclaimed because cpuA may hold a reference to
137  * it.  Any other memory is guaranteed to be unreferenced.
138  *
139  * Any writer is free to advance wr seq at any time however it may busy
140  * poll in pathological cases.
141  */
142 
143 static uma_zone_t smr_shared_zone;
144 static uma_zone_t smr_zone;
145 
146 #ifndef INVARIANTS
147 #define	SMR_SEQ_INIT	1		/* All valid sequence numbers are odd. */
148 #define	SMR_SEQ_INCR	2
149 
150 /*
151  * SMR_SEQ_MAX_DELTA is the maximum distance allowed between rd_seq and
152  * wr_seq.  For the modular arithmetic to work a value of UNIT_MAX / 2
153  * would be possible but it is checked after we increment the wr_seq so
154  * a safety margin is left to prevent overflow.
155  *
156  * We will block until SMR_SEQ_MAX_ADVANCE sequence numbers have progressed
157  * to prevent integer wrapping.  See smr_advance() for more details.
158  */
159 #define	SMR_SEQ_MAX_DELTA	(UINT_MAX / 4)
160 #define	SMR_SEQ_MAX_ADVANCE	(SMR_SEQ_MAX_DELTA - 1024)
161 #else
162 /* We want to test the wrapping feature in invariants kernels. */
163 #define	SMR_SEQ_INCR	(UINT_MAX / 10000)
164 #define	SMR_SEQ_INIT	(UINT_MAX - 100000)
165 /* Force extra polls to test the integer overflow detection. */
166 #define	SMR_SEQ_MAX_DELTA	(SMR_SEQ_INCR * 32)
167 #define	SMR_SEQ_MAX_ADVANCE	SMR_SEQ_MAX_DELTA / 2
168 #endif
169 
170 /*
171  * The grace period for lazy (tick based) SMR.
172  *
173  * Hardclock is responsible for advancing ticks on a single CPU while every
174  * CPU receives a regular clock interrupt.  The clock interrupts are flushing
175  * the store buffers and any speculative loads that may violate our invariants.
176  * Because these interrupts are not synchronized we must wait one additional
177  * tick in the future to be certain that all processors have had their state
178  * synchronized by an interrupt.
179  *
180  * This assumes that the clock interrupt will only be delayed by other causes
181  * that will flush the store buffer or prevent access to the section protected
182  * data.  For example, an idle processor, or an system management interrupt,
183  * or a vm exit.
184  */
185 #define	SMR_LAZY_GRACE		2
186 #define	SMR_LAZY_INCR		(SMR_LAZY_GRACE * SMR_SEQ_INCR)
187 
188 /*
189  * The maximum sequence number ahead of wr_seq that may still be valid.  The
190  * sequence may not be advanced on write for lazy or deferred SMRs.  In this
191  * case poll needs to attempt to forward the sequence number if the goal is
192  * within wr_seq + SMR_SEQ_ADVANCE.
193  */
194 #define	SMR_SEQ_ADVANCE		SMR_LAZY_INCR
195 
196 static SYSCTL_NODE(_debug, OID_AUTO, smr, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
197     "SMR Stats");
198 static COUNTER_U64_DEFINE_EARLY(advance);
199 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance, CTLFLAG_RW, &advance, "");
200 static COUNTER_U64_DEFINE_EARLY(advance_wait);
201 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance_wait, CTLFLAG_RW, &advance_wait, "");
202 static COUNTER_U64_DEFINE_EARLY(poll);
203 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll, CTLFLAG_RW, &poll, "");
204 static COUNTER_U64_DEFINE_EARLY(poll_scan);
205 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_scan, CTLFLAG_RW, &poll_scan, "");
206 static COUNTER_U64_DEFINE_EARLY(poll_fail);
207 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_fail, CTLFLAG_RW, &poll_fail, "");
208 
209 /*
210  * Advance a lazy write sequence number.  These move forward at the rate of
211  * ticks.  Grace is SMR_LAZY_INCR (2 ticks) in the future.
212  *
213  * This returns the goal write sequence number.
214  */
215 static smr_seq_t
216 smr_lazy_advance(smr_t smr, smr_shared_t s)
217 {
218 	union s_wr s_wr, old;
219 	int t, d;
220 
221 	CRITICAL_ASSERT(curthread);
222 
223 	/*
224 	 * Load the stored ticks value before the current one.  This way the
225 	 * current value can only be the same or larger.
226 	 */
227 	old._pair = s_wr._pair = atomic_load_acq_64(&s->s_wr._pair);
228 	t = ticks;
229 
230 	/*
231 	 * The most probable condition that the update already took place.
232 	 */
233 	d = t - s_wr.ticks;
234 	if (__predict_true(d == 0))
235 		goto out;
236 	/* Cap the rate of advancement and handle long idle periods. */
237 	if (d > SMR_LAZY_GRACE || d < 0)
238 		d = SMR_LAZY_GRACE;
239 	s_wr.ticks = t;
240 	s_wr.seq += d * SMR_SEQ_INCR;
241 
242 	/*
243 	 * This can only fail if another thread races to call advance().
244 	 * Strong cmpset semantics mean we are guaranteed that the update
245 	 * happened.
246 	 */
247 	atomic_cmpset_64(&s->s_wr._pair, old._pair, s_wr._pair);
248 out:
249 	return (s_wr.seq + SMR_LAZY_INCR);
250 }
251 
252 /*
253  * Increment the shared write sequence by 2.  Since it is initialized
254  * to 1 this means the only valid values are odd and an observed value
255  * of 0 in a particular CPU means it is not currently in a read section.
256  */
257 static smr_seq_t
258 smr_shared_advance(smr_shared_t s)
259 {
260 
261 	return (atomic_fetchadd_int(&s->s_wr.seq, SMR_SEQ_INCR) + SMR_SEQ_INCR);
262 }
263 
264 /*
265  * Advance the write sequence number for a normal smr section.  If the
266  * write sequence is too far behind the read sequence we have to poll
267  * to advance rd_seq and prevent undetectable wraps.
268  */
269 static smr_seq_t
270 smr_default_advance(smr_t smr, smr_shared_t s)
271 {
272 	smr_seq_t goal, s_rd_seq;
273 
274 	CRITICAL_ASSERT(curthread);
275 	KASSERT((zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
276 	    ("smr_default_advance: called with lazy smr."));
277 
278 	/*
279 	 * Load the current read seq before incrementing the goal so
280 	 * we are guaranteed it is always < goal.
281 	 */
282 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
283 	goal = smr_shared_advance(s);
284 
285 	/*
286 	 * Force a synchronization here if the goal is getting too
287 	 * far ahead of the read sequence number.  This keeps the
288 	 * wrap detecting arithmetic working in pathological cases.
289 	 */
290 	if (SMR_SEQ_DELTA(goal, s_rd_seq) >= SMR_SEQ_MAX_DELTA) {
291 		counter_u64_add(advance_wait, 1);
292 		smr_wait(smr, goal - SMR_SEQ_MAX_ADVANCE);
293 	}
294 	counter_u64_add(advance, 1);
295 
296 	return (goal);
297 }
298 
299 /*
300  * Deferred SMRs conditionally update s_wr_seq based on an
301  * cpu local interval count.
302  */
303 static smr_seq_t
304 smr_deferred_advance(smr_t smr, smr_shared_t s, smr_t self)
305 {
306 
307 	if (++self->c_deferred < self->c_limit)
308 		return (smr_shared_current(s) + SMR_SEQ_INCR);
309 	self->c_deferred = 0;
310 	return (smr_default_advance(smr, s));
311 }
312 
313 /*
314  * Advance the write sequence and return the value for use as the
315  * wait goal.  This guarantees that any changes made by the calling
316  * thread prior to this call will be visible to all threads after
317  * rd_seq meets or exceeds the return value.
318  *
319  * This function may busy loop if the readers are roughly 1 billion
320  * sequence numbers behind the writers.
321  *
322  * Lazy SMRs will not busy loop and the wrap happens every 25 days
323  * at 1khz and 60 hours at 10khz.  Readers can block for no longer
324  * than half of this for SMR_SEQ_ macros to continue working.
325  */
326 smr_seq_t
327 smr_advance(smr_t smr)
328 {
329 	smr_t self;
330 	smr_shared_t s;
331 	smr_seq_t goal;
332 	int flags;
333 
334 	/*
335 	 * It is illegal to enter while in an smr section.
336 	 */
337 	SMR_ASSERT_NOT_ENTERED(smr);
338 
339 	/*
340 	 * Modifications not done in a smr section need to be visible
341 	 * before advancing the seq.
342 	 */
343 	atomic_thread_fence_rel();
344 
345 	critical_enter();
346 	/* Try to touch the line once. */
347 	self = zpcpu_get(smr);
348 	s = self->c_shared;
349 	flags = self->c_flags;
350 	goal = SMR_SEQ_INVALID;
351 	if ((flags & (SMR_LAZY | SMR_DEFERRED)) == 0)
352 		goal = smr_default_advance(smr, s);
353 	else if ((flags & SMR_LAZY) != 0)
354 		goal = smr_lazy_advance(smr, s);
355 	else if ((flags & SMR_DEFERRED) != 0)
356 		goal = smr_deferred_advance(smr, s, self);
357 	critical_exit();
358 
359 	return (goal);
360 }
361 
362 /*
363  * Poll to determine the currently observed sequence number on a cpu
364  * and spinwait if the 'wait' argument is true.
365  */
366 static smr_seq_t
367 smr_poll_cpu(smr_t c, smr_seq_t s_rd_seq, smr_seq_t goal, bool wait)
368 {
369 	smr_seq_t c_seq;
370 
371 	c_seq = SMR_SEQ_INVALID;
372 	for (;;) {
373 		c_seq = atomic_load_int(&c->c_seq);
374 		if (c_seq == SMR_SEQ_INVALID)
375 			break;
376 
377 		/*
378 		 * There is a race described in smr.h:smr_enter that
379 		 * can lead to a stale seq value but not stale data
380 		 * access.  If we find a value out of range here we
381 		 * pin it to the current min to prevent it from
382 		 * advancing until that stale section has expired.
383 		 *
384 		 * The race is created when a cpu loads the s_wr_seq
385 		 * value in a local register and then another thread
386 		 * advances s_wr_seq and calls smr_poll() which will
387 		 * oberve no value yet in c_seq and advance s_rd_seq
388 		 * up to s_wr_seq which is beyond the register
389 		 * cached value.  This is only likely to happen on
390 		 * hypervisor or with a system management interrupt.
391 		 */
392 		if (SMR_SEQ_LT(c_seq, s_rd_seq))
393 			c_seq = s_rd_seq;
394 
395 		/*
396 		 * If the sequence number meets the goal we are done
397 		 * with this cpu.
398 		 */
399 		if (SMR_SEQ_LEQ(goal, c_seq))
400 			break;
401 
402 		if (!wait)
403 			break;
404 		cpu_spinwait();
405 	}
406 
407 	return (c_seq);
408 }
409 
410 /*
411  * Loop until all cores have observed the goal sequence or have
412  * gone inactive.  Returns the oldest sequence currently active;
413  *
414  * This function assumes a snapshot of sequence values has
415  * been obtained and validated by smr_poll().
416  */
417 static smr_seq_t
418 smr_poll_scan(smr_t smr, smr_shared_t s, smr_seq_t s_rd_seq,
419     smr_seq_t s_wr_seq, smr_seq_t goal, bool wait)
420 {
421 	smr_seq_t rd_seq, c_seq;
422 	int i;
423 
424 	CRITICAL_ASSERT(curthread);
425 	counter_u64_add_protected(poll_scan, 1);
426 
427 	/*
428 	 * The read sequence can be no larger than the write sequence at
429 	 * the start of the poll.
430 	 */
431 	rd_seq = s_wr_seq;
432 	CPU_FOREACH(i) {
433 		/*
434 		 * Query the active sequence on this cpu.  If we're not
435 		 * waiting and we don't meet the goal we will still scan
436 		 * the rest of the cpus to update s_rd_seq before returning
437 		 * failure.
438 		 */
439 		c_seq = smr_poll_cpu(zpcpu_get_cpu(smr, i), s_rd_seq, goal,
440 		    wait);
441 
442 		/*
443 		 * Limit the minimum observed rd_seq whether we met the goal
444 		 * or not.
445 		 */
446 		if (c_seq != SMR_SEQ_INVALID)
447 			rd_seq = SMR_SEQ_MIN(rd_seq, c_seq);
448 	}
449 
450 	/*
451 	 * Advance the rd_seq as long as we observed a more recent value.
452 	 */
453 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
454 	if (SMR_SEQ_GT(rd_seq, s_rd_seq)) {
455 		atomic_cmpset_int(&s->s_rd_seq, s_rd_seq, rd_seq);
456 		s_rd_seq = rd_seq;
457 	}
458 
459 	return (s_rd_seq);
460 }
461 
462 /*
463  * Poll to determine whether all readers have observed the 'goal' write
464  * sequence number.
465  *
466  * If wait is true this will spin until the goal is met.
467  *
468  * This routine will updated the minimum observed read sequence number in
469  * s_rd_seq if it does a scan.  It may not do a scan if another call has
470  * advanced s_rd_seq beyond the callers goal already.
471  *
472  * Returns true if the goal is met and false if not.
473  */
474 bool
475 smr_poll(smr_t smr, smr_seq_t goal, bool wait)
476 {
477 	smr_shared_t s;
478 	smr_t self;
479 	smr_seq_t s_wr_seq, s_rd_seq;
480 	smr_delta_t delta;
481 	int flags;
482 	bool success;
483 
484 	/*
485 	 * It is illegal to enter while in an smr section.
486 	 */
487 	KASSERT(!wait || !SMR_ENTERED(smr),
488 	    ("smr_poll: Blocking not allowed in a SMR section."));
489 	KASSERT(!wait || (zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
490 	    ("smr_poll: Blocking not allowed on lazy smrs."));
491 
492 	/*
493 	 * Use a critical section so that we can avoid ABA races
494 	 * caused by long preemption sleeps.
495 	 */
496 	success = true;
497 	critical_enter();
498 	/* Attempt to load from self only once. */
499 	self = zpcpu_get(smr);
500 	s = self->c_shared;
501 	flags = self->c_flags;
502 	counter_u64_add_protected(poll, 1);
503 
504 	/*
505 	 * Conditionally advance the lazy write clock on any writer
506 	 * activity.
507 	 */
508 	if ((flags & SMR_LAZY) != 0)
509 		smr_lazy_advance(smr, s);
510 
511 	/*
512 	 * Acquire barrier loads s_wr_seq after s_rd_seq so that we can not
513 	 * observe an updated read sequence that is larger than write.
514 	 */
515 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
516 
517 	/*
518 	 * If we have already observed the sequence number we can immediately
519 	 * return success.  Most polls should meet this criterion.
520 	 */
521 	if (SMR_SEQ_LEQ(goal, s_rd_seq))
522 		goto out;
523 
524 	/*
525 	 * wr_seq must be loaded prior to any c_seq value so that a
526 	 * stale c_seq can only reference time after this wr_seq.
527 	 */
528 	s_wr_seq = atomic_load_acq_int(&s->s_wr.seq);
529 
530 	/*
531 	 * This is the distance from s_wr_seq to goal.  Positive values
532 	 * are in the future.
533 	 */
534 	delta = SMR_SEQ_DELTA(goal, s_wr_seq);
535 
536 	/*
537 	 * Detect a stale wr_seq.
538 	 *
539 	 * This goal may have come from a deferred advance or a lazy
540 	 * smr.  If we are not blocking we can not succeed but the
541 	 * sequence number is valid.
542 	 */
543 	if (delta > 0 && delta <= SMR_SEQ_ADVANCE &&
544 	    (flags & (SMR_LAZY | SMR_DEFERRED)) != 0) {
545 		if (!wait) {
546 			success = false;
547 			goto out;
548 		}
549 		/* LAZY is always !wait. */
550 		s_wr_seq = smr_shared_advance(s);
551 		delta = 0;
552 	}
553 
554 	/*
555 	 * Detect an invalid goal.
556 	 *
557 	 * The goal must be in the range of s_wr_seq >= goal >= s_rd_seq for
558 	 * it to be valid.  If it is not then the caller held on to it and
559 	 * the integer wrapped.  If we wrapped back within range the caller
560 	 * will harmlessly scan.
561 	 */
562 	if (delta > 0)
563 		goto out;
564 
565 	/* Determine the lowest visible sequence number. */
566 	s_rd_seq = smr_poll_scan(smr, s, s_rd_seq, s_wr_seq, goal, wait);
567 	success = SMR_SEQ_LEQ(goal, s_rd_seq);
568 out:
569 	if (!success)
570 		counter_u64_add_protected(poll_fail, 1);
571 	critical_exit();
572 
573 	/*
574 	 * Serialize with smr_advance()/smr_exit().  The caller is now free
575 	 * to modify memory as expected.
576 	 */
577 	atomic_thread_fence_acq();
578 
579 	KASSERT(success || !wait, ("%s: blocking poll failed", __func__));
580 	return (success);
581 }
582 
583 smr_t
584 smr_create(const char *name, int limit, int flags)
585 {
586 	smr_t smr, c;
587 	smr_shared_t s;
588 	int i;
589 
590 	s = uma_zalloc(smr_shared_zone, M_WAITOK);
591 	smr = uma_zalloc_pcpu(smr_zone, M_WAITOK);
592 
593 	s->s_name = name;
594 	s->s_rd_seq = s->s_wr.seq = SMR_SEQ_INIT;
595 	s->s_wr.ticks = ticks;
596 
597 	/* Initialize all CPUS, not just those running. */
598 	for (i = 0; i <= mp_maxid; i++) {
599 		c = zpcpu_get_cpu(smr, i);
600 		c->c_seq = SMR_SEQ_INVALID;
601 		c->c_shared = s;
602 		c->c_deferred = 0;
603 		c->c_limit = limit;
604 		c->c_flags = flags;
605 	}
606 	atomic_thread_fence_seq_cst();
607 
608 	return (smr);
609 }
610 
611 void
612 smr_destroy(smr_t smr)
613 {
614 
615 	smr_synchronize(smr);
616 	uma_zfree(smr_shared_zone, smr->c_shared);
617 	uma_zfree_pcpu(smr_zone, smr);
618 }
619 
620 /*
621  * Initialize the UMA slab zone.
622  */
623 void
624 smr_init(void)
625 {
626 
627 	smr_shared_zone = uma_zcreate("SMR SHARED", sizeof(struct smr_shared),
628 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, 0);
629 	smr_zone = uma_zcreate("SMR CPU", sizeof(struct smr),
630 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, UMA_ZONE_PCPU);
631 }
632