xref: /freebsd/sys/kern/subr_smp.c (revision dcc3a33188bceb5b6e819efdb9c5f72d059084b6)
1 /*-
2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * This module holds the global variables and machine independent functions
32  * used for the kernel SMP support.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/proc.h>
43 #include <sys/bus.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/pcpu.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 
50 #include <machine/cpu.h>
51 #include <machine/smp.h>
52 
53 #include "opt_sched.h"
54 
55 #ifdef SMP
56 volatile cpumask_t stopped_cpus;
57 volatile cpumask_t started_cpus;
58 cpumask_t idle_cpus_mask;
59 cpumask_t hlt_cpus_mask;
60 cpumask_t logical_cpus_mask;
61 
62 void (*cpustop_restartfunc)(void);
63 #endif
64 /* This is used in modules that need to work in both SMP and UP. */
65 cpumask_t all_cpus;
66 
67 int mp_ncpus;
68 /* export this for libkvm consumers. */
69 int mp_maxcpus = MAXCPU;
70 
71 volatile int smp_started;
72 u_int mp_maxid;
73 
74 SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP");
75 
76 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0,
77     "Max CPU ID.");
78 
79 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0,
80     "Max number of CPUs that the system was compiled for.");
81 
82 int smp_active = 0;	/* are the APs allowed to run? */
83 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
84     "Number of Auxillary Processors (APs) that were successfully started");
85 
86 int smp_disabled = 0;	/* has smp been disabled? */
87 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0,
88     "SMP has been disabled from the loader");
89 TUNABLE_INT("kern.smp.disabled", &smp_disabled);
90 
91 int smp_cpus = 1;	/* how many cpu's running */
92 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0,
93     "Number of CPUs online");
94 
95 int smp_topology = 0;	/* Which topology we're using. */
96 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
97     "Topology override setting; 0 is default provided by hardware.");
98 TUNABLE_INT("kern.smp.topology", &smp_topology);
99 
100 #ifdef SMP
101 /* Enable forwarding of a signal to a process running on a different CPU */
102 static int forward_signal_enabled = 1;
103 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
104 	   &forward_signal_enabled, 0,
105 	   "Forwarding of a signal to a process on a different CPU");
106 
107 /* Enable forwarding of roundrobin to all other cpus */
108 static int forward_roundrobin_enabled = 1;
109 SYSCTL_INT(_kern_smp, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
110 	   &forward_roundrobin_enabled, 0,
111 	   "Forwarding of roundrobin to all other CPUs");
112 
113 /* Variables needed for SMP rendezvous. */
114 static volatile int smp_rv_ncpus;
115 static void (*volatile smp_rv_setup_func)(void *arg);
116 static void (*volatile smp_rv_action_func)(void *arg);
117 static void (*volatile smp_rv_teardown_func)(void *arg);
118 static void *volatile smp_rv_func_arg;
119 static volatile int smp_rv_waiters[3];
120 
121 /*
122  * Shared mutex to restrict busywaits between smp_rendezvous() and
123  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
124  * functions trigger at once and cause multiple CPUs to busywait with
125  * interrupts disabled.
126  */
127 struct mtx smp_ipi_mtx;
128 
129 /*
130  * Let the MD SMP code initialize mp_maxid very early if it can.
131  */
132 static void
133 mp_setmaxid(void *dummy)
134 {
135 	cpu_mp_setmaxid();
136 }
137 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
138 
139 /*
140  * Call the MD SMP initialization code.
141  */
142 static void
143 mp_start(void *dummy)
144 {
145 
146 	/* Probe for MP hardware. */
147 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
148 		mp_ncpus = 1;
149 		all_cpus = PCPU_GET(cpumask);
150 		return;
151 	}
152 
153 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
154 	cpu_mp_start();
155 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
156 	    mp_ncpus);
157 	cpu_mp_announce();
158 }
159 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
160 
161 void
162 forward_signal(struct thread *td)
163 {
164 	int id;
165 
166 	/*
167 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
168 	 * this thread, so all we need to do is poke it if it is currently
169 	 * executing so that it executes ast().
170 	 */
171 	THREAD_LOCK_ASSERT(td, MA_OWNED);
172 	KASSERT(TD_IS_RUNNING(td),
173 	    ("forward_signal: thread is not TDS_RUNNING"));
174 
175 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
176 
177 	if (!smp_started || cold || panicstr)
178 		return;
179 	if (!forward_signal_enabled)
180 		return;
181 
182 	/* No need to IPI ourself. */
183 	if (td == curthread)
184 		return;
185 
186 	id = td->td_oncpu;
187 	if (id == NOCPU)
188 		return;
189 	ipi_selected(1 << id, IPI_AST);
190 }
191 
192 void
193 forward_roundrobin(void)
194 {
195 	struct pcpu *pc;
196 	struct thread *td;
197 	cpumask_t id, map, me;
198 
199 	CTR0(KTR_SMP, "forward_roundrobin()");
200 
201 	if (!smp_started || cold || panicstr)
202 		return;
203 	if (!forward_roundrobin_enabled)
204 		return;
205 	map = 0;
206 	me = PCPU_GET(cpumask);
207 	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
208 		td = pc->pc_curthread;
209 		id = pc->pc_cpumask;
210 		if (id != me && (id & stopped_cpus) == 0 &&
211 		    !TD_IS_IDLETHREAD(td)) {
212 			td->td_flags |= TDF_NEEDRESCHED;
213 			map |= id;
214 		}
215 	}
216 	ipi_selected(map, IPI_AST);
217 }
218 
219 /*
220  * When called the executing CPU will send an IPI to all other CPUs
221  *  requesting that they halt execution.
222  *
223  * Usually (but not necessarily) called with 'other_cpus' as its arg.
224  *
225  *  - Signals all CPUs in map to stop.
226  *  - Waits for each to stop.
227  *
228  * Returns:
229  *  -1: error
230  *   0: NA
231  *   1: ok
232  *
233  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
234  *            from executing at same time.
235  */
236 static int
237 generic_stop_cpus(cpumask_t map, u_int type)
238 {
239 	int i;
240 
241 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
242 	    ("%s: invalid stop type", __func__));
243 
244 	if (!smp_started)
245 		return 0;
246 
247 	CTR2(KTR_SMP, "stop_cpus(%x) with %u type", map, type);
248 
249 	/* send the stop IPI to all CPUs in map */
250 	ipi_selected(map, type);
251 
252 	i = 0;
253 	while ((stopped_cpus & map) != map) {
254 		/* spin */
255 		cpu_spinwait();
256 		i++;
257 #ifdef DIAGNOSTIC
258 		if (i == 100000) {
259 			printf("timeout stopping cpus\n");
260 			break;
261 		}
262 #endif
263 	}
264 
265 	return 1;
266 }
267 
268 int
269 stop_cpus(cpumask_t map)
270 {
271 
272 	return (generic_stop_cpus(map, IPI_STOP));
273 }
274 
275 int
276 stop_cpus_hard(cpumask_t map)
277 {
278 
279 	return (generic_stop_cpus(map, IPI_STOP_HARD));
280 }
281 
282 #if defined(__amd64__)
283 /*
284  * When called the executing CPU will send an IPI to all other CPUs
285  *  requesting that they halt execution.
286  *
287  * Usually (but not necessarily) called with 'other_cpus' as its arg.
288  *
289  *  - Signals all CPUs in map to suspend.
290  *  - Waits for each to suspend.
291  *
292  * Returns:
293  *  -1: error
294  *   0: NA
295  *   1: ok
296  *
297  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
298  *            from executing at same time.
299  */
300 int
301 suspend_cpus(cpumask_t map)
302 {
303 	int i;
304 
305 	if (!smp_started)
306 		return (0);
307 
308 	CTR1(KTR_SMP, "suspend_cpus(%x)", map);
309 
310 	/* send the suspend IPI to all CPUs in map */
311 	ipi_selected(map, IPI_SUSPEND);
312 
313 	i = 0;
314 	while ((stopped_cpus & map) != map) {
315 		/* spin */
316 		cpu_spinwait();
317 		i++;
318 #ifdef DIAGNOSTIC
319 		if (i == 100000) {
320 			printf("timeout suspending cpus\n");
321 			break;
322 		}
323 #endif
324 	}
325 
326 	return (1);
327 }
328 #endif
329 
330 /*
331  * Called by a CPU to restart stopped CPUs.
332  *
333  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
334  *
335  *  - Signals all CPUs in map to restart.
336  *  - Waits for each to restart.
337  *
338  * Returns:
339  *  -1: error
340  *   0: NA
341  *   1: ok
342  */
343 int
344 restart_cpus(cpumask_t map)
345 {
346 
347 	if (!smp_started)
348 		return 0;
349 
350 	CTR1(KTR_SMP, "restart_cpus(%x)", map);
351 
352 	/* signal other cpus to restart */
353 	atomic_store_rel_int(&started_cpus, map);
354 
355 	/* wait for each to clear its bit */
356 	while ((stopped_cpus & map) != 0)
357 		cpu_spinwait();
358 
359 	return 1;
360 }
361 
362 /*
363  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
364  * (if specified), rendezvous, execute the action function (if specified),
365  * rendezvous again, execute the teardown function (if specified), and then
366  * resume.
367  *
368  * Note that the supplied external functions _must_ be reentrant and aware
369  * that they are running in parallel and in an unknown lock context.
370  */
371 void
372 smp_rendezvous_action(void)
373 {
374 	void* local_func_arg = smp_rv_func_arg;
375 	void (*local_setup_func)(void*)   = smp_rv_setup_func;
376 	void (*local_action_func)(void*)   = smp_rv_action_func;
377 	void (*local_teardown_func)(void*) = smp_rv_teardown_func;
378 
379 	/* Ensure we have up-to-date values. */
380 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
381 	while (smp_rv_waiters[0] < smp_rv_ncpus)
382 		cpu_spinwait();
383 
384 	/* setup function */
385 	if (local_setup_func != smp_no_rendevous_barrier) {
386 		if (smp_rv_setup_func != NULL)
387 			smp_rv_setup_func(smp_rv_func_arg);
388 
389 		/* spin on entry rendezvous */
390 		atomic_add_int(&smp_rv_waiters[1], 1);
391 		while (smp_rv_waiters[1] < smp_rv_ncpus)
392                 	cpu_spinwait();
393 	}
394 
395 	/* action function */
396 	if (local_action_func != NULL)
397 		local_action_func(local_func_arg);
398 
399 	/* spin on exit rendezvous */
400 	atomic_add_int(&smp_rv_waiters[2], 1);
401 	if (local_teardown_func == smp_no_rendevous_barrier)
402                 return;
403 	while (smp_rv_waiters[2] < smp_rv_ncpus)
404 		cpu_spinwait();
405 
406 	/* teardown function */
407 	if (local_teardown_func != NULL)
408 		local_teardown_func(local_func_arg);
409 }
410 
411 void
412 smp_rendezvous_cpus(cpumask_t map,
413 	void (* setup_func)(void *),
414 	void (* action_func)(void *),
415 	void (* teardown_func)(void *),
416 	void *arg)
417 {
418 	int i, ncpus = 0;
419 
420 	if (!smp_started) {
421 		if (setup_func != NULL)
422 			setup_func(arg);
423 		if (action_func != NULL)
424 			action_func(arg);
425 		if (teardown_func != NULL)
426 			teardown_func(arg);
427 		return;
428 	}
429 
430 	for (i = 0; i <= mp_maxid; i++)
431 		if (((1 << i) & map) != 0 && !CPU_ABSENT(i))
432 			ncpus++;
433 	if (ncpus == 0)
434 		panic("ncpus is 0 with map=0x%x", map);
435 
436 	/* obtain rendezvous lock */
437 	mtx_lock_spin(&smp_ipi_mtx);
438 
439 	/* set static function pointers */
440 	smp_rv_ncpus = ncpus;
441 	smp_rv_setup_func = setup_func;
442 	smp_rv_action_func = action_func;
443 	smp_rv_teardown_func = teardown_func;
444 	smp_rv_func_arg = arg;
445 	smp_rv_waiters[1] = 0;
446 	smp_rv_waiters[2] = 0;
447 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
448 
449 	/* signal other processors, which will enter the IPI with interrupts off */
450 	ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS);
451 
452 	/* Check if the current CPU is in the map */
453 	if ((map & (1 << curcpu)) != 0)
454 		smp_rendezvous_action();
455 
456 	if (teardown_func == smp_no_rendevous_barrier)
457 		while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus)
458 			cpu_spinwait();
459 
460 	/* release lock */
461 	mtx_unlock_spin(&smp_ipi_mtx);
462 }
463 
464 void
465 smp_rendezvous(void (* setup_func)(void *),
466 	       void (* action_func)(void *),
467 	       void (* teardown_func)(void *),
468 	       void *arg)
469 {
470 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
471 }
472 
473 static struct cpu_group group[MAXCPU];
474 
475 struct cpu_group *
476 smp_topo(void)
477 {
478 	struct cpu_group *top;
479 
480 	/*
481 	 * Check for a fake topology request for debugging purposes.
482 	 */
483 	switch (smp_topology) {
484 	case 1:
485 		/* Dual core with no sharing.  */
486 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
487 		break;
488 	case 2:
489 		/* No topology, all cpus are equal. */
490 		top = smp_topo_none();
491 		break;
492 	case 3:
493 		/* Dual core with shared L2.  */
494 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
495 		break;
496 	case 4:
497 		/* quad core, shared l3 among each package, private l2.  */
498 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
499 		break;
500 	case 5:
501 		/* quad core,  2 dualcore parts on each package share l2.  */
502 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
503 		break;
504 	case 6:
505 		/* Single-core 2xHTT */
506 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
507 		break;
508 	case 7:
509 		/* quad core with a shared l3, 8 threads sharing L2.  */
510 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
511 		    CG_FLAG_SMT);
512 		break;
513 	default:
514 		/* Default, ask the system what it wants. */
515 		top = cpu_topo();
516 		break;
517 	}
518 	/*
519 	 * Verify the returned topology.
520 	 */
521 	if (top->cg_count != mp_ncpus)
522 		panic("Built bad topology at %p.  CPU count %d != %d",
523 		    top, top->cg_count, mp_ncpus);
524 	if (top->cg_mask != all_cpus)
525 		panic("Built bad topology at %p.  CPU mask 0x%X != 0x%X",
526 		    top, top->cg_mask, all_cpus);
527 	return (top);
528 }
529 
530 struct cpu_group *
531 smp_topo_none(void)
532 {
533 	struct cpu_group *top;
534 
535 	top = &group[0];
536 	top->cg_parent = NULL;
537 	top->cg_child = NULL;
538 	top->cg_mask = (1 << mp_ncpus) - 1;
539 	top->cg_count = mp_ncpus;
540 	top->cg_children = 0;
541 	top->cg_level = CG_SHARE_NONE;
542 	top->cg_flags = 0;
543 
544 	return (top);
545 }
546 
547 static int
548 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
549     int count, int flags, int start)
550 {
551 	cpumask_t mask;
552 	int i;
553 
554 	for (mask = 0, i = 0; i < count; i++, start++)
555 		mask |= (1 << start);
556 	child->cg_parent = parent;
557 	child->cg_child = NULL;
558 	child->cg_children = 0;
559 	child->cg_level = share;
560 	child->cg_count = count;
561 	child->cg_flags = flags;
562 	child->cg_mask = mask;
563 	parent->cg_children++;
564 	for (; parent != NULL; parent = parent->cg_parent) {
565 		if ((parent->cg_mask & child->cg_mask) != 0)
566 			panic("Duplicate children in %p.  mask 0x%X child 0x%X",
567 			    parent, parent->cg_mask, child->cg_mask);
568 		parent->cg_mask |= child->cg_mask;
569 		parent->cg_count += child->cg_count;
570 	}
571 
572 	return (start);
573 }
574 
575 struct cpu_group *
576 smp_topo_1level(int share, int count, int flags)
577 {
578 	struct cpu_group *child;
579 	struct cpu_group *top;
580 	int packages;
581 	int cpu;
582 	int i;
583 
584 	cpu = 0;
585 	top = &group[0];
586 	packages = mp_ncpus / count;
587 	top->cg_child = child = &group[1];
588 	top->cg_level = CG_SHARE_NONE;
589 	for (i = 0; i < packages; i++, child++)
590 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
591 	return (top);
592 }
593 
594 struct cpu_group *
595 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
596     int l1flags)
597 {
598 	struct cpu_group *top;
599 	struct cpu_group *l1g;
600 	struct cpu_group *l2g;
601 	int cpu;
602 	int i;
603 	int j;
604 
605 	cpu = 0;
606 	top = &group[0];
607 	l2g = &group[1];
608 	top->cg_child = l2g;
609 	top->cg_level = CG_SHARE_NONE;
610 	top->cg_children = mp_ncpus / (l2count * l1count);
611 	l1g = l2g + top->cg_children;
612 	for (i = 0; i < top->cg_children; i++, l2g++) {
613 		l2g->cg_parent = top;
614 		l2g->cg_child = l1g;
615 		l2g->cg_level = l2share;
616 		for (j = 0; j < l2count; j++, l1g++)
617 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
618 			    l1flags, cpu);
619 	}
620 	return (top);
621 }
622 
623 
624 struct cpu_group *
625 smp_topo_find(struct cpu_group *top, int cpu)
626 {
627 	struct cpu_group *cg;
628 	cpumask_t mask;
629 	int children;
630 	int i;
631 
632 	mask = (1 << cpu);
633 	cg = top;
634 	for (;;) {
635 		if ((cg->cg_mask & mask) == 0)
636 			return (NULL);
637 		if (cg->cg_children == 0)
638 			return (cg);
639 		children = cg->cg_children;
640 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
641 			if ((cg->cg_mask & mask) != 0)
642 				break;
643 	}
644 	return (NULL);
645 }
646 #else /* !SMP */
647 
648 void
649 smp_rendezvous_cpus(cpumask_t map,
650 	void (*setup_func)(void *),
651 	void (*action_func)(void *),
652 	void (*teardown_func)(void *),
653 	void *arg)
654 {
655 	if (setup_func != NULL)
656 		setup_func(arg);
657 	if (action_func != NULL)
658 		action_func(arg);
659 	if (teardown_func != NULL)
660 		teardown_func(arg);
661 }
662 
663 void
664 smp_rendezvous(void (*setup_func)(void *),
665 	       void (*action_func)(void *),
666 	       void (*teardown_func)(void *),
667 	       void *arg)
668 {
669 
670 	if (setup_func != NULL)
671 		setup_func(arg);
672 	if (action_func != NULL)
673 		action_func(arg);
674 	if (teardown_func != NULL)
675 		teardown_func(arg);
676 }
677 
678 /*
679  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
680  * APIs will still work using this dummy support.
681  */
682 static void
683 mp_setvariables_for_up(void *dummy)
684 {
685 	mp_ncpus = 1;
686 	mp_maxid = PCPU_GET(cpuid);
687 	all_cpus = PCPU_GET(cpumask);
688 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
689 }
690 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
691     mp_setvariables_for_up, NULL);
692 #endif /* SMP */
693 
694 void
695 smp_no_rendevous_barrier(void *dummy)
696 {
697 #ifdef SMP
698 	KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
699 #endif
700 }
701