xref: /freebsd/sys/kern/subr_smr.c (revision 28f6c2f292806bf31230a959bc4b19d7081669a7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/counter.h>
34 #include <sys/kernel.h>
35 #include <sys/limits.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/smr.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/uma.h>
42 
43 /*
44  * Global Unbounded Sequences (GUS)
45  *
46  * This is a novel safe memory reclamation technique inspired by
47  * epoch based reclamation from Samy Al Bahra's concurrency kit which
48  * in turn was based on work described in:
49  *   Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
50  *   of Cambridge Computing Laboratory.
51  * And shares some similarities with:
52  *   Wang, Stamler, Parmer. 2016 Parallel Sections: Scaling System-Level
53  *   Data-Structures
54  *
55  * This is not an implementation of hazard pointers or related
56  * techniques.  The term safe memory reclamation is used as a
57  * generic descriptor for algorithms that defer frees to avoid
58  * use-after-free errors with lockless datastructures or as
59  * a mechanism to detect quiescence for writer synchronization.
60  *
61  * The basic approach is to maintain a monotonic write sequence
62  * number that is updated on some application defined granularity.
63  * Readers record the most recent write sequence number they have
64  * observed.  A shared read sequence number records the lowest
65  * sequence number observed by any reader as of the last poll.  Any
66  * write older than this value has been observed by all readers
67  * and memory can be reclaimed.  Like Epoch we also detect idle
68  * readers by storing an invalid sequence number in the per-cpu
69  * state when the read section exits.  Like Parsec we establish
70  * a global write clock that is used to mark memory on free.
71  *
72  * The write and read sequence numbers can be thought of as a two
73  * handed clock with readers always advancing towards writers.  GUS
74  * maintains the invariant that all readers can safely access memory
75  * that was visible at the time they loaded their copy of the sequence
76  * number.  Periodically the read sequence or hand is polled and
77  * advanced as far towards the write sequence as active readers allow.
78  * Memory which was freed between the old and new global read sequence
79  * number can now be reclaimed.  When the system is idle the two hands
80  * meet and no deferred memory is outstanding.  Readers never advance
81  * any sequence number, they only observe them.  The shared read
82  * sequence number is consequently never higher than the write sequence.
83  * A stored sequence number that falls outside of this range has expired
84  * and needs no scan to reclaim.
85  *
86  * A notable distinction between GUS and Epoch, qsbr, rcu, etc. is
87  * that advancing the sequence number is decoupled from detecting its
88  * observation.  That is to say, the delta between read and write
89  * sequence numbers is not bound.  This can be thought of as a more
90  * generalized form of epoch which requires them at most one step
91  * apart.  This results in a more granular assignment of sequence
92  * numbers even as read latencies prohibit all or some expiration.
93  * It also allows writers to advance the sequence number and save the
94  * poll for expiration until a later time when it is likely to
95  * complete without waiting.  The batch granularity and free-to-use
96  * latency is dynamic and can be significantly smaller than in more
97  * strict systems.
98  *
99  * This mechanism is primarily intended to be used in coordination with
100  * UMA.  By integrating with the allocator we avoid all of the callout
101  * queue machinery and are provided with an efficient way to batch
102  * sequence advancement and waiting.  The allocator accumulates a full
103  * per-cpu cache of memory before advancing the sequence.  It then
104  * delays waiting for this sequence to expire until the memory is
105  * selected for reuse.  In this way we only increment the sequence
106  * value once for n=cache-size frees and the waits are done long
107  * after the sequence has been expired so they need only be verified
108  * to account for pathological conditions and to advance the read
109  * sequence.  Tying the sequence number to the bucket size has the
110  * nice property that as the zone gets busier the buckets get larger
111  * and the sequence writes become fewer.  If the coherency of advancing
112  * the write sequence number becomes too costly we can advance
113  * it for every N buckets in exchange for higher free-to-use
114  * latency and consequently higher memory consumption.
115  *
116  * If the read overhead of accessing the shared cacheline becomes
117  * especially burdensome an invariant TSC could be used in place of the
118  * sequence.  The algorithm would then only need to maintain the minimum
119  * observed tsc.  This would trade potential cache synchronization
120  * overhead for local serialization and cpu timestamp overhead.
121  */
122 
123 /*
124  * A simplified diagram:
125  *
126  * 0                                                          UINT_MAX
127  * | -------------------- sequence number space -------------------- |
128  *              ^ rd seq                            ^ wr seq
129  *              | ----- valid sequence numbers ---- |
130  *                ^cpuA  ^cpuC
131  * | -- free -- | --------- deferred frees -------- | ---- free ---- |
132  *
133  *
134  * In this example cpuA has the lowest sequence number and poll can
135  * advance rd seq.  cpuB is not running and is considered to observe
136  * wr seq.
137  *
138  * Freed memory that is tagged with a sequence number between rd seq and
139  * wr seq can not be safely reclaimed because cpuA may hold a reference to
140  * it.  Any other memory is guaranteed to be unreferenced.
141  *
142  * Any writer is free to advance wr seq at any time however it may busy
143  * poll in pathological cases.
144  */
145 
146 static uma_zone_t smr_shared_zone;
147 static uma_zone_t smr_zone;
148 
149 #ifndef INVARIANTS
150 #define	SMR_SEQ_INIT	1		/* All valid sequence numbers are odd. */
151 #define	SMR_SEQ_INCR	2
152 
153 /*
154  * SMR_SEQ_MAX_DELTA is the maximum distance allowed between rd_seq and
155  * wr_seq.  For the modular arithmetic to work a value of UNIT_MAX / 2
156  * would be possible but it is checked after we increment the wr_seq so
157  * a safety margin is left to prevent overflow.
158  *
159  * We will block until SMR_SEQ_MAX_ADVANCE sequence numbers have progressed
160  * to prevent integer wrapping.  See smr_advance() for more details.
161  */
162 #define	SMR_SEQ_MAX_DELTA	(UINT_MAX / 4)
163 #define	SMR_SEQ_MAX_ADVANCE	(SMR_SEQ_MAX_DELTA - 1024)
164 #else
165 /* We want to test the wrapping feature in invariants kernels. */
166 #define	SMR_SEQ_INCR	(UINT_MAX / 10000)
167 #define	SMR_SEQ_INIT	(UINT_MAX - 100000)
168 /* Force extra polls to test the integer overflow detection. */
169 #define	SMR_SEQ_MAX_DELTA	(SMR_SEQ_INCR * 32)
170 #define	SMR_SEQ_MAX_ADVANCE	SMR_SEQ_MAX_DELTA / 2
171 #endif
172 
173 /*
174  * The grace period for lazy (tick based) SMR.
175  *
176  * Hardclock is responsible for advancing ticks on a single CPU while every
177  * CPU receives a regular clock interrupt.  The clock interrupts are flushing
178  * the store buffers and any speculative loads that may violate our invariants.
179  * Because these interrupts are not synchronized we must wait one additional
180  * tick in the future to be certain that all processors have had their state
181  * synchronized by an interrupt.
182  *
183  * This assumes that the clock interrupt will only be delayed by other causes
184  * that will flush the store buffer or prevent access to the section protected
185  * data.  For example, an idle processor, or an system management interrupt,
186  * or a vm exit.
187  */
188 #define	SMR_LAZY_GRACE		2
189 #define	SMR_LAZY_INCR		(SMR_LAZY_GRACE * SMR_SEQ_INCR)
190 
191 /*
192  * The maximum sequence number ahead of wr_seq that may still be valid.  The
193  * sequence may not be advanced on write for lazy or deferred SMRs.  In this
194  * case poll needs to attempt to forward the sequence number if the goal is
195  * within wr_seq + SMR_SEQ_ADVANCE.
196  */
197 #define	SMR_SEQ_ADVANCE		SMR_LAZY_INCR
198 
199 static SYSCTL_NODE(_debug, OID_AUTO, smr, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
200     "SMR Stats");
201 static COUNTER_U64_DEFINE_EARLY(advance);
202 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance, CTLFLAG_RW, &advance, "");
203 static COUNTER_U64_DEFINE_EARLY(advance_wait);
204 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance_wait, CTLFLAG_RW, &advance_wait, "");
205 static COUNTER_U64_DEFINE_EARLY(poll);
206 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll, CTLFLAG_RW, &poll, "");
207 static COUNTER_U64_DEFINE_EARLY(poll_scan);
208 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_scan, CTLFLAG_RW, &poll_scan, "");
209 static COUNTER_U64_DEFINE_EARLY(poll_fail);
210 SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_fail, CTLFLAG_RW, &poll_fail, "");
211 
212 /*
213  * Advance a lazy write sequence number.  These move forward at the rate of
214  * ticks.  Grace is SMR_LAZY_INCR (2 ticks) in the future.
215  *
216  * This returns the goal write sequence number.
217  */
218 static smr_seq_t
219 smr_lazy_advance(smr_t smr, smr_shared_t s)
220 {
221 	union s_wr s_wr, old;
222 	int t, d;
223 
224 	CRITICAL_ASSERT(curthread);
225 
226 	/*
227 	 * Load the stored ticks value before the current one.  This way the
228 	 * current value can only be the same or larger.
229 	 */
230 	old._pair = s_wr._pair = atomic_load_acq_64(&s->s_wr._pair);
231 	t = ticks;
232 
233 	/*
234 	 * The most probable condition that the update already took place.
235 	 */
236 	d = t - s_wr.ticks;
237 	if (__predict_true(d == 0))
238 		goto out;
239 	/* Cap the rate of advancement and handle long idle periods. */
240 	if (d > SMR_LAZY_GRACE || d < 0)
241 		d = SMR_LAZY_GRACE;
242 	s_wr.ticks = t;
243 	s_wr.seq += d * SMR_SEQ_INCR;
244 
245 	/*
246 	 * This can only fail if another thread races to call advance().
247 	 * Strong cmpset semantics mean we are guaranteed that the update
248 	 * happened.
249 	 */
250 	atomic_cmpset_64(&s->s_wr._pair, old._pair, s_wr._pair);
251 out:
252 	return (s_wr.seq + SMR_LAZY_INCR);
253 }
254 
255 /*
256  * Increment the shared write sequence by 2.  Since it is initialized
257  * to 1 this means the only valid values are odd and an observed value
258  * of 0 in a particular CPU means it is not currently in a read section.
259  */
260 static smr_seq_t
261 smr_shared_advance(smr_shared_t s)
262 {
263 
264 	return (atomic_fetchadd_int(&s->s_wr.seq, SMR_SEQ_INCR) + SMR_SEQ_INCR);
265 }
266 
267 /*
268  * Advance the write sequence number for a normal smr section.  If the
269  * write sequence is too far behind the read sequence we have to poll
270  * to advance rd_seq and prevent undetectable wraps.
271  */
272 static smr_seq_t
273 smr_default_advance(smr_t smr, smr_shared_t s)
274 {
275 	smr_seq_t goal, s_rd_seq;
276 
277 	CRITICAL_ASSERT(curthread);
278 	KASSERT((zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
279 	    ("smr_default_advance: called with lazy smr."));
280 
281 	/*
282 	 * Load the current read seq before incrementing the goal so
283 	 * we are guaranteed it is always < goal.
284 	 */
285 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
286 	goal = smr_shared_advance(s);
287 
288 	/*
289 	 * Force a synchronization here if the goal is getting too
290 	 * far ahead of the read sequence number.  This keeps the
291 	 * wrap detecting arithmetic working in pathological cases.
292 	 */
293 	if (SMR_SEQ_DELTA(goal, s_rd_seq) >= SMR_SEQ_MAX_DELTA) {
294 		counter_u64_add(advance_wait, 1);
295 		smr_wait(smr, goal - SMR_SEQ_MAX_ADVANCE);
296 	}
297 	counter_u64_add(advance, 1);
298 
299 	return (goal);
300 }
301 
302 /*
303  * Deferred SMRs conditionally update s_wr_seq based on an
304  * cpu local interval count.
305  */
306 static smr_seq_t
307 smr_deferred_advance(smr_t smr, smr_shared_t s, smr_t self)
308 {
309 
310 	if (++self->c_deferred < self->c_limit)
311 		return (smr_shared_current(s) + SMR_SEQ_INCR);
312 	self->c_deferred = 0;
313 	return (smr_default_advance(smr, s));
314 }
315 
316 /*
317  * Advance the write sequence and return the value for use as the
318  * wait goal.  This guarantees that any changes made by the calling
319  * thread prior to this call will be visible to all threads after
320  * rd_seq meets or exceeds the return value.
321  *
322  * This function may busy loop if the readers are roughly 1 billion
323  * sequence numbers behind the writers.
324  *
325  * Lazy SMRs will not busy loop and the wrap happens every 25 days
326  * at 1khz and 60 hours at 10khz.  Readers can block for no longer
327  * than half of this for SMR_SEQ_ macros to continue working.
328  */
329 smr_seq_t
330 smr_advance(smr_t smr)
331 {
332 	smr_t self;
333 	smr_shared_t s;
334 	smr_seq_t goal;
335 	int flags;
336 
337 	/*
338 	 * It is illegal to enter while in an smr section.
339 	 */
340 	SMR_ASSERT_NOT_ENTERED(smr);
341 
342 	/*
343 	 * Modifications not done in a smr section need to be visible
344 	 * before advancing the seq.
345 	 */
346 	atomic_thread_fence_rel();
347 
348 	critical_enter();
349 	/* Try to touch the line once. */
350 	self = zpcpu_get(smr);
351 	s = self->c_shared;
352 	flags = self->c_flags;
353 	goal = SMR_SEQ_INVALID;
354 	if ((flags & (SMR_LAZY | SMR_DEFERRED)) == 0)
355 		goal = smr_default_advance(smr, s);
356 	else if ((flags & SMR_LAZY) != 0)
357 		goal = smr_lazy_advance(smr, s);
358 	else if ((flags & SMR_DEFERRED) != 0)
359 		goal = smr_deferred_advance(smr, s, self);
360 	critical_exit();
361 
362 	return (goal);
363 }
364 
365 /*
366  * Poll to determine the currently observed sequence number on a cpu
367  * and spinwait if the 'wait' argument is true.
368  */
369 static smr_seq_t
370 smr_poll_cpu(smr_t c, smr_seq_t s_rd_seq, smr_seq_t goal, bool wait)
371 {
372 	smr_seq_t c_seq;
373 
374 	c_seq = SMR_SEQ_INVALID;
375 	for (;;) {
376 		c_seq = atomic_load_int(&c->c_seq);
377 		if (c_seq == SMR_SEQ_INVALID)
378 			break;
379 
380 		/*
381 		 * There is a race described in smr.h:smr_enter that
382 		 * can lead to a stale seq value but not stale data
383 		 * access.  If we find a value out of range here we
384 		 * pin it to the current min to prevent it from
385 		 * advancing until that stale section has expired.
386 		 *
387 		 * The race is created when a cpu loads the s_wr_seq
388 		 * value in a local register and then another thread
389 		 * advances s_wr_seq and calls smr_poll() which will
390 		 * oberve no value yet in c_seq and advance s_rd_seq
391 		 * up to s_wr_seq which is beyond the register
392 		 * cached value.  This is only likely to happen on
393 		 * hypervisor or with a system management interrupt.
394 		 */
395 		if (SMR_SEQ_LT(c_seq, s_rd_seq))
396 			c_seq = s_rd_seq;
397 
398 		/*
399 		 * If the sequence number meets the goal we are done
400 		 * with this cpu.
401 		 */
402 		if (SMR_SEQ_LEQ(goal, c_seq))
403 			break;
404 
405 		if (!wait)
406 			break;
407 		cpu_spinwait();
408 	}
409 
410 	return (c_seq);
411 }
412 
413 /*
414  * Loop until all cores have observed the goal sequence or have
415  * gone inactive.  Returns the oldest sequence currently active;
416  *
417  * This function assumes a snapshot of sequence values has
418  * been obtained and validated by smr_poll().
419  */
420 static smr_seq_t
421 smr_poll_scan(smr_t smr, smr_shared_t s, smr_seq_t s_rd_seq,
422     smr_seq_t s_wr_seq, smr_seq_t goal, bool wait)
423 {
424 	smr_seq_t rd_seq, c_seq;
425 	int i;
426 
427 	CRITICAL_ASSERT(curthread);
428 	counter_u64_add_protected(poll_scan, 1);
429 
430 	/*
431 	 * The read sequence can be no larger than the write sequence at
432 	 * the start of the poll.
433 	 */
434 	rd_seq = s_wr_seq;
435 	CPU_FOREACH(i) {
436 		/*
437 		 * Query the active sequence on this cpu.  If we're not
438 		 * waiting and we don't meet the goal we will still scan
439 		 * the rest of the cpus to update s_rd_seq before returning
440 		 * failure.
441 		 */
442 		c_seq = smr_poll_cpu(zpcpu_get_cpu(smr, i), s_rd_seq, goal,
443 		    wait);
444 
445 		/*
446 		 * Limit the minimum observed rd_seq whether we met the goal
447 		 * or not.
448 		 */
449 		if (c_seq != SMR_SEQ_INVALID)
450 			rd_seq = SMR_SEQ_MIN(rd_seq, c_seq);
451 	}
452 
453 	/*
454 	 * Advance the rd_seq as long as we observed a more recent value.
455 	 */
456 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
457 	if (SMR_SEQ_GT(rd_seq, s_rd_seq)) {
458 		atomic_cmpset_int(&s->s_rd_seq, s_rd_seq, rd_seq);
459 		s_rd_seq = rd_seq;
460 	}
461 
462 	return (s_rd_seq);
463 }
464 
465 /*
466  * Poll to determine whether all readers have observed the 'goal' write
467  * sequence number.
468  *
469  * If wait is true this will spin until the goal is met.
470  *
471  * This routine will updated the minimum observed read sequence number in
472  * s_rd_seq if it does a scan.  It may not do a scan if another call has
473  * advanced s_rd_seq beyond the callers goal already.
474  *
475  * Returns true if the goal is met and false if not.
476  */
477 bool
478 smr_poll(smr_t smr, smr_seq_t goal, bool wait)
479 {
480 	smr_shared_t s;
481 	smr_t self;
482 	smr_seq_t s_wr_seq, s_rd_seq;
483 	smr_delta_t delta;
484 	int flags;
485 	bool success;
486 
487 	/*
488 	 * It is illegal to enter while in an smr section.
489 	 */
490 	KASSERT(!wait || !SMR_ENTERED(smr),
491 	    ("smr_poll: Blocking not allowed in a SMR section."));
492 	KASSERT(!wait || (zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
493 	    ("smr_poll: Blocking not allowed on lazy smrs."));
494 
495 	/*
496 	 * Use a critical section so that we can avoid ABA races
497 	 * caused by long preemption sleeps.
498 	 */
499 	success = true;
500 	critical_enter();
501 	/* Attempt to load from self only once. */
502 	self = zpcpu_get(smr);
503 	s = self->c_shared;
504 	flags = self->c_flags;
505 	counter_u64_add_protected(poll, 1);
506 
507 	/*
508 	 * Conditionally advance the lazy write clock on any writer
509 	 * activity.
510 	 */
511 	if ((flags & SMR_LAZY) != 0)
512 		smr_lazy_advance(smr, s);
513 
514 	/*
515 	 * Acquire barrier loads s_wr_seq after s_rd_seq so that we can not
516 	 * observe an updated read sequence that is larger than write.
517 	 */
518 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
519 
520 	/*
521 	 * If we have already observed the sequence number we can immediately
522 	 * return success.  Most polls should meet this criterion.
523 	 */
524 	if (SMR_SEQ_LEQ(goal, s_rd_seq))
525 		goto out;
526 
527 	/*
528 	 * wr_seq must be loaded prior to any c_seq value so that a
529 	 * stale c_seq can only reference time after this wr_seq.
530 	 */
531 	s_wr_seq = atomic_load_acq_int(&s->s_wr.seq);
532 
533 	/*
534 	 * This is the distance from s_wr_seq to goal.  Positive values
535 	 * are in the future.
536 	 */
537 	delta = SMR_SEQ_DELTA(goal, s_wr_seq);
538 
539 	/*
540 	 * Detect a stale wr_seq.
541 	 *
542 	 * This goal may have come from a deferred advance or a lazy
543 	 * smr.  If we are not blocking we can not succeed but the
544 	 * sequence number is valid.
545 	 */
546 	if (delta > 0 && delta <= SMR_SEQ_ADVANCE &&
547 	    (flags & (SMR_LAZY | SMR_DEFERRED)) != 0) {
548 		if (!wait) {
549 			success = false;
550 			goto out;
551 		}
552 		/* LAZY is always !wait. */
553 		s_wr_seq = smr_shared_advance(s);
554 		delta = 0;
555 	}
556 
557 	/*
558 	 * Detect an invalid goal.
559 	 *
560 	 * The goal must be in the range of s_wr_seq >= goal >= s_rd_seq for
561 	 * it to be valid.  If it is not then the caller held on to it and
562 	 * the integer wrapped.  If we wrapped back within range the caller
563 	 * will harmlessly scan.
564 	 */
565 	if (delta > 0)
566 		goto out;
567 
568 	/* Determine the lowest visible sequence number. */
569 	s_rd_seq = smr_poll_scan(smr, s, s_rd_seq, s_wr_seq, goal, wait);
570 	success = SMR_SEQ_LEQ(goal, s_rd_seq);
571 out:
572 	if (!success)
573 		counter_u64_add_protected(poll_fail, 1);
574 	critical_exit();
575 
576 	/*
577 	 * Serialize with smr_advance()/smr_exit().  The caller is now free
578 	 * to modify memory as expected.
579 	 */
580 	atomic_thread_fence_acq();
581 
582 	KASSERT(success || !wait, ("%s: blocking poll failed", __func__));
583 	return (success);
584 }
585 
586 smr_t
587 smr_create(const char *name, int limit, int flags)
588 {
589 	smr_t smr, c;
590 	smr_shared_t s;
591 	int i;
592 
593 	s = uma_zalloc(smr_shared_zone, M_WAITOK);
594 	smr = uma_zalloc_pcpu(smr_zone, M_WAITOK);
595 
596 	s->s_name = name;
597 	s->s_rd_seq = s->s_wr.seq = SMR_SEQ_INIT;
598 	s->s_wr.ticks = ticks;
599 
600 	/* Initialize all CPUS, not just those running. */
601 	for (i = 0; i <= mp_maxid; i++) {
602 		c = zpcpu_get_cpu(smr, i);
603 		c->c_seq = SMR_SEQ_INVALID;
604 		c->c_shared = s;
605 		c->c_deferred = 0;
606 		c->c_limit = limit;
607 		c->c_flags = flags;
608 	}
609 	atomic_thread_fence_seq_cst();
610 
611 	return (smr);
612 }
613 
614 void
615 smr_destroy(smr_t smr)
616 {
617 
618 	smr_synchronize(smr);
619 	uma_zfree(smr_shared_zone, smr->c_shared);
620 	uma_zfree_pcpu(smr_zone, smr);
621 }
622 
623 /*
624  * Initialize the UMA slab zone.
625  */
626 void
627 smr_init(void)
628 {
629 
630 	smr_shared_zone = uma_zcreate("SMR SHARED", sizeof(struct smr_shared),
631 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, 0);
632 	smr_zone = uma_zcreate("SMR CPU", sizeof(struct smr),
633 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, UMA_ZONE_PCPU);
634 }
635