xref: /freebsd/sys/kern/subr_smp.c (revision edf8578117e8844e02c0121147f45e4609b30680)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * This module holds the global variables and machine independent functions
30  * used for the kernel SMP support.
31  */
32 
33 #include <sys/cdefs.h>
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/ktr.h>
38 #include <sys/proc.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/sysctl.h>
47 
48 #include <machine/cpu.h>
49 #include <machine/pcb.h>
50 #include <machine/smp.h>
51 
52 #include "opt_sched.h"
53 
54 #ifdef SMP
55 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
56 
57 volatile cpuset_t stopped_cpus;
58 volatile cpuset_t started_cpus;
59 volatile cpuset_t suspended_cpus;
60 cpuset_t hlt_cpus_mask;
61 cpuset_t logical_cpus_mask;
62 
63 void (*cpustop_restartfunc)(void);
64 #endif
65 
66 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
67 
68 /* This is used in modules that need to work in both SMP and UP. */
69 cpuset_t all_cpus;
70 
71 int mp_ncpus;
72 /* export this for libkvm consumers. */
73 int mp_maxcpus = MAXCPU;
74 
75 volatile int smp_started;
76 u_int mp_maxid;
77 
78 /* Array of CPU contexts saved during a panic. */
79 struct pcb *stoppcbs;
80 
81 static SYSCTL_NODE(_kern, OID_AUTO, smp,
82     CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
83     "Kernel SMP");
84 
85 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
86     "Max CPU ID.");
87 
88 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
89     0, "Max number of CPUs that the system was compiled for.");
90 
91 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
92     NULL, 0, sysctl_kern_smp_active, "I",
93     "Indicates system is running in SMP mode");
94 
95 int smp_disabled = 0;	/* has smp been disabled? */
96 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
97     &smp_disabled, 0, "SMP has been disabled from the loader");
98 
99 int smp_cpus = 1;	/* how many cpu's running */
100 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
101     "Number of CPUs online");
102 
103 int smp_threads_per_core = 1;	/* how many SMT threads are running per core */
104 SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
105     &smp_threads_per_core, 0, "Number of SMT threads online per core");
106 
107 int mp_ncores = -1;	/* how many physical cores running */
108 SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
109     "Number of physical cores online");
110 
111 int smp_topology = 0;	/* Which topology we're using. */
112 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
113     "Topology override setting; 0 is default provided by hardware.");
114 
115 #ifdef SMP
116 /* Enable forwarding of a signal to a process running on a different CPU */
117 static int forward_signal_enabled = 1;
118 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
119 	   &forward_signal_enabled, 0,
120 	   "Forwarding of a signal to a process on a different CPU");
121 
122 /* Variables needed for SMP rendezvous. */
123 static volatile int smp_rv_ncpus;
124 static void (*volatile smp_rv_setup_func)(void *arg);
125 static void (*volatile smp_rv_action_func)(void *arg);
126 static void (*volatile smp_rv_teardown_func)(void *arg);
127 static void *volatile smp_rv_func_arg;
128 static volatile int smp_rv_waiters[4];
129 
130 /*
131  * Shared mutex to restrict busywaits between smp_rendezvous() and
132  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
133  * functions trigger at once and cause multiple CPUs to busywait with
134  * interrupts disabled.
135  */
136 struct mtx smp_ipi_mtx;
137 
138 /*
139  * Let the MD SMP code initialize mp_maxid very early if it can.
140  */
141 static void
142 mp_setmaxid(void *dummy)
143 {
144 
145 	cpu_mp_setmaxid();
146 
147 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
148 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
149 	    ("%s: one CPU but mp_maxid is not zero", __func__));
150 	KASSERT(mp_maxid >= mp_ncpus - 1,
151 	    ("%s: counters out of sync: max %d, count %d", __func__,
152 		mp_maxid, mp_ncpus));
153 
154 	cpusetsizemin = howmany(mp_maxid + 1, NBBY);
155 }
156 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
157 
158 /*
159  * Call the MD SMP initialization code.
160  */
161 static void
162 mp_start(void *dummy)
163 {
164 
165 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
166 
167 	/* Probe for MP hardware. */
168 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
169 		mp_ncores = 1;
170 		mp_ncpus = 1;
171 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
172 		return;
173 	}
174 
175 	cpu_mp_start();
176 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
177 	    mp_ncpus);
178 
179 	/* Provide a default for most architectures that don't have SMT/HTT. */
180 	if (mp_ncores < 0)
181 		mp_ncores = mp_ncpus;
182 
183 	stoppcbs = mallocarray(mp_maxid + 1, sizeof(struct pcb), M_DEVBUF,
184 	    M_WAITOK | M_ZERO);
185 
186 	cpu_mp_announce();
187 }
188 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
189 
190 void
191 forward_signal(struct thread *td)
192 {
193 	int id;
194 
195 	/*
196 	 * signotify() has already set TDA_AST and TDA_SIG on td_ast for
197 	 * this thread, so all we need to do is poke it if it is currently
198 	 * executing so that it executes ast().
199 	 */
200 	THREAD_LOCK_ASSERT(td, MA_OWNED);
201 	KASSERT(TD_IS_RUNNING(td),
202 	    ("forward_signal: thread is not TDS_RUNNING"));
203 
204 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
205 
206 	if (!smp_started || cold || KERNEL_PANICKED())
207 		return;
208 	if (!forward_signal_enabled)
209 		return;
210 
211 	/* No need to IPI ourself. */
212 	if (td == curthread)
213 		return;
214 
215 	id = td->td_oncpu;
216 	if (id == NOCPU)
217 		return;
218 	ipi_cpu(id, IPI_AST);
219 }
220 
221 /*
222  * When called the executing CPU will send an IPI to all other CPUs
223  *  requesting that they halt execution.
224  *
225  * Usually (but not necessarily) called with 'other_cpus' as its arg.
226  *
227  *  - Signals all CPUs in map to stop.
228  *  - Waits for each to stop.
229  *
230  * Returns:
231  *  -1: error
232  *   0: NA
233  *   1: ok
234  *
235  */
236 #if defined(__amd64__) || defined(__i386__)
237 #define	X86	1
238 #else
239 #define	X86	0
240 #endif
241 static int
242 generic_stop_cpus(cpuset_t map, u_int type)
243 {
244 #ifdef KTR
245 	char cpusetbuf[CPUSETBUFSIZ];
246 #endif
247 	static volatile u_int stopping_cpu = NOCPU;
248 	int i;
249 	volatile cpuset_t *cpus;
250 
251 	KASSERT(
252 	    type == IPI_STOP || type == IPI_STOP_HARD
253 #if X86
254 	    || type == IPI_SUSPEND
255 #endif
256 	    , ("%s: invalid stop type", __func__));
257 
258 	if (!smp_started)
259 		return (0);
260 
261 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
262 	    cpusetobj_strprint(cpusetbuf, &map), type);
263 
264 #if X86
265 	/*
266 	 * When suspending, ensure there are are no IPIs in progress.
267 	 * IPIs that have been issued, but not yet delivered (e.g.
268 	 * not pending on a vCPU when running under virtualization)
269 	 * will be lost, violating FreeBSD's assumption of reliable
270 	 * IPI delivery.
271 	 */
272 	if (type == IPI_SUSPEND)
273 		mtx_lock_spin(&smp_ipi_mtx);
274 #endif
275 
276 #if X86
277 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
278 #endif
279 	if (stopping_cpu != PCPU_GET(cpuid))
280 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
281 		    PCPU_GET(cpuid)) == 0)
282 			while (stopping_cpu != NOCPU)
283 				cpu_spinwait(); /* spin */
284 
285 	/* send the stop IPI to all CPUs in map */
286 	ipi_selected(map, type);
287 #if X86
288 	}
289 #endif
290 
291 #if X86
292 	if (type == IPI_SUSPEND)
293 		cpus = &suspended_cpus;
294 	else
295 #endif
296 		cpus = &stopped_cpus;
297 
298 	i = 0;
299 	while (!CPU_SUBSET(cpus, &map)) {
300 		/* spin */
301 		cpu_spinwait();
302 		i++;
303 		if (i == 100000000) {
304 			printf("timeout stopping cpus\n");
305 			break;
306 		}
307 	}
308 
309 #if X86
310 	if (type == IPI_SUSPEND)
311 		mtx_unlock_spin(&smp_ipi_mtx);
312 #endif
313 
314 	stopping_cpu = NOCPU;
315 	return (1);
316 }
317 
318 int
319 stop_cpus(cpuset_t map)
320 {
321 
322 	return (generic_stop_cpus(map, IPI_STOP));
323 }
324 
325 int
326 stop_cpus_hard(cpuset_t map)
327 {
328 
329 	return (generic_stop_cpus(map, IPI_STOP_HARD));
330 }
331 
332 #if X86
333 int
334 suspend_cpus(cpuset_t map)
335 {
336 
337 	return (generic_stop_cpus(map, IPI_SUSPEND));
338 }
339 #endif
340 
341 /*
342  * Called by a CPU to restart stopped CPUs.
343  *
344  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
345  *
346  *  - Signals all CPUs in map to restart.
347  *  - Waits for each to restart.
348  *
349  * Returns:
350  *  -1: error
351  *   0: NA
352  *   1: ok
353  */
354 static int
355 generic_restart_cpus(cpuset_t map, u_int type)
356 {
357 #ifdef KTR
358 	char cpusetbuf[CPUSETBUFSIZ];
359 #endif
360 	volatile cpuset_t *cpus;
361 
362 #if X86
363 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
364 	    || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
365 
366 	if (!smp_started)
367 		return (0);
368 
369 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
370 
371 	if (type == IPI_SUSPEND)
372 		cpus = &resuming_cpus;
373 	else
374 		cpus = &stopped_cpus;
375 
376 	/* signal other cpus to restart */
377 	if (type == IPI_SUSPEND)
378 		CPU_COPY_STORE_REL(&map, &toresume_cpus);
379 	else
380 		CPU_COPY_STORE_REL(&map, &started_cpus);
381 
382 	/*
383 	 * Wake up any CPUs stopped with MWAIT.  From MI code we can't tell if
384 	 * MONITOR/MWAIT is enabled, but the potentially redundant writes are
385 	 * relatively inexpensive.
386 	 */
387 	if (type == IPI_STOP) {
388 		struct monitorbuf *mb;
389 		u_int id;
390 
391 		CPU_FOREACH(id) {
392 			if (!CPU_ISSET(id, &map))
393 				continue;
394 
395 			mb = &pcpu_find(id)->pc_monitorbuf;
396 			atomic_store_int(&mb->stop_state,
397 			    MONITOR_STOPSTATE_RUNNING);
398 		}
399 	}
400 
401 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
402 		/* wait for each to clear its bit */
403 		while (CPU_OVERLAP(cpus, &map))
404 			cpu_spinwait();
405 	}
406 #else /* !X86 */
407 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
408 	    ("%s: invalid stop type", __func__));
409 
410 	if (!smp_started)
411 		return (0);
412 
413 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
414 
415 	cpus = &stopped_cpus;
416 
417 	/* signal other cpus to restart */
418 	CPU_COPY_STORE_REL(&map, &started_cpus);
419 
420 	/* wait for each to clear its bit */
421 	while (CPU_OVERLAP(cpus, &map))
422 		cpu_spinwait();
423 #endif
424 	return (1);
425 }
426 
427 int
428 restart_cpus(cpuset_t map)
429 {
430 
431 	return (generic_restart_cpus(map, IPI_STOP));
432 }
433 
434 #if X86
435 int
436 resume_cpus(cpuset_t map)
437 {
438 
439 	return (generic_restart_cpus(map, IPI_SUSPEND));
440 }
441 #endif
442 #undef X86
443 
444 /*
445  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
446  * (if specified), rendezvous, execute the action function (if specified),
447  * rendezvous again, execute the teardown function (if specified), and then
448  * resume.
449  *
450  * Note that the supplied external functions _must_ be reentrant and aware
451  * that they are running in parallel and in an unknown lock context.
452  */
453 void
454 smp_rendezvous_action(void)
455 {
456 	struct thread *td;
457 	void *local_func_arg;
458 	void (*local_setup_func)(void*);
459 	void (*local_action_func)(void*);
460 	void (*local_teardown_func)(void*);
461 #ifdef INVARIANTS
462 	int owepreempt;
463 #endif
464 
465 	/* Ensure we have up-to-date values. */
466 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
467 	while (smp_rv_waiters[0] < smp_rv_ncpus)
468 		cpu_spinwait();
469 
470 	/* Fetch rendezvous parameters after acquire barrier. */
471 	local_func_arg = smp_rv_func_arg;
472 	local_setup_func = smp_rv_setup_func;
473 	local_action_func = smp_rv_action_func;
474 	local_teardown_func = smp_rv_teardown_func;
475 
476 	/*
477 	 * Use a nested critical section to prevent any preemptions
478 	 * from occurring during a rendezvous action routine.
479 	 * Specifically, if a rendezvous handler is invoked via an IPI
480 	 * and the interrupted thread was in the critical_exit()
481 	 * function after setting td_critnest to 0 but before
482 	 * performing a deferred preemption, this routine can be
483 	 * invoked with td_critnest set to 0 and td_owepreempt true.
484 	 * In that case, a critical_exit() during the rendezvous
485 	 * action would trigger a preemption which is not permitted in
486 	 * a rendezvous action.  To fix this, wrap all of the
487 	 * rendezvous action handlers in a critical section.  We
488 	 * cannot use a regular critical section however as having
489 	 * critical_exit() preempt from this routine would also be
490 	 * problematic (the preemption must not occur before the IPI
491 	 * has been acknowledged via an EOI).  Instead, we
492 	 * intentionally ignore td_owepreempt when leaving the
493 	 * critical section.  This should be harmless because we do
494 	 * not permit rendezvous action routines to schedule threads,
495 	 * and thus td_owepreempt should never transition from 0 to 1
496 	 * during this routine.
497 	 */
498 	td = curthread;
499 	td->td_critnest++;
500 #ifdef INVARIANTS
501 	owepreempt = td->td_owepreempt;
502 #endif
503 
504 	/*
505 	 * If requested, run a setup function before the main action
506 	 * function.  Ensure all CPUs have completed the setup
507 	 * function before moving on to the action function.
508 	 */
509 	if (local_setup_func != smp_no_rendezvous_barrier) {
510 		if (local_setup_func != NULL)
511 			local_setup_func(local_func_arg);
512 		atomic_add_int(&smp_rv_waiters[1], 1);
513 		while (smp_rv_waiters[1] < smp_rv_ncpus)
514                 	cpu_spinwait();
515 	}
516 
517 	if (local_action_func != NULL)
518 		local_action_func(local_func_arg);
519 
520 	if (local_teardown_func != smp_no_rendezvous_barrier) {
521 		/*
522 		 * Signal that the main action has been completed.  If a
523 		 * full exit rendezvous is requested, then all CPUs will
524 		 * wait here until all CPUs have finished the main action.
525 		 */
526 		atomic_add_int(&smp_rv_waiters[2], 1);
527 		while (smp_rv_waiters[2] < smp_rv_ncpus)
528 			cpu_spinwait();
529 
530 		if (local_teardown_func != NULL)
531 			local_teardown_func(local_func_arg);
532 	}
533 
534 	/*
535 	 * Signal that the rendezvous is fully completed by this CPU.
536 	 * This means that no member of smp_rv_* pseudo-structure will be
537 	 * accessed by this target CPU after this point; in particular,
538 	 * memory pointed by smp_rv_func_arg.
539 	 *
540 	 * The release semantic ensures that all accesses performed by
541 	 * the current CPU are visible when smp_rendezvous_cpus()
542 	 * returns, by synchronizing with the
543 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
544 	 */
545 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
546 
547 	td->td_critnest--;
548 	KASSERT(owepreempt == td->td_owepreempt,
549 	    ("rendezvous action changed td_owepreempt"));
550 }
551 
552 void
553 smp_rendezvous_cpus(cpuset_t map,
554 	void (* setup_func)(void *),
555 	void (* action_func)(void *),
556 	void (* teardown_func)(void *),
557 	void *arg)
558 {
559 	int curcpumap, i, ncpus = 0;
560 
561 	/* See comments in the !SMP case. */
562 	if (!smp_started) {
563 		spinlock_enter();
564 		if (setup_func != NULL)
565 			setup_func(arg);
566 		if (action_func != NULL)
567 			action_func(arg);
568 		if (teardown_func != NULL)
569 			teardown_func(arg);
570 		spinlock_exit();
571 		return;
572 	}
573 
574 	/*
575 	 * Make sure we come here with interrupts enabled.  Otherwise we
576 	 * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
577 	 */
578 	MPASS(curthread->td_md.md_spinlock_count == 0);
579 
580 	CPU_FOREACH(i) {
581 		if (CPU_ISSET(i, &map))
582 			ncpus++;
583 	}
584 	if (ncpus == 0)
585 		panic("ncpus is 0 with non-zero map");
586 
587 	mtx_lock_spin(&smp_ipi_mtx);
588 
589 	/* Pass rendezvous parameters via global variables. */
590 	smp_rv_ncpus = ncpus;
591 	smp_rv_setup_func = setup_func;
592 	smp_rv_action_func = action_func;
593 	smp_rv_teardown_func = teardown_func;
594 	smp_rv_func_arg = arg;
595 	smp_rv_waiters[1] = 0;
596 	smp_rv_waiters[2] = 0;
597 	smp_rv_waiters[3] = 0;
598 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
599 
600 	/*
601 	 * Signal other processors, which will enter the IPI with
602 	 * interrupts off.
603 	 */
604 	curcpumap = CPU_ISSET(curcpu, &map);
605 	CPU_CLR(curcpu, &map);
606 	ipi_selected(map, IPI_RENDEZVOUS);
607 
608 	/* Check if the current CPU is in the map */
609 	if (curcpumap != 0)
610 		smp_rendezvous_action();
611 
612 	/*
613 	 * Ensure that the master CPU waits for all the other
614 	 * CPUs to finish the rendezvous, so that smp_rv_*
615 	 * pseudo-structure and the arg are guaranteed to not
616 	 * be in use.
617 	 *
618 	 * Load acquire synchronizes with the release add in
619 	 * smp_rendezvous_action(), which ensures that our caller sees
620 	 * all memory actions done by the called functions on other
621 	 * CPUs.
622 	 */
623 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
624 		cpu_spinwait();
625 
626 	mtx_unlock_spin(&smp_ipi_mtx);
627 }
628 
629 void
630 smp_rendezvous(void (* setup_func)(void *),
631 	       void (* action_func)(void *),
632 	       void (* teardown_func)(void *),
633 	       void *arg)
634 {
635 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
636 }
637 
638 static void
639 smp_topo_fill(struct cpu_group *cg)
640 {
641 	int c;
642 
643 	for (c = 0; c < cg->cg_children; c++)
644 		smp_topo_fill(&cg->cg_child[c]);
645 	cg->cg_first = CPU_FFS(&cg->cg_mask) - 1;
646 	cg->cg_last = CPU_FLS(&cg->cg_mask) - 1;
647 }
648 
649 struct cpu_group *
650 smp_topo(void)
651 {
652 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
653 	static struct cpu_group *top = NULL;
654 
655 	/*
656 	 * The first call to smp_topo() is guaranteed to occur
657 	 * during the kernel boot while we are still single-threaded.
658 	 */
659 	if (top != NULL)
660 		return (top);
661 
662 	/*
663 	 * Check for a fake topology request for debugging purposes.
664 	 */
665 	switch (smp_topology) {
666 	case 1:
667 		/* Dual core with no sharing.  */
668 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
669 		break;
670 	case 2:
671 		/* No topology, all cpus are equal. */
672 		top = smp_topo_none();
673 		break;
674 	case 3:
675 		/* Dual core with shared L2.  */
676 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
677 		break;
678 	case 4:
679 		/* quad core, shared l3 among each package, private l2.  */
680 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
681 		break;
682 	case 5:
683 		/* quad core,  2 dualcore parts on each package share l2.  */
684 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
685 		break;
686 	case 6:
687 		/* Single-core 2xHTT */
688 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
689 		break;
690 	case 7:
691 		/* quad core with a shared l3, 8 threads sharing L2.  */
692 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
693 		    CG_FLAG_SMT);
694 		break;
695 	default:
696 		/* Default, ask the system what it wants. */
697 		top = cpu_topo();
698 		break;
699 	}
700 	/*
701 	 * Verify the returned topology.
702 	 */
703 	if (top->cg_count != mp_ncpus)
704 		panic("Built bad topology at %p.  CPU count %d != %d",
705 		    top, top->cg_count, mp_ncpus);
706 	if (CPU_CMP(&top->cg_mask, &all_cpus))
707 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
708 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
709 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
710 
711 	/*
712 	 * Collapse nonsense levels that may be created out of convenience by
713 	 * the MD layers.  They cause extra work in the search functions.
714 	 */
715 	while (top->cg_children == 1) {
716 		top = &top->cg_child[0];
717 		top->cg_parent = NULL;
718 	}
719 	smp_topo_fill(top);
720 	return (top);
721 }
722 
723 struct cpu_group *
724 smp_topo_alloc(u_int count)
725 {
726 	static struct cpu_group *group = NULL;
727 	static u_int index;
728 	u_int curr;
729 
730 	if (group == NULL) {
731 		group = mallocarray((mp_maxid + 1) * MAX_CACHE_LEVELS + 1,
732 		    sizeof(*group), M_DEVBUF, M_WAITOK | M_ZERO);
733 	}
734 	curr = index;
735 	index += count;
736 	return (&group[curr]);
737 }
738 
739 struct cpu_group *
740 smp_topo_none(void)
741 {
742 	struct cpu_group *top;
743 
744 	top = smp_topo_alloc(1);
745 	top->cg_parent = NULL;
746 	top->cg_child = NULL;
747 	top->cg_mask = all_cpus;
748 	top->cg_count = mp_ncpus;
749 	top->cg_children = 0;
750 	top->cg_level = CG_SHARE_NONE;
751 	top->cg_flags = 0;
752 
753 	return (top);
754 }
755 
756 static int
757 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
758     int count, int flags, int start)
759 {
760 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
761 	cpuset_t mask;
762 	int i;
763 
764 	CPU_ZERO(&mask);
765 	for (i = 0; i < count; i++, start++)
766 		CPU_SET(start, &mask);
767 	child->cg_parent = parent;
768 	child->cg_child = NULL;
769 	child->cg_children = 0;
770 	child->cg_level = share;
771 	child->cg_count = count;
772 	child->cg_flags = flags;
773 	child->cg_mask = mask;
774 	parent->cg_children++;
775 	for (; parent != NULL; parent = parent->cg_parent) {
776 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
777 			panic("Duplicate children in %p.  mask (%s) child (%s)",
778 			    parent,
779 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
780 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
781 		CPU_OR(&parent->cg_mask, &parent->cg_mask, &child->cg_mask);
782 		parent->cg_count += child->cg_count;
783 	}
784 
785 	return (start);
786 }
787 
788 struct cpu_group *
789 smp_topo_1level(int share, int count, int flags)
790 {
791 	struct cpu_group *child;
792 	struct cpu_group *top;
793 	int packages;
794 	int cpu;
795 	int i;
796 
797 	cpu = 0;
798 	packages = mp_ncpus / count;
799 	top = smp_topo_alloc(1 + packages);
800 	top->cg_child = child = top + 1;
801 	top->cg_level = CG_SHARE_NONE;
802 	for (i = 0; i < packages; i++, child++)
803 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
804 	return (top);
805 }
806 
807 struct cpu_group *
808 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
809     int l1flags)
810 {
811 	struct cpu_group *top;
812 	struct cpu_group *l1g;
813 	struct cpu_group *l2g;
814 	int cpu;
815 	int i;
816 	int j;
817 
818 	cpu = 0;
819 	top = smp_topo_alloc(1 + mp_ncpus / (l2count * l1count) +
820 	    mp_ncpus / l1count);
821 	l2g = top + 1;
822 	top->cg_child = l2g;
823 	top->cg_level = CG_SHARE_NONE;
824 	top->cg_children = mp_ncpus / (l2count * l1count);
825 	l1g = l2g + top->cg_children;
826 	for (i = 0; i < top->cg_children; i++, l2g++) {
827 		l2g->cg_parent = top;
828 		l2g->cg_child = l1g;
829 		l2g->cg_level = l2share;
830 		for (j = 0; j < l2count; j++, l1g++)
831 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
832 			    l1flags, cpu);
833 	}
834 	return (top);
835 }
836 
837 struct cpu_group *
838 smp_topo_find(struct cpu_group *top, int cpu)
839 {
840 	struct cpu_group *cg;
841 	cpuset_t mask;
842 	int children;
843 	int i;
844 
845 	CPU_SETOF(cpu, &mask);
846 	cg = top;
847 	for (;;) {
848 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
849 			return (NULL);
850 		if (cg->cg_children == 0)
851 			return (cg);
852 		children = cg->cg_children;
853 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
854 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
855 				break;
856 	}
857 	return (NULL);
858 }
859 #else /* !SMP */
860 
861 void
862 smp_rendezvous_cpus(cpuset_t map,
863 	void (*setup_func)(void *),
864 	void (*action_func)(void *),
865 	void (*teardown_func)(void *),
866 	void *arg)
867 {
868 	/*
869 	 * In the !SMP case we just need to ensure the same initial conditions
870 	 * as the SMP case.
871 	 */
872 	spinlock_enter();
873 	if (setup_func != NULL)
874 		setup_func(arg);
875 	if (action_func != NULL)
876 		action_func(arg);
877 	if (teardown_func != NULL)
878 		teardown_func(arg);
879 	spinlock_exit();
880 }
881 
882 void
883 smp_rendezvous(void (*setup_func)(void *),
884 	       void (*action_func)(void *),
885 	       void (*teardown_func)(void *),
886 	       void *arg)
887 {
888 
889 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
890 	    arg);
891 }
892 
893 /*
894  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
895  * APIs will still work using this dummy support.
896  */
897 static void
898 mp_setvariables_for_up(void *dummy)
899 {
900 	mp_ncpus = 1;
901 	mp_ncores = 1;
902 	mp_maxid = PCPU_GET(cpuid);
903 	CPU_SETOF(mp_maxid, &all_cpus);
904 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
905 }
906 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
907     mp_setvariables_for_up, NULL);
908 #endif /* SMP */
909 
910 void
911 smp_no_rendezvous_barrier(void *dummy)
912 {
913 #ifdef SMP
914 	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
915 #endif
916 }
917 
918 void
919 smp_rendezvous_cpus_retry(cpuset_t map,
920 	void (* setup_func)(void *),
921 	void (* action_func)(void *),
922 	void (* teardown_func)(void *),
923 	void (* wait_func)(void *, int),
924 	struct smp_rendezvous_cpus_retry_arg *arg)
925 {
926 	int cpu;
927 
928 	CPU_COPY(&map, &arg->cpus);
929 
930 	/*
931 	 * Only one CPU to execute on.
932 	 */
933 	if (!smp_started) {
934 		spinlock_enter();
935 		if (setup_func != NULL)
936 			setup_func(arg);
937 		if (action_func != NULL)
938 			action_func(arg);
939 		if (teardown_func != NULL)
940 			teardown_func(arg);
941 		spinlock_exit();
942 		return;
943 	}
944 
945 	/*
946 	 * Execute an action on all specified CPUs while retrying until they
947 	 * all acknowledge completion.
948 	 */
949 	for (;;) {
950 		smp_rendezvous_cpus(
951 		    arg->cpus,
952 		    setup_func,
953 		    action_func,
954 		    teardown_func,
955 		    arg);
956 
957 		if (CPU_EMPTY(&arg->cpus))
958 			break;
959 
960 		CPU_FOREACH(cpu) {
961 			if (!CPU_ISSET(cpu, &arg->cpus))
962 				continue;
963 			wait_func(arg, cpu);
964 		}
965 	}
966 }
967 
968 void
969 smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
970 {
971 
972 	CPU_CLR_ATOMIC(curcpu, &arg->cpus);
973 }
974 
975 /*
976  * If (prio & PDROP) == 0:
977  * Wait for specified idle threads to switch once.  This ensures that even
978  * preempted threads have cycled through the switch function once,
979  * exiting their codepaths.  This allows us to change global pointers
980  * with no other synchronization.
981  * If (prio & PDROP) != 0:
982  * Force the specified CPUs to switch context at least once.
983  */
984 int
985 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
986 {
987 	struct pcpu *pcpu;
988 	u_int *gen;
989 	int error;
990 	int cpu;
991 
992 	error = 0;
993 	if ((prio & PDROP) == 0) {
994 		gen = mallocarray(sizeof(u_int), mp_maxid + 1, M_TEMP,
995 		    M_WAITOK);
996 		for (cpu = 0; cpu <= mp_maxid; cpu++) {
997 			if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
998 				continue;
999 			pcpu = pcpu_find(cpu);
1000 			gen[cpu] = pcpu->pc_idlethread->td_generation;
1001 		}
1002 	}
1003 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1004 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
1005 			continue;
1006 		pcpu = pcpu_find(cpu);
1007 		thread_lock(curthread);
1008 		sched_bind(curthread, cpu);
1009 		thread_unlock(curthread);
1010 		if ((prio & PDROP) != 0)
1011 			continue;
1012 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
1013 			error = tsleep(quiesce_cpus, prio & ~PDROP, wmesg, 1);
1014 			if (error != EWOULDBLOCK)
1015 				goto out;
1016 			error = 0;
1017 		}
1018 	}
1019 out:
1020 	thread_lock(curthread);
1021 	sched_unbind(curthread);
1022 	thread_unlock(curthread);
1023 	if ((prio & PDROP) == 0)
1024 		free(gen, M_TEMP);
1025 
1026 	return (error);
1027 }
1028 
1029 int
1030 quiesce_all_cpus(const char *wmesg, int prio)
1031 {
1032 
1033 	return quiesce_cpus(all_cpus, wmesg, prio);
1034 }
1035 
1036 /*
1037  * Observe all CPUs not executing in critical section.
1038  * We are not in one so the check for us is safe. If the found
1039  * thread changes to something else we know the section was
1040  * exited as well.
1041  */
1042 void
1043 quiesce_all_critical(void)
1044 {
1045 	struct thread *td, *newtd;
1046 	struct pcpu *pcpu;
1047 	int cpu;
1048 
1049 	MPASS(curthread->td_critnest == 0);
1050 
1051 	CPU_FOREACH(cpu) {
1052 		pcpu = cpuid_to_pcpu[cpu];
1053 		td = pcpu->pc_curthread;
1054 		for (;;) {
1055 			if (td->td_critnest == 0)
1056 				break;
1057 			cpu_spinwait();
1058 			newtd = (struct thread *)
1059 			    atomic_load_acq_ptr((void *)pcpu->pc_curthread);
1060 			if (td != newtd)
1061 				break;
1062 		}
1063 	}
1064 }
1065 
1066 static void
1067 cpus_fence_seq_cst_issue(void *arg __unused)
1068 {
1069 
1070 	atomic_thread_fence_seq_cst();
1071 }
1072 
1073 /*
1074  * Send an IPI forcing a sequentially consistent fence.
1075  *
1076  * Allows replacement of an explicitly fence with a compiler barrier.
1077  * Trades speed up during normal execution for a significant slowdown when
1078  * the barrier is needed.
1079  */
1080 void
1081 cpus_fence_seq_cst(void)
1082 {
1083 
1084 #ifdef SMP
1085 	smp_rendezvous(
1086 	    smp_no_rendezvous_barrier,
1087 	    cpus_fence_seq_cst_issue,
1088 	    smp_no_rendezvous_barrier,
1089 	    NULL
1090 	);
1091 #else
1092 	cpus_fence_seq_cst_issue(NULL);
1093 #endif
1094 }
1095 
1096 /* Extra care is taken with this sysctl because the data type is volatile */
1097 static int
1098 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
1099 {
1100 	int error, active;
1101 
1102 	active = smp_started;
1103 	error = SYSCTL_OUT(req, &active, sizeof(active));
1104 	return (error);
1105 }
1106 
1107 #ifdef SMP
1108 void
1109 topo_init_node(struct topo_node *node)
1110 {
1111 
1112 	bzero(node, sizeof(*node));
1113 	TAILQ_INIT(&node->children);
1114 }
1115 
1116 void
1117 topo_init_root(struct topo_node *root)
1118 {
1119 
1120 	topo_init_node(root);
1121 	root->type = TOPO_TYPE_SYSTEM;
1122 }
1123 
1124 /*
1125  * Add a child node with the given ID under the given parent.
1126  * Do nothing if there is already a child with that ID.
1127  */
1128 struct topo_node *
1129 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
1130     topo_node_type type, uintptr_t subtype)
1131 {
1132 	struct topo_node *node;
1133 
1134 	TAILQ_FOREACH_REVERSE(node, &parent->children,
1135 	    topo_children, siblings) {
1136 		if (node->hwid == hwid
1137 		    && node->type == type && node->subtype == subtype) {
1138 			return (node);
1139 		}
1140 	}
1141 
1142 	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
1143 	topo_init_node(node);
1144 	node->parent = parent;
1145 	node->hwid = hwid;
1146 	node->type = type;
1147 	node->subtype = subtype;
1148 	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
1149 	parent->nchildren++;
1150 
1151 	return (node);
1152 }
1153 
1154 /*
1155  * Find a child node with the given ID under the given parent.
1156  */
1157 struct topo_node *
1158 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
1159     topo_node_type type, uintptr_t subtype)
1160 {
1161 
1162 	struct topo_node *node;
1163 
1164 	TAILQ_FOREACH(node, &parent->children, siblings) {
1165 		if (node->hwid == hwid
1166 		    && node->type == type && node->subtype == subtype) {
1167 			return (node);
1168 		}
1169 	}
1170 
1171 	return (NULL);
1172 }
1173 
1174 /*
1175  * Given a node change the order of its parent's child nodes such
1176  * that the node becomes the firt child while preserving the cyclic
1177  * order of the children.  In other words, the given node is promoted
1178  * by rotation.
1179  */
1180 void
1181 topo_promote_child(struct topo_node *child)
1182 {
1183 	struct topo_node *next;
1184 	struct topo_node *node;
1185 	struct topo_node *parent;
1186 
1187 	parent = child->parent;
1188 	next = TAILQ_NEXT(child, siblings);
1189 	TAILQ_REMOVE(&parent->children, child, siblings);
1190 	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1191 
1192 	while (next != NULL) {
1193 		node = next;
1194 		next = TAILQ_NEXT(node, siblings);
1195 		TAILQ_REMOVE(&parent->children, node, siblings);
1196 		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1197 		child = node;
1198 	}
1199 }
1200 
1201 /*
1202  * Iterate to the next node in the depth-first search (traversal) of
1203  * the topology tree.
1204  */
1205 struct topo_node *
1206 topo_next_node(struct topo_node *top, struct topo_node *node)
1207 {
1208 	struct topo_node *next;
1209 
1210 	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1211 		return (next);
1212 
1213 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1214 		return (next);
1215 
1216 	while (node != top && (node = node->parent) != top)
1217 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1218 			return (next);
1219 
1220 	return (NULL);
1221 }
1222 
1223 /*
1224  * Iterate to the next node in the depth-first search of the topology tree,
1225  * but without descending below the current node.
1226  */
1227 struct topo_node *
1228 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1229 {
1230 	struct topo_node *next;
1231 
1232 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1233 		return (next);
1234 
1235 	while (node != top && (node = node->parent) != top)
1236 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1237 			return (next);
1238 
1239 	return (NULL);
1240 }
1241 
1242 /*
1243  * Assign the given ID to the given topology node that represents a logical
1244  * processor.
1245  */
1246 void
1247 topo_set_pu_id(struct topo_node *node, cpuid_t id)
1248 {
1249 
1250 	KASSERT(node->type == TOPO_TYPE_PU,
1251 	    ("topo_set_pu_id: wrong node type: %u", node->type));
1252 	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1253 	    ("topo_set_pu_id: cpuset already not empty"));
1254 	node->id = id;
1255 	CPU_SET(id, &node->cpuset);
1256 	node->cpu_count = 1;
1257 	node->subtype = 1;
1258 
1259 	while ((node = node->parent) != NULL) {
1260 		KASSERT(!CPU_ISSET(id, &node->cpuset),
1261 		    ("logical ID %u is already set in node %p", id, node));
1262 		CPU_SET(id, &node->cpuset);
1263 		node->cpu_count++;
1264 	}
1265 }
1266 
1267 static struct topology_spec {
1268 	topo_node_type	type;
1269 	bool		match_subtype;
1270 	uintptr_t	subtype;
1271 } topology_level_table[TOPO_LEVEL_COUNT] = {
1272 	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1273 	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1274 	[TOPO_LEVEL_CACHEGROUP] = {
1275 		.type = TOPO_TYPE_CACHE,
1276 		.match_subtype = true,
1277 		.subtype = CG_SHARE_L3,
1278 	},
1279 	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1280 	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1281 };
1282 
1283 static bool
1284 topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1285     struct topo_analysis *results)
1286 {
1287 	struct topology_spec *spec;
1288 	struct topo_node *node;
1289 	int count;
1290 
1291 	if (level >= TOPO_LEVEL_COUNT)
1292 		return (true);
1293 
1294 	spec = &topology_level_table[level];
1295 	count = 0;
1296 	node = topo_next_node(root, root);
1297 
1298 	while (node != NULL) {
1299 		if (node->type != spec->type ||
1300 		    (spec->match_subtype && node->subtype != spec->subtype)) {
1301 			node = topo_next_node(root, node);
1302 			continue;
1303 		}
1304 		if (!all && CPU_EMPTY(&node->cpuset)) {
1305 			node = topo_next_nonchild_node(root, node);
1306 			continue;
1307 		}
1308 
1309 		count++;
1310 
1311 		if (!topo_analyze_table(node, all, level + 1, results))
1312 			return (false);
1313 
1314 		node = topo_next_nonchild_node(root, node);
1315 	}
1316 
1317 	/* No explicit subgroups is essentially one subgroup. */
1318 	if (count == 0) {
1319 		count = 1;
1320 
1321 		if (!topo_analyze_table(root, all, level + 1, results))
1322 			return (false);
1323 	}
1324 
1325 	if (results->entities[level] == -1)
1326 		results->entities[level] = count;
1327 	else if (results->entities[level] != count)
1328 		return (false);
1329 
1330 	return (true);
1331 }
1332 
1333 /*
1334  * Check if the topology is uniform, that is, each package has the same number
1335  * of cores in it and each core has the same number of threads (logical
1336  * processors) in it.  If so, calculate the number of packages, the number of
1337  * groups per package, the number of cachegroups per group, and the number of
1338  * logical processors per cachegroup.  'all' parameter tells whether to include
1339  * administratively disabled logical processors into the analysis.
1340  */
1341 int
1342 topo_analyze(struct topo_node *topo_root, int all,
1343     struct topo_analysis *results)
1344 {
1345 
1346 	results->entities[TOPO_LEVEL_PKG] = -1;
1347 	results->entities[TOPO_LEVEL_CORE] = -1;
1348 	results->entities[TOPO_LEVEL_THREAD] = -1;
1349 	results->entities[TOPO_LEVEL_GROUP] = -1;
1350 	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1351 
1352 	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1353 		return (0);
1354 
1355 	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1356 		("bug in topology or analysis"));
1357 
1358 	return (1);
1359 }
1360 
1361 #endif /* SMP */
1362