xref: /freebsd/sys/kern/subr_smr.c (revision 226dd6db470570bcba4db850760d485921d55fc3)
1d4665eaaSJeff Roberson /*-
2d4665eaaSJeff Roberson  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3d4665eaaSJeff Roberson  *
4da6e9935SJeff Roberson  * Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>
5d4665eaaSJeff Roberson  *
6d4665eaaSJeff Roberson  * Redistribution and use in source and binary forms, with or without
7d4665eaaSJeff Roberson  * modification, are permitted provided that the following conditions
8d4665eaaSJeff Roberson  * are met:
9d4665eaaSJeff Roberson  * 1. Redistributions of source code must retain the above copyright
10d4665eaaSJeff Roberson  *    notice unmodified, this list of conditions, and the following
11d4665eaaSJeff Roberson  *    disclaimer.
12d4665eaaSJeff Roberson  * 2. Redistributions in binary form must reproduce the above copyright
13d4665eaaSJeff Roberson  *    notice, this list of conditions and the following disclaimer in the
14d4665eaaSJeff Roberson  *    documentation and/or other materials provided with the distribution.
15d4665eaaSJeff Roberson  *
16d4665eaaSJeff Roberson  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17d4665eaaSJeff Roberson  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18d4665eaaSJeff Roberson  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19d4665eaaSJeff Roberson  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20d4665eaaSJeff Roberson  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21d4665eaaSJeff Roberson  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22d4665eaaSJeff Roberson  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23d4665eaaSJeff Roberson  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24d4665eaaSJeff Roberson  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25d4665eaaSJeff Roberson  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26d4665eaaSJeff Roberson  */
27d4665eaaSJeff Roberson 
28d4665eaaSJeff Roberson #include <sys/cdefs.h>
29d4665eaaSJeff Roberson __FBSDID("$FreeBSD$");
30d4665eaaSJeff Roberson 
31d4665eaaSJeff Roberson #include <sys/param.h>
32d4665eaaSJeff Roberson #include <sys/systm.h>
338d7f16a5SJeff Roberson #include <sys/counter.h>
34d4665eaaSJeff Roberson #include <sys/kernel.h>
358d7f16a5SJeff Roberson #include <sys/limits.h>
36d4665eaaSJeff Roberson #include <sys/proc.h>
37d4665eaaSJeff Roberson #include <sys/smp.h>
38d4665eaaSJeff Roberson #include <sys/smr.h>
398d7f16a5SJeff Roberson #include <sys/sysctl.h>
40d4665eaaSJeff Roberson 
41d4665eaaSJeff Roberson #include <vm/uma.h>
42d4665eaaSJeff Roberson 
43d4665eaaSJeff Roberson /*
44*226dd6dbSJeff Roberson  * Global Unbounded Sequences (GUS)
45*226dd6dbSJeff Roberson  *
46d4665eaaSJeff Roberson  * This is a novel safe memory reclamation technique inspired by
47d4665eaaSJeff Roberson  * epoch based reclamation from Samy Al Bahra's concurrency kit which
48d4665eaaSJeff Roberson  * in turn was based on work described in:
49d4665eaaSJeff Roberson  *   Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
50d4665eaaSJeff Roberson  *   of Cambridge Computing Laboratory.
51d4665eaaSJeff Roberson  * And shares some similarities with:
52d4665eaaSJeff Roberson  *   Wang, Stamler, Parmer. 2016 Parallel Sections: Scaling System-Level
53d4665eaaSJeff Roberson  *   Data-Structures
54d4665eaaSJeff Roberson  *
55d4665eaaSJeff Roberson  * This is not an implementation of hazard pointers or related
56d4665eaaSJeff Roberson  * techniques.  The term safe memory reclamation is used as a
57d4665eaaSJeff Roberson  * generic descriptor for algorithms that defer frees to avoid
58*226dd6dbSJeff Roberson  * use-after-free errors with lockless datastructures or as
59*226dd6dbSJeff Roberson  * a mechanism to detect quiescence for writer synchronization.
60d4665eaaSJeff Roberson  *
61d4665eaaSJeff Roberson  * The basic approach is to maintain a monotonic write sequence
62d4665eaaSJeff Roberson  * number that is updated on some application defined granularity.
63d4665eaaSJeff Roberson  * Readers record the most recent write sequence number they have
64d4665eaaSJeff Roberson  * observed.  A shared read sequence number records the lowest
65d4665eaaSJeff Roberson  * sequence number observed by any reader as of the last poll.  Any
66d4665eaaSJeff Roberson  * write older than this value has been observed by all readers
67d4665eaaSJeff Roberson  * and memory can be reclaimed.  Like Epoch we also detect idle
68d4665eaaSJeff Roberson  * readers by storing an invalid sequence number in the per-cpu
69d4665eaaSJeff Roberson  * state when the read section exits.  Like Parsec we establish
70d4665eaaSJeff Roberson  * a global write clock that is used to mark memory on free.
71d4665eaaSJeff Roberson  *
72d4665eaaSJeff Roberson  * The write and read sequence numbers can be thought of as a two
73*226dd6dbSJeff Roberson  * handed clock with readers always advancing towards writers.  GUS
74d4665eaaSJeff Roberson  * maintains the invariant that all readers can safely access memory
75d4665eaaSJeff Roberson  * that was visible at the time they loaded their copy of the sequence
76d4665eaaSJeff Roberson  * number.  Periodically the read sequence or hand is polled and
77d4665eaaSJeff Roberson  * advanced as far towards the write sequence as active readers allow.
78d4665eaaSJeff Roberson  * Memory which was freed between the old and new global read sequence
79d4665eaaSJeff Roberson  * number can now be reclaimed.  When the system is idle the two hands
80d4665eaaSJeff Roberson  * meet and no deferred memory is outstanding.  Readers never advance
81d4665eaaSJeff Roberson  * any sequence number, they only observe them.  The shared read
82d4665eaaSJeff Roberson  * sequence number is consequently never higher than the write sequence.
83d4665eaaSJeff Roberson  * A stored sequence number that falls outside of this range has expired
84d4665eaaSJeff Roberson  * and needs no scan to reclaim.
85d4665eaaSJeff Roberson  *
86*226dd6dbSJeff Roberson  * A notable distinction between GUS and Epoch, qsbr, rcu, etc. is
87d4665eaaSJeff Roberson  * that advancing the sequence number is decoupled from detecting its
88*226dd6dbSJeff Roberson  * observation.  That is to say, the delta between read and write
89*226dd6dbSJeff Roberson  * sequence numbers is not bound.  This can be thought of as a more
90*226dd6dbSJeff Roberson  * generalized form of epoch which requires them at most one step
91*226dd6dbSJeff Roberson  * apart.  This results in a more granular assignment of sequence
92d4665eaaSJeff Roberson  * numbers even as read latencies prohibit all or some expiration.
93d4665eaaSJeff Roberson  * It also allows writers to advance the sequence number and save the
94d4665eaaSJeff Roberson  * poll for expiration until a later time when it is likely to
95d4665eaaSJeff Roberson  * complete without waiting.  The batch granularity and free-to-use
96d4665eaaSJeff Roberson  * latency is dynamic and can be significantly smaller than in more
97d4665eaaSJeff Roberson  * strict systems.
98d4665eaaSJeff Roberson  *
99d4665eaaSJeff Roberson  * This mechanism is primarily intended to be used in coordination with
100d4665eaaSJeff Roberson  * UMA.  By integrating with the allocator we avoid all of the callout
101d4665eaaSJeff Roberson  * queue machinery and are provided with an efficient way to batch
102d4665eaaSJeff Roberson  * sequence advancement and waiting.  The allocator accumulates a full
103d4665eaaSJeff Roberson  * per-cpu cache of memory before advancing the sequence.  It then
104d4665eaaSJeff Roberson  * delays waiting for this sequence to expire until the memory is
105d4665eaaSJeff Roberson  * selected for reuse.  In this way we only increment the sequence
106d4665eaaSJeff Roberson  * value once for n=cache-size frees and the waits are done long
107d4665eaaSJeff Roberson  * after the sequence has been expired so they need only be verified
108d4665eaaSJeff Roberson  * to account for pathological conditions and to advance the read
109d4665eaaSJeff Roberson  * sequence.  Tying the sequence number to the bucket size has the
110d4665eaaSJeff Roberson  * nice property that as the zone gets busier the buckets get larger
111d4665eaaSJeff Roberson  * and the sequence writes become fewer.  If the coherency of advancing
112d4665eaaSJeff Roberson  * the write sequence number becomes too costly we can advance
113d4665eaaSJeff Roberson  * it for every N buckets in exchange for higher free-to-use
114d4665eaaSJeff Roberson  * latency and consequently higher memory consumption.
115d4665eaaSJeff Roberson  *
116d4665eaaSJeff Roberson  * If the read overhead of accessing the shared cacheline becomes
117d4665eaaSJeff Roberson  * especially burdensome an invariant TSC could be used in place of the
118d4665eaaSJeff Roberson  * sequence.  The algorithm would then only need to maintain the minimum
119d4665eaaSJeff Roberson  * observed tsc.  This would trade potential cache synchronization
120d4665eaaSJeff Roberson  * overhead for local serialization and cpu timestamp overhead.
121d4665eaaSJeff Roberson  */
122d4665eaaSJeff Roberson 
123d4665eaaSJeff Roberson /*
124d4665eaaSJeff Roberson  * A simplified diagram:
125d4665eaaSJeff Roberson  *
126d4665eaaSJeff Roberson  * 0                                                          UINT_MAX
127d4665eaaSJeff Roberson  * | -------------------- sequence number space -------------------- |
128d4665eaaSJeff Roberson  *              ^ rd seq                            ^ wr seq
129d4665eaaSJeff Roberson  *              | ----- valid sequence numbers ---- |
130d4665eaaSJeff Roberson  *                ^cpuA  ^cpuC
131d4665eaaSJeff Roberson  * | -- free -- | --------- deferred frees -------- | ---- free ---- |
132d4665eaaSJeff Roberson  *
133d4665eaaSJeff Roberson  *
134d4665eaaSJeff Roberson  * In this example cpuA has the lowest sequence number and poll can
135d4665eaaSJeff Roberson  * advance rd seq.  cpuB is not running and is considered to observe
136d4665eaaSJeff Roberson  * wr seq.
137d4665eaaSJeff Roberson  *
138d4665eaaSJeff Roberson  * Freed memory that is tagged with a sequence number between rd seq and
139d4665eaaSJeff Roberson  * wr seq can not be safely reclaimed because cpuA may hold a reference to
140d4665eaaSJeff Roberson  * it.  Any other memory is guaranteed to be unreferenced.
141d4665eaaSJeff Roberson  *
142d4665eaaSJeff Roberson  * Any writer is free to advance wr seq at any time however it may busy
143d4665eaaSJeff Roberson  * poll in pathological cases.
144d4665eaaSJeff Roberson  */
145d4665eaaSJeff Roberson 
146d4665eaaSJeff Roberson static uma_zone_t smr_shared_zone;
147d4665eaaSJeff Roberson static uma_zone_t smr_zone;
148d4665eaaSJeff Roberson 
149d4665eaaSJeff Roberson #ifndef INVARIANTS
150d4665eaaSJeff Roberson #define	SMR_SEQ_INIT	1		/* All valid sequence numbers are odd. */
151d4665eaaSJeff Roberson #define	SMR_SEQ_INCR	2
152d4665eaaSJeff Roberson 
153d4665eaaSJeff Roberson /*
154d4665eaaSJeff Roberson  * SMR_SEQ_MAX_DELTA is the maximum distance allowed between rd_seq and
155d4665eaaSJeff Roberson  * wr_seq.  For the modular arithmetic to work a value of UNIT_MAX / 2
156d4665eaaSJeff Roberson  * would be possible but it is checked after we increment the wr_seq so
157d4665eaaSJeff Roberson  * a safety margin is left to prevent overflow.
158d4665eaaSJeff Roberson  *
159d4665eaaSJeff Roberson  * We will block until SMR_SEQ_MAX_ADVANCE sequence numbers have progressed
160d4665eaaSJeff Roberson  * to prevent integer wrapping.  See smr_advance() for more details.
161d4665eaaSJeff Roberson  */
162d4665eaaSJeff Roberson #define	SMR_SEQ_MAX_DELTA	(UINT_MAX / 4)
163d4665eaaSJeff Roberson #define	SMR_SEQ_MAX_ADVANCE	(SMR_SEQ_MAX_DELTA - 1024)
164d4665eaaSJeff Roberson #else
165d4665eaaSJeff Roberson /* We want to test the wrapping feature in invariants kernels. */
166d4665eaaSJeff Roberson #define	SMR_SEQ_INCR	(UINT_MAX / 10000)
167d4665eaaSJeff Roberson #define	SMR_SEQ_INIT	(UINT_MAX - 100000)
168d4665eaaSJeff Roberson /* Force extra polls to test the integer overflow detection. */
169a40068e5SJeff Roberson #define	SMR_SEQ_MAX_DELTA	(SMR_SEQ_INCR * 32)
170d4665eaaSJeff Roberson #define	SMR_SEQ_MAX_ADVANCE	SMR_SEQ_MAX_DELTA / 2
171d4665eaaSJeff Roberson #endif
172d4665eaaSJeff Roberson 
173*226dd6dbSJeff Roberson /*
174*226dd6dbSJeff Roberson  * The grace period for lazy (tick based) SMR.
175*226dd6dbSJeff Roberson  *
176*226dd6dbSJeff Roberson  * Hardclock is responsible for advancing ticks on a single CPU while every
177*226dd6dbSJeff Roberson  * CPU receives a regular clock interrupt.  The clock interrupts are flushing
178*226dd6dbSJeff Roberson  * the store buffers and any speculative loads that may violate our invariants.
179*226dd6dbSJeff Roberson  * Because these interrupts are not synchronized we must wait one additional
180*226dd6dbSJeff Roberson  * tick in the future to be certain that all processors have had their state
181*226dd6dbSJeff Roberson  * synchronized by an interrupt.
182*226dd6dbSJeff Roberson  *
183*226dd6dbSJeff Roberson  * This assumes that the clock interrupt will only be delayed by other causes
184*226dd6dbSJeff Roberson  * that will flush the store buffer or prevent access to the section protected
185*226dd6dbSJeff Roberson  * data.  For example, an idle processor, or an system management interrupt,
186*226dd6dbSJeff Roberson  * or a vm exit.
187*226dd6dbSJeff Roberson  *
188*226dd6dbSJeff Roberson  * We must wait one additional tick if we are around the wrap condition
189*226dd6dbSJeff Roberson  * because the write seq will move forward by two with one interrupt.
190*226dd6dbSJeff Roberson  */
191*226dd6dbSJeff Roberson #define	SMR_LAZY_GRACE		2
192*226dd6dbSJeff Roberson #define	SMR_LAZY_GRACE_MAX	(SMR_LAZY_GRACE + 1)
1938d7f16a5SJeff Roberson 
194d4665eaaSJeff Roberson /*
195*226dd6dbSJeff Roberson  * The maximum sequence number ahead of wr_seq that may still be valid.  The
196*226dd6dbSJeff Roberson  * sequence may not be advanced on write for lazy or deferred SMRs.  In this
197*226dd6dbSJeff Roberson  * case poll needs to attempt to forward the sequence number if the goal is
198*226dd6dbSJeff Roberson  * within wr_seq + SMR_SEQ_ADVANCE.
199*226dd6dbSJeff Roberson  */
200*226dd6dbSJeff Roberson #define	SMR_SEQ_ADVANCE		MAX(SMR_SEQ_INCR, SMR_LAZY_GRACE_MAX)
201*226dd6dbSJeff Roberson 
202*226dd6dbSJeff Roberson static SYSCTL_NODE(_debug, OID_AUTO, smr, CTLFLAG_RW, NULL, "SMR Stats");
203*226dd6dbSJeff Roberson static counter_u64_t advance = EARLY_COUNTER;
204*226dd6dbSJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance, CTLFLAG_RW, &advance, "");
205*226dd6dbSJeff Roberson static counter_u64_t advance_wait = EARLY_COUNTER;
206*226dd6dbSJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, advance_wait, CTLFLAG_RW, &advance_wait, "");
207*226dd6dbSJeff Roberson static counter_u64_t poll = EARLY_COUNTER;
208*226dd6dbSJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll, CTLFLAG_RW, &poll, "");
209*226dd6dbSJeff Roberson static counter_u64_t poll_scan = EARLY_COUNTER;
210*226dd6dbSJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_scan, CTLFLAG_RW, &poll_scan, "");
211*226dd6dbSJeff Roberson static counter_u64_t poll_fail = EARLY_COUNTER;
212*226dd6dbSJeff Roberson SYSCTL_COUNTER_U64(_debug_smr, OID_AUTO, poll_fail, CTLFLAG_RW, &poll_fail, "");
213*226dd6dbSJeff Roberson 
214*226dd6dbSJeff Roberson /*
215*226dd6dbSJeff Roberson  * Advance a lazy write sequence number.  These move forward at the rate of
216*226dd6dbSJeff Roberson  * ticks.  Grace is two ticks in the future.  lazy write sequence numbers can
217*226dd6dbSJeff Roberson  * be even but not SMR_SEQ_INVALID so we pause time for a tick when we wrap.
218*226dd6dbSJeff Roberson  *
219*226dd6dbSJeff Roberson  * This returns the _current_ write sequence number.  The lazy goal sequence
220*226dd6dbSJeff Roberson  * number is SMR_LAZY_GRACE ticks ahead.
221*226dd6dbSJeff Roberson  */
222*226dd6dbSJeff Roberson static smr_seq_t
223*226dd6dbSJeff Roberson smr_lazy_advance(smr_t smr, smr_shared_t s)
224*226dd6dbSJeff Roberson {
225*226dd6dbSJeff Roberson 	smr_seq_t s_rd_seq, s_wr_seq, goal;
226*226dd6dbSJeff Roberson 	int t;
227*226dd6dbSJeff Roberson 
228*226dd6dbSJeff Roberson 	CRITICAL_ASSERT(curthread);
229*226dd6dbSJeff Roberson 
230*226dd6dbSJeff Roberson 	/*
231*226dd6dbSJeff Roberson 	 * Load s_wr_seq prior to ticks to ensure that the thread that
232*226dd6dbSJeff Roberson 	 * observes the largest value wins.
233*226dd6dbSJeff Roberson 	 */
234*226dd6dbSJeff Roberson 	s_wr_seq = atomic_load_acq_int(&s->s_wr_seq);
235*226dd6dbSJeff Roberson 
236*226dd6dbSJeff Roberson 	/*
237*226dd6dbSJeff Roberson 	 * We must not allow a zero tick value.  We go back in time one tick
238*226dd6dbSJeff Roberson 	 * and advance the grace period forward one tick around zero.
239*226dd6dbSJeff Roberson 	 */
240*226dd6dbSJeff Roberson 	t = ticks;
241*226dd6dbSJeff Roberson 	if (t == SMR_SEQ_INVALID)
242*226dd6dbSJeff Roberson 		t--;
243*226dd6dbSJeff Roberson 
244*226dd6dbSJeff Roberson 	/*
245*226dd6dbSJeff Roberson 	 * The most probable condition that the update already took place.
246*226dd6dbSJeff Roberson 	 */
247*226dd6dbSJeff Roberson 	if (__predict_true(t == s_wr_seq))
248*226dd6dbSJeff Roberson 		goto out;
249*226dd6dbSJeff Roberson 
250*226dd6dbSJeff Roberson 	/*
251*226dd6dbSJeff Roberson 	 * After long idle periods the read sequence may fall too far
252*226dd6dbSJeff Roberson 	 * behind write.  Prevent poll from ever seeing this condition
253*226dd6dbSJeff Roberson 	 * by updating the stale rd_seq.  This assumes that there can
254*226dd6dbSJeff Roberson 	 * be no valid section 2bn ticks old.  The rd_seq update must
255*226dd6dbSJeff Roberson 	 * be visible before wr_seq to avoid races with other advance
256*226dd6dbSJeff Roberson 	 * callers.
257*226dd6dbSJeff Roberson 	 */
258*226dd6dbSJeff Roberson 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
259*226dd6dbSJeff Roberson 	if (SMR_SEQ_GT(s_rd_seq, t))
260*226dd6dbSJeff Roberson 		atomic_cmpset_rel_int(&s->s_rd_seq, s_rd_seq, t);
261*226dd6dbSJeff Roberson 
262*226dd6dbSJeff Roberson 	/*
263*226dd6dbSJeff Roberson 	 * Release to synchronize with the wr_seq load above.  Ignore
264*226dd6dbSJeff Roberson 	 * cmpset failures from simultaneous updates.
265*226dd6dbSJeff Roberson 	 */
266*226dd6dbSJeff Roberson 	atomic_cmpset_rel_int(&s->s_wr_seq, s_wr_seq, t);
267*226dd6dbSJeff Roberson 	counter_u64_add(advance, 1);
268*226dd6dbSJeff Roberson 	/* If we lost either update race another thread did it. */
269*226dd6dbSJeff Roberson 	s_wr_seq = t;
270*226dd6dbSJeff Roberson out:
271*226dd6dbSJeff Roberson 	goal = s_wr_seq + SMR_LAZY_GRACE;
272*226dd6dbSJeff Roberson 	/* Skip over the SMR_SEQ_INVALID tick. */
273*226dd6dbSJeff Roberson 	if (goal < SMR_LAZY_GRACE)
274*226dd6dbSJeff Roberson 		goal++;
275*226dd6dbSJeff Roberson 	return (goal);
276*226dd6dbSJeff Roberson }
277*226dd6dbSJeff Roberson 
278*226dd6dbSJeff Roberson /*
279*226dd6dbSJeff Roberson  * Increment the shared write sequence by 2.  Since it is initialized
280*226dd6dbSJeff Roberson  * to 1 this means the only valid values are odd and an observed value
281*226dd6dbSJeff Roberson  * of 0 in a particular CPU means it is not currently in a read section.
282*226dd6dbSJeff Roberson  */
283*226dd6dbSJeff Roberson static smr_seq_t
284*226dd6dbSJeff Roberson smr_shared_advance(smr_shared_t s)
285*226dd6dbSJeff Roberson {
286*226dd6dbSJeff Roberson 
287*226dd6dbSJeff Roberson 	return (atomic_fetchadd_int(&s->s_wr_seq, SMR_SEQ_INCR) + SMR_SEQ_INCR);
288*226dd6dbSJeff Roberson }
289*226dd6dbSJeff Roberson 
290*226dd6dbSJeff Roberson /*
291*226dd6dbSJeff Roberson  * Advance the write sequence number for a normal smr section.  If the
292*226dd6dbSJeff Roberson  * write sequence is too far behind the read sequence we have to poll
293*226dd6dbSJeff Roberson  * to advance rd_seq and prevent undetectable wraps.
294*226dd6dbSJeff Roberson  */
295*226dd6dbSJeff Roberson static smr_seq_t
296*226dd6dbSJeff Roberson smr_default_advance(smr_t smr, smr_shared_t s)
297*226dd6dbSJeff Roberson {
298*226dd6dbSJeff Roberson 	smr_seq_t goal, s_rd_seq;
299*226dd6dbSJeff Roberson 
300*226dd6dbSJeff Roberson 	CRITICAL_ASSERT(curthread);
301*226dd6dbSJeff Roberson 	KASSERT((zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
302*226dd6dbSJeff Roberson 	    ("smr_default_advance: called with lazy smr."));
303*226dd6dbSJeff Roberson 
304*226dd6dbSJeff Roberson 	/*
305*226dd6dbSJeff Roberson 	 * Load the current read seq before incrementing the goal so
306*226dd6dbSJeff Roberson 	 * we are guaranteed it is always < goal.
307*226dd6dbSJeff Roberson 	 */
308*226dd6dbSJeff Roberson 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
309*226dd6dbSJeff Roberson 	goal = smr_shared_advance(s);
310*226dd6dbSJeff Roberson 
311*226dd6dbSJeff Roberson 	/*
312*226dd6dbSJeff Roberson 	 * Force a synchronization here if the goal is getting too
313*226dd6dbSJeff Roberson 	 * far ahead of the read sequence number.  This keeps the
314*226dd6dbSJeff Roberson 	 * wrap detecting arithmetic working in pathological cases.
315*226dd6dbSJeff Roberson 	 */
316*226dd6dbSJeff Roberson 	if (SMR_SEQ_DELTA(goal, s_rd_seq) >= SMR_SEQ_MAX_DELTA) {
317*226dd6dbSJeff Roberson 		counter_u64_add(advance_wait, 1);
318*226dd6dbSJeff Roberson 		smr_wait(smr, goal - SMR_SEQ_MAX_ADVANCE);
319*226dd6dbSJeff Roberson 	}
320*226dd6dbSJeff Roberson 	counter_u64_add(advance, 1);
321*226dd6dbSJeff Roberson 
322*226dd6dbSJeff Roberson 	return (goal);
323*226dd6dbSJeff Roberson }
324*226dd6dbSJeff Roberson 
325*226dd6dbSJeff Roberson /*
326*226dd6dbSJeff Roberson  * Deferred SMRs conditionally update s_wr_seq based on an
327*226dd6dbSJeff Roberson  * cpu local interval count.
328*226dd6dbSJeff Roberson  */
329*226dd6dbSJeff Roberson static smr_seq_t
330*226dd6dbSJeff Roberson smr_deferred_advance(smr_t smr, smr_shared_t s, smr_t self)
331*226dd6dbSJeff Roberson {
332*226dd6dbSJeff Roberson 
333*226dd6dbSJeff Roberson 	if (++self->c_deferred < self->c_limit)
334*226dd6dbSJeff Roberson 		return (smr_shared_current(s) + SMR_SEQ_INCR);
335*226dd6dbSJeff Roberson 	self->c_deferred = 0;
336*226dd6dbSJeff Roberson 	return (smr_default_advance(smr, s));
337*226dd6dbSJeff Roberson }
338*226dd6dbSJeff Roberson 
339*226dd6dbSJeff Roberson /*
340*226dd6dbSJeff Roberson  * Advance the write sequence and return the value for use as the
341d4665eaaSJeff Roberson  * wait goal.  This guarantees that any changes made by the calling
342d4665eaaSJeff Roberson  * thread prior to this call will be visible to all threads after
343d4665eaaSJeff Roberson  * rd_seq meets or exceeds the return value.
344d4665eaaSJeff Roberson  *
345d4665eaaSJeff Roberson  * This function may busy loop if the readers are roughly 1 billion
346d4665eaaSJeff Roberson  * sequence numbers behind the writers.
347*226dd6dbSJeff Roberson  *
348*226dd6dbSJeff Roberson  * Lazy SMRs will not busy loop and the wrap happens every 49.6 days
349*226dd6dbSJeff Roberson  * at 1khz and 119 hours at 10khz.  Readers can block for no longer
350*226dd6dbSJeff Roberson  * than half of this for SMR_SEQ_ macros to continue working.
351d4665eaaSJeff Roberson  */
352d4665eaaSJeff Roberson smr_seq_t
353d4665eaaSJeff Roberson smr_advance(smr_t smr)
354d4665eaaSJeff Roberson {
355*226dd6dbSJeff Roberson 	smr_t self;
356d4665eaaSJeff Roberson 	smr_shared_t s;
357*226dd6dbSJeff Roberson 	smr_seq_t goal;
358*226dd6dbSJeff Roberson 	int flags;
359d4665eaaSJeff Roberson 
360d4665eaaSJeff Roberson 	/*
361d4665eaaSJeff Roberson 	 * It is illegal to enter while in an smr section.
362d4665eaaSJeff Roberson 	 */
363a4d50e49SJeff Roberson 	SMR_ASSERT_NOT_ENTERED(smr);
364d4665eaaSJeff Roberson 
365d4665eaaSJeff Roberson 	/*
366d4665eaaSJeff Roberson 	 * Modifications not done in a smr section need to be visible
367d4665eaaSJeff Roberson 	 * before advancing the seq.
368d4665eaaSJeff Roberson 	 */
369d4665eaaSJeff Roberson 	atomic_thread_fence_rel();
370d4665eaaSJeff Roberson 
371bc650984SJeff Roberson 	critical_enter();
372*226dd6dbSJeff Roberson 	/* Try to touch the line once. */
373*226dd6dbSJeff Roberson 	self = zpcpu_get(smr);
374*226dd6dbSJeff Roberson 	s = self->c_shared;
375*226dd6dbSJeff Roberson 	flags = self->c_flags;
376bc650984SJeff Roberson 	goal = SMR_SEQ_INVALID;
377*226dd6dbSJeff Roberson 	if ((flags & (SMR_LAZY | SMR_DEFERRED)) == 0)
378*226dd6dbSJeff Roberson 		goal = smr_default_advance(smr, s);
379*226dd6dbSJeff Roberson 	else if ((flags & SMR_LAZY) != 0)
380*226dd6dbSJeff Roberson 		goal = smr_lazy_advance(smr, s);
381*226dd6dbSJeff Roberson 	else if ((flags & SMR_DEFERRED) != 0)
382*226dd6dbSJeff Roberson 		goal = smr_deferred_advance(smr, s, self);
383bc650984SJeff Roberson 	critical_exit();
384*226dd6dbSJeff Roberson 
385bc650984SJeff Roberson 	return (goal);
386bc650984SJeff Roberson }
387bc650984SJeff Roberson 
388d4665eaaSJeff Roberson /*
389*226dd6dbSJeff Roberson  * Poll to determine the currently observed sequence number on a cpu
390*226dd6dbSJeff Roberson  * and spinwait if the 'wait' argument is true.
391d4665eaaSJeff Roberson  */
392*226dd6dbSJeff Roberson static smr_seq_t
393*226dd6dbSJeff Roberson smr_poll_cpu(smr_t c, smr_seq_t s_rd_seq, smr_seq_t goal, bool wait)
394d4665eaaSJeff Roberson {
395*226dd6dbSJeff Roberson 	smr_seq_t c_seq;
396d4665eaaSJeff Roberson 
397d4665eaaSJeff Roberson 	c_seq = SMR_SEQ_INVALID;
398d4665eaaSJeff Roberson 	for (;;) {
399d4665eaaSJeff Roberson 		c_seq = atomic_load_int(&c->c_seq);
400d4665eaaSJeff Roberson 		if (c_seq == SMR_SEQ_INVALID)
401d4665eaaSJeff Roberson 			break;
402d4665eaaSJeff Roberson 
403d4665eaaSJeff Roberson 		/*
404d4665eaaSJeff Roberson 		 * There is a race described in smr.h:smr_enter that
405d4665eaaSJeff Roberson 		 * can lead to a stale seq value but not stale data
406d4665eaaSJeff Roberson 		 * access.  If we find a value out of range here we
407d4665eaaSJeff Roberson 		 * pin it to the current min to prevent it from
408d4665eaaSJeff Roberson 		 * advancing until that stale section has expired.
409d4665eaaSJeff Roberson 		 *
410d4665eaaSJeff Roberson 		 * The race is created when a cpu loads the s_wr_seq
411d4665eaaSJeff Roberson 		 * value in a local register and then another thread
412d4665eaaSJeff Roberson 		 * advances s_wr_seq and calls smr_poll() which will
413d4665eaaSJeff Roberson 		 * oberve no value yet in c_seq and advance s_rd_seq
414d4665eaaSJeff Roberson 		 * up to s_wr_seq which is beyond the register
415d4665eaaSJeff Roberson 		 * cached value.  This is only likely to happen on
416d4665eaaSJeff Roberson 		 * hypervisor or with a system management interrupt.
417d4665eaaSJeff Roberson 		 */
418d4665eaaSJeff Roberson 		if (SMR_SEQ_LT(c_seq, s_rd_seq))
419d4665eaaSJeff Roberson 			c_seq = s_rd_seq;
420d4665eaaSJeff Roberson 
421d4665eaaSJeff Roberson 		/*
422*226dd6dbSJeff Roberson 		 * If the sequence number meets the goal we are done
423*226dd6dbSJeff Roberson 		 * with this cpu.
424d4665eaaSJeff Roberson 		 */
425*226dd6dbSJeff Roberson 		if (SMR_SEQ_LEQ(goal, c_seq))
426d4665eaaSJeff Roberson 			break;
427d4665eaaSJeff Roberson 
428*226dd6dbSJeff Roberson 		if (!wait)
429d4665eaaSJeff Roberson 			break;
430d4665eaaSJeff Roberson 		cpu_spinwait();
431d4665eaaSJeff Roberson 	}
432d4665eaaSJeff Roberson 
433*226dd6dbSJeff Roberson 	return (c_seq);
434*226dd6dbSJeff Roberson }
435*226dd6dbSJeff Roberson 
436*226dd6dbSJeff Roberson /*
437*226dd6dbSJeff Roberson  * Loop until all cores have observed the goal sequence or have
438*226dd6dbSJeff Roberson  * gone inactive.  Returns the oldest sequence currently active;
439*226dd6dbSJeff Roberson  *
440*226dd6dbSJeff Roberson  * This function assumes a snapshot of sequence values has
441*226dd6dbSJeff Roberson  * been obtained and validated by smr_poll().
442*226dd6dbSJeff Roberson  */
443*226dd6dbSJeff Roberson static smr_seq_t
444*226dd6dbSJeff Roberson smr_poll_scan(smr_t smr, smr_shared_t s, smr_seq_t s_rd_seq,
445*226dd6dbSJeff Roberson     smr_seq_t s_wr_seq, smr_seq_t goal, bool wait)
446*226dd6dbSJeff Roberson {
447*226dd6dbSJeff Roberson 	smr_seq_t rd_seq, c_seq;
448*226dd6dbSJeff Roberson 	int i;
449*226dd6dbSJeff Roberson 
450*226dd6dbSJeff Roberson 	CRITICAL_ASSERT(curthread);
451*226dd6dbSJeff Roberson 	counter_u64_add_protected(poll_scan, 1);
452*226dd6dbSJeff Roberson 
453*226dd6dbSJeff Roberson 	/*
454*226dd6dbSJeff Roberson 	 * The read sequence can be no larger than the write sequence at
455*226dd6dbSJeff Roberson 	 * the start of the poll.
456*226dd6dbSJeff Roberson 	 */
457*226dd6dbSJeff Roberson 	rd_seq = s_wr_seq;
458*226dd6dbSJeff Roberson 	CPU_FOREACH(i) {
459*226dd6dbSJeff Roberson 		/*
460*226dd6dbSJeff Roberson 		 * Query the active sequence on this cpu.  If we're not
461*226dd6dbSJeff Roberson 		 * waiting and we don't meet the goal we will still scan
462*226dd6dbSJeff Roberson 		 * the rest of the cpus to update s_rd_seq before returning
463*226dd6dbSJeff Roberson 		 * failure.
464*226dd6dbSJeff Roberson 		 */
465*226dd6dbSJeff Roberson 		c_seq = smr_poll_cpu(zpcpu_get_cpu(smr, i), s_rd_seq, goal,
466*226dd6dbSJeff Roberson 		    wait);
467*226dd6dbSJeff Roberson 
468d4665eaaSJeff Roberson 		/*
469d4665eaaSJeff Roberson 		 * Limit the minimum observed rd_seq whether we met the goal
470d4665eaaSJeff Roberson 		 * or not.
471d4665eaaSJeff Roberson 		 */
472*226dd6dbSJeff Roberson 		if (c_seq != SMR_SEQ_INVALID)
473*226dd6dbSJeff Roberson 			rd_seq = SMR_SEQ_MIN(rd_seq, c_seq);
474d4665eaaSJeff Roberson 	}
475d4665eaaSJeff Roberson 
476d4665eaaSJeff Roberson 	/*
477*226dd6dbSJeff Roberson 	 * Advance the rd_seq as long as we observed a more recent value.
478d4665eaaSJeff Roberson 	 */
479d4665eaaSJeff Roberson 	s_rd_seq = atomic_load_int(&s->s_rd_seq);
480*226dd6dbSJeff Roberson 	if (SMR_SEQ_GEQ(rd_seq, s_rd_seq)) {
481*226dd6dbSJeff Roberson 		atomic_cmpset_int(&s->s_rd_seq, s_rd_seq, rd_seq);
482*226dd6dbSJeff Roberson 		s_rd_seq = rd_seq;
483*226dd6dbSJeff Roberson 	}
484d4665eaaSJeff Roberson 
485*226dd6dbSJeff Roberson 	return (s_rd_seq);
486*226dd6dbSJeff Roberson }
487*226dd6dbSJeff Roberson 
488*226dd6dbSJeff Roberson /*
489*226dd6dbSJeff Roberson  * Poll to determine whether all readers have observed the 'goal' write
490*226dd6dbSJeff Roberson  * sequence number.
491*226dd6dbSJeff Roberson  *
492*226dd6dbSJeff Roberson  * If wait is true this will spin until the goal is met.
493*226dd6dbSJeff Roberson  *
494*226dd6dbSJeff Roberson  * This routine will updated the minimum observed read sequence number in
495*226dd6dbSJeff Roberson  * s_rd_seq if it does a scan.  It may not do a scan if another call has
496*226dd6dbSJeff Roberson  * advanced s_rd_seq beyond the callers goal already.
497*226dd6dbSJeff Roberson  *
498*226dd6dbSJeff Roberson  * Returns true if the goal is met and false if not.
499*226dd6dbSJeff Roberson  */
500*226dd6dbSJeff Roberson bool
501*226dd6dbSJeff Roberson smr_poll(smr_t smr, smr_seq_t goal, bool wait)
502*226dd6dbSJeff Roberson {
503*226dd6dbSJeff Roberson 	smr_shared_t s;
504*226dd6dbSJeff Roberson 	smr_t self;
505*226dd6dbSJeff Roberson 	smr_seq_t s_wr_seq, s_rd_seq;
506*226dd6dbSJeff Roberson 	smr_delta_t delta;
507*226dd6dbSJeff Roberson 	int flags;
508*226dd6dbSJeff Roberson 	bool success;
509*226dd6dbSJeff Roberson 
510*226dd6dbSJeff Roberson 	/*
511*226dd6dbSJeff Roberson 	 * It is illegal to enter while in an smr section.
512*226dd6dbSJeff Roberson 	 */
513*226dd6dbSJeff Roberson 	KASSERT(!wait || !SMR_ENTERED(smr),
514*226dd6dbSJeff Roberson 	    ("smr_poll: Blocking not allowed in a SMR section."));
515*226dd6dbSJeff Roberson 	KASSERT(!wait || (zpcpu_get(smr)->c_flags & SMR_LAZY) == 0,
516*226dd6dbSJeff Roberson 	    ("smr_poll: Blocking not allowed on lazy smrs."));
517*226dd6dbSJeff Roberson 
518*226dd6dbSJeff Roberson 	/*
519*226dd6dbSJeff Roberson 	 * Use a critical section so that we can avoid ABA races
520*226dd6dbSJeff Roberson 	 * caused by long preemption sleeps.
521*226dd6dbSJeff Roberson 	 */
522*226dd6dbSJeff Roberson 	success = true;
523*226dd6dbSJeff Roberson 	critical_enter();
524*226dd6dbSJeff Roberson 	/* Attempt to load from self only once. */
525*226dd6dbSJeff Roberson 	self = zpcpu_get(smr);
526*226dd6dbSJeff Roberson 	s = self->c_shared;
527*226dd6dbSJeff Roberson 	flags = self->c_flags;
528*226dd6dbSJeff Roberson 	counter_u64_add_protected(poll, 1);
529*226dd6dbSJeff Roberson 
530*226dd6dbSJeff Roberson 	/*
531*226dd6dbSJeff Roberson 	 * Conditionally advance the lazy write clock on any writer
532*226dd6dbSJeff Roberson 	 * activity.  This may reset s_rd_seq.
533*226dd6dbSJeff Roberson 	 */
534*226dd6dbSJeff Roberson 	if ((flags & SMR_LAZY) != 0)
535*226dd6dbSJeff Roberson 		smr_lazy_advance(smr, s);
536*226dd6dbSJeff Roberson 
537*226dd6dbSJeff Roberson 	/*
538*226dd6dbSJeff Roberson 	 * Acquire barrier loads s_wr_seq after s_rd_seq so that we can not
539*226dd6dbSJeff Roberson 	 * observe an updated read sequence that is larger than write.
540*226dd6dbSJeff Roberson 	 */
541*226dd6dbSJeff Roberson 	s_rd_seq = atomic_load_acq_int(&s->s_rd_seq);
542*226dd6dbSJeff Roberson 
543*226dd6dbSJeff Roberson 	/*
544*226dd6dbSJeff Roberson 	 * If we have already observed the sequence number we can immediately
545*226dd6dbSJeff Roberson 	 * return success.  Most polls should meet this criterion.
546*226dd6dbSJeff Roberson 	 */
547*226dd6dbSJeff Roberson 	if (SMR_SEQ_LEQ(goal, s_rd_seq))
548*226dd6dbSJeff Roberson 		goto out;
549*226dd6dbSJeff Roberson 
550*226dd6dbSJeff Roberson 	/*
551*226dd6dbSJeff Roberson 	 * wr_seq must be loaded prior to any c_seq value so that a
552*226dd6dbSJeff Roberson 	 * stale c_seq can only reference time after this wr_seq.
553*226dd6dbSJeff Roberson 	 */
554*226dd6dbSJeff Roberson 	s_wr_seq = atomic_load_acq_int(&s->s_wr_seq);
555*226dd6dbSJeff Roberson 
556*226dd6dbSJeff Roberson 	/*
557*226dd6dbSJeff Roberson 	 * This is the distance from s_wr_seq to goal.  Positive values
558*226dd6dbSJeff Roberson 	 * are in the future.
559*226dd6dbSJeff Roberson 	 */
560*226dd6dbSJeff Roberson 	delta = SMR_SEQ_DELTA(goal, s_wr_seq);
561*226dd6dbSJeff Roberson 
562*226dd6dbSJeff Roberson 	/*
563*226dd6dbSJeff Roberson 	 * Detect a stale wr_seq.
564*226dd6dbSJeff Roberson 	 *
565*226dd6dbSJeff Roberson 	 * This goal may have come from a deferred advance or a lazy
566*226dd6dbSJeff Roberson 	 * smr.  If we are not blocking we can not succeed but the
567*226dd6dbSJeff Roberson 	 * sequence number is valid.
568*226dd6dbSJeff Roberson 	 */
569*226dd6dbSJeff Roberson 	if (delta > 0 && delta <= SMR_SEQ_MAX_ADVANCE &&
570*226dd6dbSJeff Roberson 	    (flags & (SMR_LAZY | SMR_DEFERRED)) != 0) {
571*226dd6dbSJeff Roberson 		if (!wait) {
572*226dd6dbSJeff Roberson 			success = false;
573*226dd6dbSJeff Roberson 			goto out;
574*226dd6dbSJeff Roberson 		}
575*226dd6dbSJeff Roberson 		/* LAZY is always !wait. */
576*226dd6dbSJeff Roberson 		s_wr_seq = smr_shared_advance(s);
577*226dd6dbSJeff Roberson 		delta = 0;
578*226dd6dbSJeff Roberson 	}
579*226dd6dbSJeff Roberson 
580*226dd6dbSJeff Roberson 	/*
581*226dd6dbSJeff Roberson 	 * Detect an invalid goal.
582*226dd6dbSJeff Roberson 	 *
583*226dd6dbSJeff Roberson 	 * The goal must be in the range of s_wr_seq >= goal >= s_rd_seq for
584*226dd6dbSJeff Roberson 	 * it to be valid.  If it is not then the caller held on to it and
585*226dd6dbSJeff Roberson 	 * the integer wrapped.  If we wrapped back within range the caller
586*226dd6dbSJeff Roberson 	 * will harmlessly scan.
587*226dd6dbSJeff Roberson 	 */
588*226dd6dbSJeff Roberson 	if (delta > 0)
589*226dd6dbSJeff Roberson 		goto out;
590*226dd6dbSJeff Roberson 
591*226dd6dbSJeff Roberson 	/* Determine the lowest visible sequence number. */
592*226dd6dbSJeff Roberson 	s_rd_seq = smr_poll_scan(smr, s, s_rd_seq, s_wr_seq, goal, wait);
593*226dd6dbSJeff Roberson 	success = SMR_SEQ_LEQ(goal, s_rd_seq);
594d4665eaaSJeff Roberson out:
595*226dd6dbSJeff Roberson 	if (!success)
596*226dd6dbSJeff Roberson 		counter_u64_add_protected(poll_fail, 1);
597d4665eaaSJeff Roberson 	critical_exit();
598d4665eaaSJeff Roberson 
599915c367eSJeff Roberson 	/*
600915c367eSJeff Roberson 	 * Serialize with smr_advance()/smr_exit().  The caller is now free
601915c367eSJeff Roberson 	 * to modify memory as expected.
602915c367eSJeff Roberson 	 */
603915c367eSJeff Roberson 	atomic_thread_fence_acq();
604915c367eSJeff Roberson 
605d4665eaaSJeff Roberson 	return (success);
606d4665eaaSJeff Roberson }
607d4665eaaSJeff Roberson 
608d4665eaaSJeff Roberson smr_t
609*226dd6dbSJeff Roberson smr_create(const char *name, int limit, int flags)
610d4665eaaSJeff Roberson {
611d4665eaaSJeff Roberson 	smr_t smr, c;
612d4665eaaSJeff Roberson 	smr_shared_t s;
613d4665eaaSJeff Roberson 	int i;
614d4665eaaSJeff Roberson 
615d4665eaaSJeff Roberson 	s = uma_zalloc(smr_shared_zone, M_WAITOK);
6161f2a6b85SJeff Roberson 	smr = uma_zalloc_pcpu(smr_zone, M_WAITOK);
617d4665eaaSJeff Roberson 
618d4665eaaSJeff Roberson 	s->s_name = name;
619*226dd6dbSJeff Roberson 	if ((flags & SMR_LAZY) == 0)
620d4665eaaSJeff Roberson 		s->s_rd_seq = s->s_wr_seq = SMR_SEQ_INIT;
621*226dd6dbSJeff Roberson 	else
622*226dd6dbSJeff Roberson 		s->s_rd_seq = s->s_wr_seq = ticks;
623d4665eaaSJeff Roberson 
624d4665eaaSJeff Roberson 	/* Initialize all CPUS, not just those running. */
625d4665eaaSJeff Roberson 	for (i = 0; i <= mp_maxid; i++) {
626d4665eaaSJeff Roberson 		c = zpcpu_get_cpu(smr, i);
627d4665eaaSJeff Roberson 		c->c_seq = SMR_SEQ_INVALID;
628d4665eaaSJeff Roberson 		c->c_shared = s;
629*226dd6dbSJeff Roberson 		c->c_deferred = 0;
630*226dd6dbSJeff Roberson 		c->c_limit = limit;
631*226dd6dbSJeff Roberson 		c->c_flags = flags;
632d4665eaaSJeff Roberson 	}
633d4665eaaSJeff Roberson 	atomic_thread_fence_seq_cst();
634d4665eaaSJeff Roberson 
635d4665eaaSJeff Roberson 	return (smr);
636d4665eaaSJeff Roberson }
637d4665eaaSJeff Roberson 
638d4665eaaSJeff Roberson void
639d4665eaaSJeff Roberson smr_destroy(smr_t smr)
640d4665eaaSJeff Roberson {
641d4665eaaSJeff Roberson 
642d4665eaaSJeff Roberson 	smr_synchronize(smr);
643d4665eaaSJeff Roberson 	uma_zfree(smr_shared_zone, smr->c_shared);
6441f2a6b85SJeff Roberson 	uma_zfree_pcpu(smr_zone, smr);
645d4665eaaSJeff Roberson }
646d4665eaaSJeff Roberson 
647d4665eaaSJeff Roberson /*
648d4665eaaSJeff Roberson  * Initialize the UMA slab zone.
649d4665eaaSJeff Roberson  */
650d4665eaaSJeff Roberson void
651d4665eaaSJeff Roberson smr_init(void)
652d4665eaaSJeff Roberson {
653d4665eaaSJeff Roberson 
654d4665eaaSJeff Roberson 	smr_shared_zone = uma_zcreate("SMR SHARED", sizeof(struct smr_shared),
655d4665eaaSJeff Roberson 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, 0);
656d4665eaaSJeff Roberson 	smr_zone = uma_zcreate("SMR CPU", sizeof(struct smr),
657d4665eaaSJeff Roberson 	    NULL, NULL, NULL, NULL, (CACHE_LINE_SIZE * 2) - 1, UMA_ZONE_PCPU);
658d4665eaaSJeff Roberson }
6598d7f16a5SJeff Roberson 
6608d7f16a5SJeff Roberson static void
6618d7f16a5SJeff Roberson smr_init_counters(void *unused)
6628d7f16a5SJeff Roberson {
6638d7f16a5SJeff Roberson 
6648d7f16a5SJeff Roberson 	advance = counter_u64_alloc(M_WAITOK);
6658d7f16a5SJeff Roberson 	advance_wait = counter_u64_alloc(M_WAITOK);
6668d7f16a5SJeff Roberson 	poll = counter_u64_alloc(M_WAITOK);
6678d7f16a5SJeff Roberson 	poll_scan = counter_u64_alloc(M_WAITOK);
668*226dd6dbSJeff Roberson 	poll_fail = counter_u64_alloc(M_WAITOK);
6698d7f16a5SJeff Roberson }
6708d7f16a5SJeff Roberson SYSINIT(smr_counters, SI_SUB_CPU, SI_ORDER_ANY, smr_init_counters, NULL);
671