xref: /freebsd/sys/kern/subr_smr.c (revision a40068e524d30ce358e949f5cf729366d688aee0)
1d4665eaaSJeff Roberson /*-
2d4665eaaSJeff Roberson  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3d4665eaaSJeff Roberson  *
4da6e9935SJeff Roberson  * Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>
5d4665eaaSJeff Roberson  *
6d4665eaaSJeff Roberson  * Redistribution and use in source and binary forms, with or without
7d4665eaaSJeff Roberson  * modification, are permitted provided that the following conditions
8d4665eaaSJeff Roberson  * are met:
9d4665eaaSJeff Roberson  * 1. Redistributions of source code must retain the above copyright
10d4665eaaSJeff Roberson  *    notice unmodified, this list of conditions, and the following
11d4665eaaSJeff Roberson  *    disclaimer.
12d4665eaaSJeff Roberson  * 2. Redistributions in binary form must reproduce the above copyright
13d4665eaaSJeff Roberson  *    notice, this list of conditions and the following disclaimer in the
14d4665eaaSJeff Roberson  *    documentation and/or other materials provided with the distribution.
15d4665eaaSJeff Roberson  *
16d4665eaaSJeff Roberson  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17d4665eaaSJeff Roberson  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18d4665eaaSJeff Roberson  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19d4665eaaSJeff Roberson  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20d4665eaaSJeff Roberson  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21d4665eaaSJeff Roberson  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22d4665eaaSJeff Roberson  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23d4665eaaSJeff Roberson  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24d4665eaaSJeff Roberson  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25d4665eaaSJeff Roberson  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26d4665eaaSJeff Roberson  */
27d4665eaaSJeff Roberson 
28d4665eaaSJeff Roberson #include <sys/cdefs.h>
29d4665eaaSJeff Roberson __FBSDID("$FreeBSD$");
30d4665eaaSJeff Roberson 
31d4665eaaSJeff Roberson #include <sys/param.h>
32d4665eaaSJeff Roberson #include <sys/systm.h>
338d7f16a5SJeff Roberson #include <sys/counter.h>
34d4665eaaSJeff Roberson #include <sys/kernel.h>
358d7f16a5SJeff Roberson #include <sys/limits.h>
36d4665eaaSJeff Roberson #include <sys/proc.h>
37d4665eaaSJeff Roberson #include <sys/smp.h>
38d4665eaaSJeff Roberson #include <sys/smr.h>
398d7f16a5SJeff Roberson #include <sys/sysctl.h>
40d4665eaaSJeff Roberson 
41d4665eaaSJeff Roberson #include <vm/uma.h>
42d4665eaaSJeff Roberson 
43d4665eaaSJeff Roberson /*
44d4665eaaSJeff Roberson  * This is a novel safe memory reclamation technique inspired by
45d4665eaaSJeff Roberson  * epoch based reclamation from Samy Al Bahra's concurrency kit which
46d4665eaaSJeff Roberson  * in turn was based on work described in:
47d4665eaaSJeff Roberson  *   Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
48d4665eaaSJeff Roberson  *   of Cambridge Computing Laboratory.
49d4665eaaSJeff Roberson  * And shares some similarities with:
50d4665eaaSJeff Roberson  *   Wang, Stamler, Parmer. 2016 Parallel Sections: Scaling System-Level
51d4665eaaSJeff Roberson  *   Data-Structures
52d4665eaaSJeff Roberson  *
53d4665eaaSJeff Roberson  * This is not an implementation of hazard pointers or related
54d4665eaaSJeff Roberson  * techniques.  The term safe memory reclamation is used as a
55d4665eaaSJeff Roberson  * generic descriptor for algorithms that defer frees to avoid
56d4665eaaSJeff Roberson  * use-after-free errors with lockless datastructures.
57d4665eaaSJeff Roberson  *
58d4665eaaSJeff Roberson  * The basic approach is to maintain a monotonic write sequence
59d4665eaaSJeff Roberson  * number that is updated on some application defined granularity.
60d4665eaaSJeff Roberson  * Readers record the most recent write sequence number they have
61d4665eaaSJeff Roberson  * observed.  A shared read sequence number records the lowest
62d4665eaaSJeff Roberson  * sequence number observed by any reader as of the last poll.  Any
63d4665eaaSJeff Roberson  * write older than this value has been observed by all readers
64d4665eaaSJeff Roberson  * and memory can be reclaimed.  Like Epoch we also detect idle
65d4665eaaSJeff Roberson  * readers by storing an invalid sequence number in the per-cpu
66d4665eaaSJeff Roberson  * state when the read section exits.  Like Parsec we establish
67d4665eaaSJeff Roberson  * a global write clock that is used to mark memory on free.
68d4665eaaSJeff Roberson  *
69d4665eaaSJeff Roberson  * The write and read sequence numbers can be thought of as a two
70d4665eaaSJeff Roberson  * handed clock with readers always advancing towards writers.  SMR
71d4665eaaSJeff Roberson  * maintains the invariant that all readers can safely access memory
72d4665eaaSJeff Roberson  * that was visible at the time they loaded their copy of the sequence
73d4665eaaSJeff Roberson  * number.  Periodically the read sequence or hand is polled and
74d4665eaaSJeff Roberson  * advanced as far towards the write sequence as active readers allow.
75d4665eaaSJeff Roberson  * Memory which was freed between the old and new global read sequence
76d4665eaaSJeff Roberson  * number can now be reclaimed.  When the system is idle the two hands
77d4665eaaSJeff Roberson  * meet and no deferred memory is outstanding.  Readers never advance
78d4665eaaSJeff Roberson  * any sequence number, they only observe them.  The shared read
79d4665eaaSJeff Roberson  * sequence number is consequently never higher than the write sequence.
80d4665eaaSJeff Roberson  * A stored sequence number that falls outside of this range has expired
81d4665eaaSJeff Roberson  * and needs no scan to reclaim.
82d4665eaaSJeff Roberson  *
83d4665eaaSJeff Roberson  * A notable distinction between this SMR and Epoch, qsbr, rcu, etc. is
84d4665eaaSJeff Roberson  * that advancing the sequence number is decoupled from detecting its
85d4665eaaSJeff Roberson  * observation.  This results in a more granular assignment of sequence
86d4665eaaSJeff Roberson  * numbers even as read latencies prohibit all or some expiration.
87d4665eaaSJeff Roberson  * It also allows writers to advance the sequence number and save the
88d4665eaaSJeff Roberson  * poll for expiration until a later time when it is likely to
89d4665eaaSJeff Roberson  * complete without waiting.  The batch granularity and free-to-use
90d4665eaaSJeff Roberson  * latency is dynamic and can be significantly smaller than in more
91d4665eaaSJeff Roberson  * strict systems.
92d4665eaaSJeff Roberson  *
93d4665eaaSJeff Roberson  * This mechanism is primarily intended to be used in coordination with
94d4665eaaSJeff Roberson  * UMA.  By integrating with the allocator we avoid all of the callout
95d4665eaaSJeff Roberson  * queue machinery and are provided with an efficient way to batch
96d4665eaaSJeff Roberson  * sequence advancement and waiting.  The allocator accumulates a full
97d4665eaaSJeff Roberson  * per-cpu cache of memory before advancing the sequence.  It then
98d4665eaaSJeff Roberson  * delays waiting for this sequence to expire until the memory is
99d4665eaaSJeff Roberson  * selected for reuse.  In this way we only increment the sequence
100d4665eaaSJeff Roberson  * value once for n=cache-size frees and the waits are done long
101d4665eaaSJeff Roberson  * after the sequence has been expired so they need only be verified
102d4665eaaSJeff Roberson  * to account for pathological conditions and to advance the read
103d4665eaaSJeff Roberson  * sequence.  Tying the sequence number to the bucket size has the
104d4665eaaSJeff Roberson  * nice property that as the zone gets busier the buckets get larger
105d4665eaaSJeff Roberson  * and the sequence writes become fewer.  If the coherency of advancing
106d4665eaaSJeff Roberson  * the write sequence number becomes too costly we can advance
107d4665eaaSJeff Roberson  * it for every N buckets in exchange for higher free-to-use
108d4665eaaSJeff Roberson  * latency and consequently higher memory consumption.
109d4665eaaSJeff Roberson  *
110d4665eaaSJeff Roberson  * If the read overhead of accessing the shared cacheline becomes
111d4665eaaSJeff Roberson  * especially burdensome an invariant TSC could be used in place of the
112d4665eaaSJeff Roberson  * sequence.  The algorithm would then only need to maintain the minimum
113d4665eaaSJeff Roberson  * observed tsc.  This would trade potential cache synchronization
114d4665eaaSJeff Roberson  * overhead for local serialization and cpu timestamp overhead.
115d4665eaaSJeff Roberson  */
116d4665eaaSJeff Roberson 
117d4665eaaSJeff Roberson /*
118d4665eaaSJeff Roberson  * A simplified diagram:
119d4665eaaSJeff Roberson  *
120d4665eaaSJeff Roberson  * 0                                                          UINT_MAX
121d4665eaaSJeff Roberson  * | -------------------- sequence number space -------------------- |
122d4665eaaSJeff Roberson  *              ^ rd seq                            ^ wr seq
123d4665eaaSJeff Roberson  *              | ----- valid sequence numbers ---- |
124d4665eaaSJeff Roberson  *                ^cpuA  ^cpuC
125d4665eaaSJeff Roberson  * | -- free -- | --------- deferred frees -------- | ---- free ---- |
126d4665eaaSJeff Roberson  *
127d4665eaaSJeff Roberson  *
128d4665eaaSJeff Roberson  * In this example cpuA has the lowest sequence number and poll can
129d4665eaaSJeff Roberson  * advance rd seq.  cpuB is not running and is considered to observe
130d4665eaaSJeff Roberson  * wr seq.
131d4665eaaSJeff Roberson  *
132d4665eaaSJeff Roberson  * Freed memory that is tagged with a sequence number between rd seq and
133d4665eaaSJeff Roberson  * wr seq can not be safely reclaimed because cpuA may hold a reference to
134d4665eaaSJeff Roberson  * it.  Any other memory is guaranteed to be unreferenced.
135d4665eaaSJeff Roberson  *
136d4665eaaSJeff Roberson  * Any writer is free to advance wr seq at any time however it may busy
137d4665eaaSJeff Roberson  * poll in pathological cases.
138d4665eaaSJeff Roberson  */
139d4665eaaSJeff Roberson 
140d4665eaaSJeff Roberson static uma_zone_t smr_shared_zone;
141d4665eaaSJeff Roberson static uma_zone_t smr_zone;
142d4665eaaSJeff Roberson 
143d4665eaaSJeff Roberson #ifndef INVARIANTS
144d4665eaaSJeff Roberson #define	SMR_SEQ_INIT	1		/* All valid sequence numbers are odd. */
145d4665eaaSJeff Roberson #define	SMR_SEQ_INCR	2
146d4665eaaSJeff Roberson 
147d4665eaaSJeff Roberson /*
148d4665eaaSJeff Roberson  * SMR_SEQ_MAX_DELTA is the maximum distance allowed between rd_seq and
149d4665eaaSJeff Roberson  * wr_seq.  For the modular arithmetic to work a value of UNIT_MAX / 2
150d4665eaaSJeff Roberson  * would be possible but it is checked after we increment the wr_seq so
151d4665eaaSJeff Roberson  * a safety margin is left to prevent overflow.
152d4665eaaSJeff Roberson  *
153d4665eaaSJeff Roberson  * We will block until SMR_SEQ_MAX_ADVANCE sequence numbers have progressed
154d4665eaaSJeff Roberson  * to prevent integer wrapping.  See smr_advance() for more details.
155d4665eaaSJeff Roberson  */
156d4665eaaSJeff Roberson #define	SMR_SEQ_MAX_DELTA	(UINT_MAX / 4)
157d4665eaaSJeff Roberson #define	SMR_SEQ_MAX_ADVANCE	(SMR_SEQ_MAX_DELTA - 1024)
158d4665eaaSJeff Roberson #else
159d4665eaaSJeff Roberson /* We want to test the wrapping feature in invariants kernels. */
160d4665eaaSJeff Roberson #define	SMR_SEQ_INCR	(UINT_MAX / 10000)
161d4665eaaSJeff Roberson #define	SMR_SEQ_INIT	(UINT_MAX - 100000)
162d4665eaaSJeff Roberson /* Force extra polls to test the integer overflow detection. */
163*a40068e5SJeff Roberson #define	SMR_SEQ_MAX_DELTA	(SMR_SEQ_INCR * 32)
164d4665eaaSJeff Roberson #define	SMR_SEQ_MAX_ADVANCE	SMR_SEQ_MAX_DELTA / 2
165d4665eaaSJeff Roberson #endif
166d4665eaaSJeff Roberson 
1678d7f16a5SJeff Roberson static SYSCTL_NODE(_debug, OID_AUTO, smr, CTLFLAG_RW, NULL, "SMR Stats");
1688d7f16a5SJeff Roberson static counter_u64_t advance = EARLY_COUNTER;
1698d7f16a5SJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance, CTLFLAG_RD, &advance, "");
1708d7f16a5SJeff Roberson static counter_u64_t advance_wait = EARLY_COUNTER;
1718d7f16a5SJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance_wait, CTLFLAG_RD, &advance_wait, "");
1728d7f16a5SJeff Roberson static counter_u64_t poll = EARLY_COUNTER;
1738d7f16a5SJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll, CTLFLAG_RD, &poll, "");
1748d7f16a5SJeff Roberson static counter_u64_t poll_scan = EARLY_COUNTER;
1758d7f16a5SJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_scan, CTLFLAG_RD, &poll_scan, "");
1768d7f16a5SJeff Roberson 
1778d7f16a5SJeff Roberson 
178d4665eaaSJeff Roberson /*
179d4665eaaSJeff Roberson  * Advance the write sequence and return the new value for use as the
180d4665eaaSJeff Roberson  * wait goal.  This guarantees that any changes made by the calling
181d4665eaaSJeff Roberson  * thread prior to this call will be visible to all threads after
182d4665eaaSJeff Roberson  * rd_seq meets or exceeds the return value.
183d4665eaaSJeff Roberson  *
184d4665eaaSJeff Roberson  * This function may busy loop if the readers are roughly 1 billion
185d4665eaaSJeff Roberson  * sequence numbers behind the writers.
186d4665eaaSJeff Roberson  */
187d4665eaaSJeff Roberson smr_seq_t
188d4665eaaSJeff Roberson smr_advance(smr_t smr)
189d4665eaaSJeff Roberson {
190d4665eaaSJeff Roberson 	smr_shared_t s;
191*a40068e5SJeff Roberson 	smr_seq_t goal, s_rd_seq;
192d4665eaaSJeff Roberson 
193d4665eaaSJeff Roberson 	/*
194d4665eaaSJeff Roberson 	 * It is illegal to enter while in an smr section.
195d4665eaaSJeff Roberson 	 */
196d4665eaaSJeff Roberson 	KASSERT(curthread->td_critnest == 0,
197d4665eaaSJeff Roberson 	    ("smr_advance: Not allowed in a critical section."));
198d4665eaaSJeff Roberson 
199d4665eaaSJeff Roberson 	/*
200d4665eaaSJeff Roberson 	 * Modifications not done in a smr section need to be visible
201d4665eaaSJeff Roberson 	 * before advancing the seq.
202d4665eaaSJeff Roberson 	 */
203d4665eaaSJeff Roberson 	atomic_thread_fence_rel();
204d4665eaaSJeff Roberson 
205d4665eaaSJeff Roberson 	/*
206*a40068e5SJeff Roberson 	 * Load the current read seq before incrementing the goal so
207*a40068e5SJeff Roberson 	 * we are guaranteed it is always < goal.
208*a40068e5SJeff Roberson 	 */
209*a40068e5SJeff Roberson 	s = zpcpu_get(smr)->c_shared;
210*a40068e5SJeff Roberson 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
211*a40068e5SJeff Roberson 
212*a40068e5SJeff Roberson 	/*
213d4665eaaSJeff Roberson 	 * Increment the shared write sequence by 2.  Since it is
214d4665eaaSJeff Roberson 	 * initialized to 1 this means the only valid values are
215d4665eaaSJeff Roberson 	 * odd and an observed value of 0 in a particular CPU means
216d4665eaaSJeff Roberson 	 * it is not currently in a read section.
217d4665eaaSJeff Roberson 	 */
218d4665eaaSJeff Roberson 	goal = atomic_fetchadd_int(&s->s_wr_seq, SMR_SEQ_INCR) + SMR_SEQ_INCR;
2198d7f16a5SJeff Roberson 	counter_u64_add(advance, 1);
220d4665eaaSJeff Roberson 
221d4665eaaSJeff Roberson 	/*
222d4665eaaSJeff Roberson 	 * Force a synchronization here if the goal is getting too
223d4665eaaSJeff Roberson 	 * far ahead of the read sequence number.  This keeps the
224d4665eaaSJeff Roberson 	 * wrap detecting arithmetic working in pathological cases.
225d4665eaaSJeff Roberson 	 */
226*a40068e5SJeff Roberson 	if (SMR_SEQ_DELTA(goal, s_rd_seq) >= SMR_SEQ_MAX_DELTA) {
2278d7f16a5SJeff Roberson 		counter_u64_add(advance_wait, 1);
228d4665eaaSJeff Roberson 		smr_wait(smr, goal - SMR_SEQ_MAX_ADVANCE);
2298d7f16a5SJeff Roberson 	}
230d4665eaaSJeff Roberson 
231d4665eaaSJeff Roberson 	return (goal);
232d4665eaaSJeff Roberson }
233d4665eaaSJeff Roberson 
234bc650984SJeff Roberson smr_seq_t
235bc650984SJeff Roberson smr_advance_deferred(smr_t smr, int limit)
236bc650984SJeff Roberson {
237bc650984SJeff Roberson 	smr_seq_t goal;
238bc650984SJeff Roberson 	smr_t csmr;
239bc650984SJeff Roberson 
240bc650984SJeff Roberson 	critical_enter();
241bc650984SJeff Roberson 	csmr = zpcpu_get(smr);
242bc650984SJeff Roberson 	if (++csmr->c_deferred >= limit) {
243bc650984SJeff Roberson 		goal = SMR_SEQ_INVALID;
244bc650984SJeff Roberson 		csmr->c_deferred = 0;
245bc650984SJeff Roberson 	} else
246bc650984SJeff Roberson 		goal = smr_shared_current(csmr->c_shared) + SMR_SEQ_INCR;
247bc650984SJeff Roberson 	critical_exit();
248bc650984SJeff Roberson 	if (goal != SMR_SEQ_INVALID)
249bc650984SJeff Roberson 		return (goal);
250bc650984SJeff Roberson 
251bc650984SJeff Roberson 	return (smr_advance(smr));
252bc650984SJeff Roberson }
253bc650984SJeff Roberson 
254d4665eaaSJeff Roberson /*
255d4665eaaSJeff Roberson  * Poll to determine whether all readers have observed the 'goal' write
256d4665eaaSJeff Roberson  * sequence number.
257d4665eaaSJeff Roberson  *
258d4665eaaSJeff Roberson  * If wait is true this will spin until the goal is met.
259d4665eaaSJeff Roberson  *
260d4665eaaSJeff Roberson  * This routine will updated the minimum observed read sequence number in
261d4665eaaSJeff Roberson  * s_rd_seq if it does a scan.  It may not do a scan if another call has
262d4665eaaSJeff Roberson  * advanced s_rd_seq beyond the callers goal already.
263d4665eaaSJeff Roberson  *
264d4665eaaSJeff Roberson  * Returns true if the goal is met and false if not.
265d4665eaaSJeff Roberson  */
266d4665eaaSJeff Roberson bool
267d4665eaaSJeff Roberson smr_poll(smr_t smr, smr_seq_t goal, bool wait)
268d4665eaaSJeff Roberson {
269d4665eaaSJeff Roberson 	smr_shared_t s;
270d4665eaaSJeff Roberson 	smr_t c;
271d4665eaaSJeff Roberson 	smr_seq_t s_wr_seq, s_rd_seq, rd_seq, c_seq;
272d4665eaaSJeff Roberson 	int i;
273d4665eaaSJeff Roberson 	bool success;
274d4665eaaSJeff Roberson 
275d4665eaaSJeff Roberson 	/*
276d4665eaaSJeff Roberson 	 * It is illegal to enter while in an smr section.
277d4665eaaSJeff Roberson 	 */
278d4665eaaSJeff Roberson 	KASSERT(!wait || curthread->td_critnest == 0,
279d4665eaaSJeff Roberson 	    ("smr_poll: Blocking not allowed in a critical section."));
280d4665eaaSJeff Roberson 
281d4665eaaSJeff Roberson 	/*
282d4665eaaSJeff Roberson 	 * Use a critical section so that we can avoid ABA races
283d4665eaaSJeff Roberson 	 * caused by long preemption sleeps.
284d4665eaaSJeff Roberson 	 */
285d4665eaaSJeff Roberson 	success = true;
286d4665eaaSJeff Roberson 	critical_enter();
287915c367eSJeff Roberson 	s = zpcpu_get(smr)->c_shared;
2888d7f16a5SJeff Roberson 	counter_u64_add_protected(poll, 1);
289d4665eaaSJeff Roberson 
290d4665eaaSJeff Roberson 	/*
291d4665eaaSJeff Roberson 	 * Acquire barrier loads s_wr_seq after s_rd_seq so that we can not
292d4665eaaSJeff Roberson 	 * observe an updated read sequence that is larger than write.
293d4665eaaSJeff Roberson 	 */
294d4665eaaSJeff Roberson 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
295915c367eSJeff Roberson 
296915c367eSJeff Roberson 	/*
297915c367eSJeff Roberson 	 * wr_seq must be loaded prior to any c_seq value so that a stale
298915c367eSJeff Roberson 	 * c_seq can only reference time after this wr_seq.
299915c367eSJeff Roberson 	 */
300915c367eSJeff Roberson 	s_wr_seq = atomic_load_acq_int(&s->s_wr_seq);
301d4665eaaSJeff Roberson 
302d4665eaaSJeff Roberson 	/*
303bc650984SJeff Roberson 	 * This may have come from a deferred advance.  Consider one
304bc650984SJeff Roberson 	 * increment past the current wr_seq valid and make sure we
305bc650984SJeff Roberson 	 * have advanced far enough to succeed.  We simply add to avoid
306bc650984SJeff Roberson 	 * an additional fence.
307bc650984SJeff Roberson 	 */
308bc650984SJeff Roberson 	if (goal == s_wr_seq + SMR_SEQ_INCR) {
309bc650984SJeff Roberson 		atomic_add_int(&s->s_wr_seq, SMR_SEQ_INCR);
310bc650984SJeff Roberson 		s_wr_seq = goal;
311bc650984SJeff Roberson 	}
312bc650984SJeff Roberson 
313bc650984SJeff Roberson 	/*
314d4665eaaSJeff Roberson 	 * Detect whether the goal is valid and has already been observed.
315d4665eaaSJeff Roberson 	 *
316d4665eaaSJeff Roberson 	 * The goal must be in the range of s_wr_seq >= goal >= s_rd_seq for
317d4665eaaSJeff Roberson 	 * it to be valid.  If it is not then the caller held on to it and
318d4665eaaSJeff Roberson 	 * the integer wrapped.  If we wrapped back within range the caller
319d4665eaaSJeff Roberson 	 * will harmlessly scan.
320d4665eaaSJeff Roberson 	 *
321d4665eaaSJeff Roberson 	 * A valid goal must be greater than s_rd_seq or we have not verified
322d4665eaaSJeff Roberson 	 * that it has been observed and must fall through to polling.
323d4665eaaSJeff Roberson 	 */
324d4665eaaSJeff Roberson 	if (SMR_SEQ_GEQ(s_rd_seq, goal) || SMR_SEQ_LT(s_wr_seq, goal))
325d4665eaaSJeff Roberson 		goto out;
326d4665eaaSJeff Roberson 
327d4665eaaSJeff Roberson 	/*
328d4665eaaSJeff Roberson 	 * Loop until all cores have observed the goal sequence or have
329d4665eaaSJeff Roberson 	 * gone inactive.  Keep track of the oldest sequence currently
330d4665eaaSJeff Roberson 	 * active as rd_seq.
331d4665eaaSJeff Roberson 	 */
3328d7f16a5SJeff Roberson 	counter_u64_add_protected(poll_scan, 1);
333d4665eaaSJeff Roberson 	rd_seq = s_wr_seq;
334d4665eaaSJeff Roberson 	CPU_FOREACH(i) {
335d4665eaaSJeff Roberson 		c = zpcpu_get_cpu(smr, i);
336d4665eaaSJeff Roberson 		c_seq = SMR_SEQ_INVALID;
337d4665eaaSJeff Roberson 		for (;;) {
338d4665eaaSJeff Roberson 			c_seq = atomic_load_int(&c->c_seq);
339d4665eaaSJeff Roberson 			if (c_seq == SMR_SEQ_INVALID)
340d4665eaaSJeff Roberson 				break;
341d4665eaaSJeff Roberson 
342d4665eaaSJeff Roberson 			/*
343d4665eaaSJeff Roberson 			 * There is a race described in smr.h:smr_enter that
344d4665eaaSJeff Roberson 			 * can lead to a stale seq value but not stale data
345d4665eaaSJeff Roberson 			 * access.  If we find a value out of range here we
346d4665eaaSJeff Roberson 			 * pin it to the current min to prevent it from
347d4665eaaSJeff Roberson 			 * advancing until that stale section has expired.
348d4665eaaSJeff Roberson 			 *
349d4665eaaSJeff Roberson 			 * The race is created when a cpu loads the s_wr_seq
350d4665eaaSJeff Roberson 			 * value in a local register and then another thread
351d4665eaaSJeff Roberson 			 * advances s_wr_seq and calls smr_poll() which will
352d4665eaaSJeff Roberson 			 * oberve no value yet in c_seq and advance s_rd_seq
353d4665eaaSJeff Roberson 			 * up to s_wr_seq which is beyond the register
354d4665eaaSJeff Roberson 			 * cached value.  This is only likely to happen on
355d4665eaaSJeff Roberson 			 * hypervisor or with a system management interrupt.
356d4665eaaSJeff Roberson 			 */
357d4665eaaSJeff Roberson 			if (SMR_SEQ_LT(c_seq, s_rd_seq))
358d4665eaaSJeff Roberson 				c_seq = s_rd_seq;
359d4665eaaSJeff Roberson 
360d4665eaaSJeff Roberson 			/*
361d4665eaaSJeff Roberson 			 * If the sequence number meets the goal we are
362d4665eaaSJeff Roberson 			 * done with this cpu.
363d4665eaaSJeff Roberson 			 */
364d4665eaaSJeff Roberson 			if (SMR_SEQ_GEQ(c_seq, goal))
365d4665eaaSJeff Roberson 				break;
366d4665eaaSJeff Roberson 
367d4665eaaSJeff Roberson 			/*
368d4665eaaSJeff Roberson 			 * If we're not waiting we will still scan the rest
369d4665eaaSJeff Roberson 			 * of the cpus and update s_rd_seq before returning
370d4665eaaSJeff Roberson 			 * an error.
371d4665eaaSJeff Roberson 			 */
372d4665eaaSJeff Roberson 			if (!wait) {
373d4665eaaSJeff Roberson 				success = false;
374d4665eaaSJeff Roberson 				break;
375d4665eaaSJeff Roberson 			}
376d4665eaaSJeff Roberson 			cpu_spinwait();
377d4665eaaSJeff Roberson 		}
378d4665eaaSJeff Roberson 
379d4665eaaSJeff Roberson 		/*
380d4665eaaSJeff Roberson 		 * Limit the minimum observed rd_seq whether we met the goal
381d4665eaaSJeff Roberson 		 * or not.
382d4665eaaSJeff Roberson 		 */
383d4665eaaSJeff Roberson 		if (c_seq != SMR_SEQ_INVALID && SMR_SEQ_GT(rd_seq, c_seq))
384d4665eaaSJeff Roberson 			rd_seq = c_seq;
385d4665eaaSJeff Roberson 	}
386d4665eaaSJeff Roberson 
387d4665eaaSJeff Roberson 	/*
388d4665eaaSJeff Roberson 	 * Advance the rd_seq as long as we observed the most recent one.
389d4665eaaSJeff Roberson 	 */
390d4665eaaSJeff Roberson 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
391d4665eaaSJeff Roberson 	do {
392d4665eaaSJeff Roberson 		if (SMR_SEQ_LEQ(rd_seq, s_rd_seq))
3938d7f16a5SJeff Roberson 			goto out;
394d4665eaaSJeff Roberson 	} while (atomic_fcmpset_int(&s->s_rd_seq, &s_rd_seq, rd_seq) == 0);
395d4665eaaSJeff Roberson 
396d4665eaaSJeff Roberson out:
397d4665eaaSJeff Roberson 	critical_exit();
398d4665eaaSJeff Roberson 
399915c367eSJeff Roberson 	/*
400915c367eSJeff Roberson 	 * Serialize with smr_advance()/smr_exit().  The caller is now free
401915c367eSJeff Roberson 	 * to modify memory as expected.
402915c367eSJeff Roberson 	 */
403915c367eSJeff Roberson 	atomic_thread_fence_acq();
404915c367eSJeff Roberson 
405d4665eaaSJeff Roberson 	return (success);
406d4665eaaSJeff Roberson }
407d4665eaaSJeff Roberson 
408d4665eaaSJeff Roberson smr_t
409d4665eaaSJeff Roberson smr_create(const char *name)
410d4665eaaSJeff Roberson {
411d4665eaaSJeff Roberson 	smr_t smr, c;
412d4665eaaSJeff Roberson 	smr_shared_t s;
413d4665eaaSJeff Roberson 	int i;
414d4665eaaSJeff Roberson 
415d4665eaaSJeff Roberson 	s = uma_zalloc(smr_shared_zone, M_WAITOK);
416d4665eaaSJeff Roberson 	smr = uma_zalloc(smr_zone, M_WAITOK);
417d4665eaaSJeff Roberson 
418d4665eaaSJeff Roberson 	s->s_name = name;
419d4665eaaSJeff Roberson 	s->s_rd_seq = s->s_wr_seq = SMR_SEQ_INIT;
420d4665eaaSJeff Roberson 
421d4665eaaSJeff Roberson 	/* Initialize all CPUS, not just those running. */
422d4665eaaSJeff Roberson 	for (i = 0; i <= mp_maxid; i++) {
423d4665eaaSJeff Roberson 		c = zpcpu_get_cpu(smr, i);
424d4665eaaSJeff Roberson 		c->c_seq = SMR_SEQ_INVALID;
425d4665eaaSJeff Roberson 		c->c_shared = s;
426d4665eaaSJeff Roberson 	}
427d4665eaaSJeff Roberson 	atomic_thread_fence_seq_cst();
428d4665eaaSJeff Roberson 
429d4665eaaSJeff Roberson 	return (smr);
430d4665eaaSJeff Roberson }
431d4665eaaSJeff Roberson 
432d4665eaaSJeff Roberson void
433d4665eaaSJeff Roberson smr_destroy(smr_t smr)
434d4665eaaSJeff Roberson {
435d4665eaaSJeff Roberson 
436d4665eaaSJeff Roberson 	smr_synchronize(smr);
437d4665eaaSJeff Roberson 	uma_zfree(smr_shared_zone, smr->c_shared);
438d4665eaaSJeff Roberson 	uma_zfree(smr_zone, smr);
439d4665eaaSJeff Roberson }
440d4665eaaSJeff Roberson 
441d4665eaaSJeff Roberson /*
442d4665eaaSJeff Roberson  * Initialize the UMA slab zone.
443d4665eaaSJeff Roberson  */
444d4665eaaSJeff Roberson void
445d4665eaaSJeff Roberson smr_init(void)
446d4665eaaSJeff Roberson {
447d4665eaaSJeff Roberson 
448d4665eaaSJeff Roberson 	smr_shared_zone = uma_zcreate("SMR SHARED", sizeof(struct smr_shared),
449d4665eaaSJeff Roberson 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, 0);
450d4665eaaSJeff Roberson 	smr_zone = uma_zcreate("SMR CPU", sizeof(struct smr),
451d4665eaaSJeff Roberson 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, UMA_ZONE_PCPU);
452d4665eaaSJeff Roberson }
4538d7f16a5SJeff Roberson 
4548d7f16a5SJeff Roberson static void
4558d7f16a5SJeff Roberson smr_init_counters(void *unused)
4568d7f16a5SJeff Roberson {
4578d7f16a5SJeff Roberson 
4588d7f16a5SJeff Roberson 	advance = counter_u64_alloc(M_WAITOK);
4598d7f16a5SJeff Roberson 	advance_wait = counter_u64_alloc(M_WAITOK);
4608d7f16a5SJeff Roberson 	poll = counter_u64_alloc(M_WAITOK);
4618d7f16a5SJeff Roberson 	poll_scan = counter_u64_alloc(M_WAITOK);
4628d7f16a5SJeff Roberson }
4638d7f16a5SJeff Roberson SYSINIT(smr_counters, SI_SUB_CPU, SI_ORDER_ANY, smr_init_counters, NULL);
464