1 /*- 2 * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * This module holds the global variables and machine independent functions 29 * used for the kernel SMP support. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/ktr.h> 39 #include <sys/proc.h> 40 #include <sys/bus.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/pcpu.h> 44 #include <sys/sched.h> 45 #include <sys/smp.h> 46 #include <sys/sysctl.h> 47 48 #include <machine/cpu.h> 49 #include <machine/smp.h> 50 51 #include "opt_sched.h" 52 53 #ifdef SMP 54 volatile cpuset_t stopped_cpus; 55 volatile cpuset_t started_cpus; 56 volatile cpuset_t suspended_cpus; 57 cpuset_t hlt_cpus_mask; 58 cpuset_t logical_cpus_mask; 59 60 void (*cpustop_restartfunc)(void); 61 #endif 62 63 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS); 64 65 /* This is used in modules that need to work in both SMP and UP. */ 66 cpuset_t all_cpus; 67 68 int mp_ncpus; 69 /* export this for libkvm consumers. */ 70 int mp_maxcpus = MAXCPU; 71 72 volatile int smp_started; 73 u_int mp_maxid; 74 75 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL, 76 "Kernel SMP"); 77 78 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0, 79 "Max CPU ID."); 80 81 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus, 82 0, "Max number of CPUs that the system was compiled for."); 83 84 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD | CTLTYPE_INT, NULL, 0, 85 sysctl_kern_smp_active, "I", "Indicates system is running in SMP mode"); 86 87 int smp_disabled = 0; /* has smp been disabled? */ 88 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD, 89 &smp_disabled, 0, "SMP has been disabled from the loader"); 90 91 int smp_cpus = 1; /* how many cpu's running */ 92 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0, 93 "Number of CPUs online"); 94 95 int smp_topology = 0; /* Which topology we're using. */ 96 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0, 97 "Topology override setting; 0 is default provided by hardware."); 98 99 #ifdef SMP 100 /* Enable forwarding of a signal to a process running on a different CPU */ 101 static int forward_signal_enabled = 1; 102 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW, 103 &forward_signal_enabled, 0, 104 "Forwarding of a signal to a process on a different CPU"); 105 106 /* Variables needed for SMP rendezvous. */ 107 static volatile int smp_rv_ncpus; 108 static void (*volatile smp_rv_setup_func)(void *arg); 109 static void (*volatile smp_rv_action_func)(void *arg); 110 static void (*volatile smp_rv_teardown_func)(void *arg); 111 static void *volatile smp_rv_func_arg; 112 static volatile int smp_rv_waiters[4]; 113 114 /* 115 * Shared mutex to restrict busywaits between smp_rendezvous() and 116 * smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these 117 * functions trigger at once and cause multiple CPUs to busywait with 118 * interrupts disabled. 119 */ 120 struct mtx smp_ipi_mtx; 121 122 /* 123 * Let the MD SMP code initialize mp_maxid very early if it can. 124 */ 125 static void 126 mp_setmaxid(void *dummy) 127 { 128 cpu_mp_setmaxid(); 129 } 130 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL); 131 132 /* 133 * Call the MD SMP initialization code. 134 */ 135 static void 136 mp_start(void *dummy) 137 { 138 139 mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN); 140 141 /* Probe for MP hardware. */ 142 if (smp_disabled != 0 || cpu_mp_probe() == 0) { 143 mp_ncpus = 1; 144 CPU_SETOF(PCPU_GET(cpuid), &all_cpus); 145 return; 146 } 147 148 cpu_mp_start(); 149 printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n", 150 mp_ncpus); 151 cpu_mp_announce(); 152 } 153 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL); 154 155 void 156 forward_signal(struct thread *td) 157 { 158 int id; 159 160 /* 161 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on 162 * this thread, so all we need to do is poke it if it is currently 163 * executing so that it executes ast(). 164 */ 165 THREAD_LOCK_ASSERT(td, MA_OWNED); 166 KASSERT(TD_IS_RUNNING(td), 167 ("forward_signal: thread is not TDS_RUNNING")); 168 169 CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc); 170 171 if (!smp_started || cold || panicstr) 172 return; 173 if (!forward_signal_enabled) 174 return; 175 176 /* No need to IPI ourself. */ 177 if (td == curthread) 178 return; 179 180 id = td->td_oncpu; 181 if (id == NOCPU) 182 return; 183 ipi_cpu(id, IPI_AST); 184 } 185 186 /* 187 * When called the executing CPU will send an IPI to all other CPUs 188 * requesting that they halt execution. 189 * 190 * Usually (but not necessarily) called with 'other_cpus' as its arg. 191 * 192 * - Signals all CPUs in map to stop. 193 * - Waits for each to stop. 194 * 195 * Returns: 196 * -1: error 197 * 0: NA 198 * 1: ok 199 * 200 */ 201 static int 202 generic_stop_cpus(cpuset_t map, u_int type) 203 { 204 #ifdef KTR 205 char cpusetbuf[CPUSETBUFSIZ]; 206 #endif 207 static volatile u_int stopping_cpu = NOCPU; 208 int i; 209 volatile cpuset_t *cpus; 210 211 KASSERT( 212 #if defined(__amd64__) || defined(__i386__) 213 type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND, 214 #else 215 type == IPI_STOP || type == IPI_STOP_HARD, 216 #endif 217 ("%s: invalid stop type", __func__)); 218 219 if (!smp_started) 220 return (0); 221 222 CTR2(KTR_SMP, "stop_cpus(%s) with %u type", 223 cpusetobj_strprint(cpusetbuf, &map), type); 224 225 #if defined(__amd64__) || defined(__i386__) 226 /* 227 * When suspending, ensure there are are no IPIs in progress. 228 * IPIs that have been issued, but not yet delivered (e.g. 229 * not pending on a vCPU when running under virtualization) 230 * will be lost, violating FreeBSD's assumption of reliable 231 * IPI delivery. 232 */ 233 if (type == IPI_SUSPEND) 234 mtx_lock_spin(&smp_ipi_mtx); 235 #endif 236 237 if (stopping_cpu != PCPU_GET(cpuid)) 238 while (atomic_cmpset_int(&stopping_cpu, NOCPU, 239 PCPU_GET(cpuid)) == 0) 240 while (stopping_cpu != NOCPU) 241 cpu_spinwait(); /* spin */ 242 243 /* send the stop IPI to all CPUs in map */ 244 ipi_selected(map, type); 245 246 #if defined(__amd64__) || defined(__i386__) 247 if (type == IPI_SUSPEND) 248 cpus = &suspended_cpus; 249 else 250 #endif 251 cpus = &stopped_cpus; 252 253 i = 0; 254 while (!CPU_SUBSET(cpus, &map)) { 255 /* spin */ 256 cpu_spinwait(); 257 i++; 258 if (i == 100000000) { 259 printf("timeout stopping cpus\n"); 260 break; 261 } 262 } 263 264 #if defined(__amd64__) || defined(__i386__) 265 if (type == IPI_SUSPEND) 266 mtx_unlock_spin(&smp_ipi_mtx); 267 #endif 268 269 stopping_cpu = NOCPU; 270 return (1); 271 } 272 273 int 274 stop_cpus(cpuset_t map) 275 { 276 277 return (generic_stop_cpus(map, IPI_STOP)); 278 } 279 280 int 281 stop_cpus_hard(cpuset_t map) 282 { 283 284 return (generic_stop_cpus(map, IPI_STOP_HARD)); 285 } 286 287 #if defined(__amd64__) || defined(__i386__) 288 int 289 suspend_cpus(cpuset_t map) 290 { 291 292 return (generic_stop_cpus(map, IPI_SUSPEND)); 293 } 294 #endif 295 296 /* 297 * Called by a CPU to restart stopped CPUs. 298 * 299 * Usually (but not necessarily) called with 'stopped_cpus' as its arg. 300 * 301 * - Signals all CPUs in map to restart. 302 * - Waits for each to restart. 303 * 304 * Returns: 305 * -1: error 306 * 0: NA 307 * 1: ok 308 */ 309 static int 310 generic_restart_cpus(cpuset_t map, u_int type) 311 { 312 #ifdef KTR 313 char cpusetbuf[CPUSETBUFSIZ]; 314 #endif 315 volatile cpuset_t *cpus; 316 317 KASSERT( 318 #if defined(__amd64__) || defined(__i386__) 319 type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND, 320 #else 321 type == IPI_STOP || type == IPI_STOP_HARD, 322 #endif 323 ("%s: invalid stop type", __func__)); 324 325 if (!smp_started) 326 return 0; 327 328 CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map)); 329 330 #if defined(__amd64__) || defined(__i386__) 331 if (type == IPI_SUSPEND) 332 cpus = &suspended_cpus; 333 else 334 #endif 335 cpus = &stopped_cpus; 336 337 /* signal other cpus to restart */ 338 CPU_COPY_STORE_REL(&map, &started_cpus); 339 340 /* wait for each to clear its bit */ 341 while (CPU_OVERLAP(cpus, &map)) 342 cpu_spinwait(); 343 344 return 1; 345 } 346 347 int 348 restart_cpus(cpuset_t map) 349 { 350 351 return (generic_restart_cpus(map, IPI_STOP)); 352 } 353 354 #if defined(__amd64__) || defined(__i386__) 355 int 356 resume_cpus(cpuset_t map) 357 { 358 359 return (generic_restart_cpus(map, IPI_SUSPEND)); 360 } 361 #endif 362 363 /* 364 * All-CPU rendezvous. CPUs are signalled, all execute the setup function 365 * (if specified), rendezvous, execute the action function (if specified), 366 * rendezvous again, execute the teardown function (if specified), and then 367 * resume. 368 * 369 * Note that the supplied external functions _must_ be reentrant and aware 370 * that they are running in parallel and in an unknown lock context. 371 */ 372 void 373 smp_rendezvous_action(void) 374 { 375 struct thread *td; 376 void *local_func_arg; 377 void (*local_setup_func)(void*); 378 void (*local_action_func)(void*); 379 void (*local_teardown_func)(void*); 380 #ifdef INVARIANTS 381 int owepreempt; 382 #endif 383 384 /* Ensure we have up-to-date values. */ 385 atomic_add_acq_int(&smp_rv_waiters[0], 1); 386 while (smp_rv_waiters[0] < smp_rv_ncpus) 387 cpu_spinwait(); 388 389 /* Fetch rendezvous parameters after acquire barrier. */ 390 local_func_arg = smp_rv_func_arg; 391 local_setup_func = smp_rv_setup_func; 392 local_action_func = smp_rv_action_func; 393 local_teardown_func = smp_rv_teardown_func; 394 395 /* 396 * Use a nested critical section to prevent any preemptions 397 * from occurring during a rendezvous action routine. 398 * Specifically, if a rendezvous handler is invoked via an IPI 399 * and the interrupted thread was in the critical_exit() 400 * function after setting td_critnest to 0 but before 401 * performing a deferred preemption, this routine can be 402 * invoked with td_critnest set to 0 and td_owepreempt true. 403 * In that case, a critical_exit() during the rendezvous 404 * action would trigger a preemption which is not permitted in 405 * a rendezvous action. To fix this, wrap all of the 406 * rendezvous action handlers in a critical section. We 407 * cannot use a regular critical section however as having 408 * critical_exit() preempt from this routine would also be 409 * problematic (the preemption must not occur before the IPI 410 * has been acknowledged via an EOI). Instead, we 411 * intentionally ignore td_owepreempt when leaving the 412 * critical section. This should be harmless because we do 413 * not permit rendezvous action routines to schedule threads, 414 * and thus td_owepreempt should never transition from 0 to 1 415 * during this routine. 416 */ 417 td = curthread; 418 td->td_critnest++; 419 #ifdef INVARIANTS 420 owepreempt = td->td_owepreempt; 421 #endif 422 423 /* 424 * If requested, run a setup function before the main action 425 * function. Ensure all CPUs have completed the setup 426 * function before moving on to the action function. 427 */ 428 if (local_setup_func != smp_no_rendevous_barrier) { 429 if (smp_rv_setup_func != NULL) 430 smp_rv_setup_func(smp_rv_func_arg); 431 atomic_add_int(&smp_rv_waiters[1], 1); 432 while (smp_rv_waiters[1] < smp_rv_ncpus) 433 cpu_spinwait(); 434 } 435 436 if (local_action_func != NULL) 437 local_action_func(local_func_arg); 438 439 if (local_teardown_func != smp_no_rendevous_barrier) { 440 /* 441 * Signal that the main action has been completed. If a 442 * full exit rendezvous is requested, then all CPUs will 443 * wait here until all CPUs have finished the main action. 444 */ 445 atomic_add_int(&smp_rv_waiters[2], 1); 446 while (smp_rv_waiters[2] < smp_rv_ncpus) 447 cpu_spinwait(); 448 449 if (local_teardown_func != NULL) 450 local_teardown_func(local_func_arg); 451 } 452 453 /* 454 * Signal that the rendezvous is fully completed by this CPU. 455 * This means that no member of smp_rv_* pseudo-structure will be 456 * accessed by this target CPU after this point; in particular, 457 * memory pointed by smp_rv_func_arg. 458 * 459 * The release semantic ensures that all accesses performed by 460 * the current CPU are visible when smp_rendezvous_cpus() 461 * returns, by synchronizing with the 462 * atomic_load_acq_int(&smp_rv_waiters[3]). 463 */ 464 atomic_add_rel_int(&smp_rv_waiters[3], 1); 465 466 td->td_critnest--; 467 KASSERT(owepreempt == td->td_owepreempt, 468 ("rendezvous action changed td_owepreempt")); 469 } 470 471 void 472 smp_rendezvous_cpus(cpuset_t map, 473 void (* setup_func)(void *), 474 void (* action_func)(void *), 475 void (* teardown_func)(void *), 476 void *arg) 477 { 478 int curcpumap, i, ncpus = 0; 479 480 /* Look comments in the !SMP case. */ 481 if (!smp_started) { 482 spinlock_enter(); 483 if (setup_func != NULL) 484 setup_func(arg); 485 if (action_func != NULL) 486 action_func(arg); 487 if (teardown_func != NULL) 488 teardown_func(arg); 489 spinlock_exit(); 490 return; 491 } 492 493 CPU_FOREACH(i) { 494 if (CPU_ISSET(i, &map)) 495 ncpus++; 496 } 497 if (ncpus == 0) 498 panic("ncpus is 0 with non-zero map"); 499 500 mtx_lock_spin(&smp_ipi_mtx); 501 502 /* Pass rendezvous parameters via global variables. */ 503 smp_rv_ncpus = ncpus; 504 smp_rv_setup_func = setup_func; 505 smp_rv_action_func = action_func; 506 smp_rv_teardown_func = teardown_func; 507 smp_rv_func_arg = arg; 508 smp_rv_waiters[1] = 0; 509 smp_rv_waiters[2] = 0; 510 smp_rv_waiters[3] = 0; 511 atomic_store_rel_int(&smp_rv_waiters[0], 0); 512 513 /* 514 * Signal other processors, which will enter the IPI with 515 * interrupts off. 516 */ 517 curcpumap = CPU_ISSET(curcpu, &map); 518 CPU_CLR(curcpu, &map); 519 ipi_selected(map, IPI_RENDEZVOUS); 520 521 /* Check if the current CPU is in the map */ 522 if (curcpumap != 0) 523 smp_rendezvous_action(); 524 525 /* 526 * Ensure that the master CPU waits for all the other 527 * CPUs to finish the rendezvous, so that smp_rv_* 528 * pseudo-structure and the arg are guaranteed to not 529 * be in use. 530 * 531 * Load acquire synchronizes with the release add in 532 * smp_rendezvous_action(), which ensures that our caller sees 533 * all memory actions done by the called functions on other 534 * CPUs. 535 */ 536 while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus) 537 cpu_spinwait(); 538 539 mtx_unlock_spin(&smp_ipi_mtx); 540 } 541 542 void 543 smp_rendezvous(void (* setup_func)(void *), 544 void (* action_func)(void *), 545 void (* teardown_func)(void *), 546 void *arg) 547 { 548 smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg); 549 } 550 551 static struct cpu_group group[MAXCPU]; 552 553 struct cpu_group * 554 smp_topo(void) 555 { 556 char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ]; 557 struct cpu_group *top; 558 559 /* 560 * Check for a fake topology request for debugging purposes. 561 */ 562 switch (smp_topology) { 563 case 1: 564 /* Dual core with no sharing. */ 565 top = smp_topo_1level(CG_SHARE_NONE, 2, 0); 566 break; 567 case 2: 568 /* No topology, all cpus are equal. */ 569 top = smp_topo_none(); 570 break; 571 case 3: 572 /* Dual core with shared L2. */ 573 top = smp_topo_1level(CG_SHARE_L2, 2, 0); 574 break; 575 case 4: 576 /* quad core, shared l3 among each package, private l2. */ 577 top = smp_topo_1level(CG_SHARE_L3, 4, 0); 578 break; 579 case 5: 580 /* quad core, 2 dualcore parts on each package share l2. */ 581 top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0); 582 break; 583 case 6: 584 /* Single-core 2xHTT */ 585 top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT); 586 break; 587 case 7: 588 /* quad core with a shared l3, 8 threads sharing L2. */ 589 top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8, 590 CG_FLAG_SMT); 591 break; 592 default: 593 /* Default, ask the system what it wants. */ 594 top = cpu_topo(); 595 break; 596 } 597 /* 598 * Verify the returned topology. 599 */ 600 if (top->cg_count != mp_ncpus) 601 panic("Built bad topology at %p. CPU count %d != %d", 602 top, top->cg_count, mp_ncpus); 603 if (CPU_CMP(&top->cg_mask, &all_cpus)) 604 panic("Built bad topology at %p. CPU mask (%s) != (%s)", 605 top, cpusetobj_strprint(cpusetbuf, &top->cg_mask), 606 cpusetobj_strprint(cpusetbuf2, &all_cpus)); 607 return (top); 608 } 609 610 struct cpu_group * 611 smp_topo_none(void) 612 { 613 struct cpu_group *top; 614 615 top = &group[0]; 616 top->cg_parent = NULL; 617 top->cg_child = NULL; 618 top->cg_mask = all_cpus; 619 top->cg_count = mp_ncpus; 620 top->cg_children = 0; 621 top->cg_level = CG_SHARE_NONE; 622 top->cg_flags = 0; 623 624 return (top); 625 } 626 627 static int 628 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share, 629 int count, int flags, int start) 630 { 631 char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ]; 632 cpuset_t mask; 633 int i; 634 635 CPU_ZERO(&mask); 636 for (i = 0; i < count; i++, start++) 637 CPU_SET(start, &mask); 638 child->cg_parent = parent; 639 child->cg_child = NULL; 640 child->cg_children = 0; 641 child->cg_level = share; 642 child->cg_count = count; 643 child->cg_flags = flags; 644 child->cg_mask = mask; 645 parent->cg_children++; 646 for (; parent != NULL; parent = parent->cg_parent) { 647 if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask)) 648 panic("Duplicate children in %p. mask (%s) child (%s)", 649 parent, 650 cpusetobj_strprint(cpusetbuf, &parent->cg_mask), 651 cpusetobj_strprint(cpusetbuf2, &child->cg_mask)); 652 CPU_OR(&parent->cg_mask, &child->cg_mask); 653 parent->cg_count += child->cg_count; 654 } 655 656 return (start); 657 } 658 659 struct cpu_group * 660 smp_topo_1level(int share, int count, int flags) 661 { 662 struct cpu_group *child; 663 struct cpu_group *top; 664 int packages; 665 int cpu; 666 int i; 667 668 cpu = 0; 669 top = &group[0]; 670 packages = mp_ncpus / count; 671 top->cg_child = child = &group[1]; 672 top->cg_level = CG_SHARE_NONE; 673 for (i = 0; i < packages; i++, child++) 674 cpu = smp_topo_addleaf(top, child, share, count, flags, cpu); 675 return (top); 676 } 677 678 struct cpu_group * 679 smp_topo_2level(int l2share, int l2count, int l1share, int l1count, 680 int l1flags) 681 { 682 struct cpu_group *top; 683 struct cpu_group *l1g; 684 struct cpu_group *l2g; 685 int cpu; 686 int i; 687 int j; 688 689 cpu = 0; 690 top = &group[0]; 691 l2g = &group[1]; 692 top->cg_child = l2g; 693 top->cg_level = CG_SHARE_NONE; 694 top->cg_children = mp_ncpus / (l2count * l1count); 695 l1g = l2g + top->cg_children; 696 for (i = 0; i < top->cg_children; i++, l2g++) { 697 l2g->cg_parent = top; 698 l2g->cg_child = l1g; 699 l2g->cg_level = l2share; 700 for (j = 0; j < l2count; j++, l1g++) 701 cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count, 702 l1flags, cpu); 703 } 704 return (top); 705 } 706 707 708 struct cpu_group * 709 smp_topo_find(struct cpu_group *top, int cpu) 710 { 711 struct cpu_group *cg; 712 cpuset_t mask; 713 int children; 714 int i; 715 716 CPU_SETOF(cpu, &mask); 717 cg = top; 718 for (;;) { 719 if (!CPU_OVERLAP(&cg->cg_mask, &mask)) 720 return (NULL); 721 if (cg->cg_children == 0) 722 return (cg); 723 children = cg->cg_children; 724 for (i = 0, cg = cg->cg_child; i < children; cg++, i++) 725 if (CPU_OVERLAP(&cg->cg_mask, &mask)) 726 break; 727 } 728 return (NULL); 729 } 730 #else /* !SMP */ 731 732 void 733 smp_rendezvous_cpus(cpuset_t map, 734 void (*setup_func)(void *), 735 void (*action_func)(void *), 736 void (*teardown_func)(void *), 737 void *arg) 738 { 739 /* 740 * In the !SMP case we just need to ensure the same initial conditions 741 * as the SMP case. 742 */ 743 spinlock_enter(); 744 if (setup_func != NULL) 745 setup_func(arg); 746 if (action_func != NULL) 747 action_func(arg); 748 if (teardown_func != NULL) 749 teardown_func(arg); 750 spinlock_exit(); 751 } 752 753 void 754 smp_rendezvous(void (*setup_func)(void *), 755 void (*action_func)(void *), 756 void (*teardown_func)(void *), 757 void *arg) 758 { 759 760 /* Look comments in the smp_rendezvous_cpus() case. */ 761 spinlock_enter(); 762 if (setup_func != NULL) 763 setup_func(arg); 764 if (action_func != NULL) 765 action_func(arg); 766 if (teardown_func != NULL) 767 teardown_func(arg); 768 spinlock_exit(); 769 } 770 771 /* 772 * Provide dummy SMP support for UP kernels. Modules that need to use SMP 773 * APIs will still work using this dummy support. 774 */ 775 static void 776 mp_setvariables_for_up(void *dummy) 777 { 778 mp_ncpus = 1; 779 mp_maxid = PCPU_GET(cpuid); 780 CPU_SETOF(mp_maxid, &all_cpus); 781 KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero")); 782 } 783 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST, 784 mp_setvariables_for_up, NULL); 785 #endif /* SMP */ 786 787 void 788 smp_no_rendevous_barrier(void *dummy) 789 { 790 #ifdef SMP 791 KASSERT((!smp_started),("smp_no_rendevous called and smp is started")); 792 #endif 793 } 794 795 /* 796 * Wait specified idle threads to switch once. This ensures that even 797 * preempted threads have cycled through the switch function once, 798 * exiting their codepaths. This allows us to change global pointers 799 * with no other synchronization. 800 */ 801 int 802 quiesce_cpus(cpuset_t map, const char *wmesg, int prio) 803 { 804 struct pcpu *pcpu; 805 u_int gen[MAXCPU]; 806 int error; 807 int cpu; 808 809 error = 0; 810 for (cpu = 0; cpu <= mp_maxid; cpu++) { 811 if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu)) 812 continue; 813 pcpu = pcpu_find(cpu); 814 gen[cpu] = pcpu->pc_idlethread->td_generation; 815 } 816 for (cpu = 0; cpu <= mp_maxid; cpu++) { 817 if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu)) 818 continue; 819 pcpu = pcpu_find(cpu); 820 thread_lock(curthread); 821 sched_bind(curthread, cpu); 822 thread_unlock(curthread); 823 while (gen[cpu] == pcpu->pc_idlethread->td_generation) { 824 error = tsleep(quiesce_cpus, prio, wmesg, 1); 825 if (error != EWOULDBLOCK) 826 goto out; 827 error = 0; 828 } 829 } 830 out: 831 thread_lock(curthread); 832 sched_unbind(curthread); 833 thread_unlock(curthread); 834 835 return (error); 836 } 837 838 int 839 quiesce_all_cpus(const char *wmesg, int prio) 840 { 841 842 return quiesce_cpus(all_cpus, wmesg, prio); 843 } 844 845 /* Extra care is taken with this sysctl because the data type is volatile */ 846 static int 847 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS) 848 { 849 int error, active; 850 851 active = smp_started; 852 error = SYSCTL_OUT(req, &active, sizeof(active)); 853 return (error); 854 } 855 856