xref: /freebsd/sys/kern/subr_smp.c (revision c68159a6d8eede11766cf13896d0f7670dbd51aa)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27 
28 #include "opt_cpu.h"
29 #include "opt_user_ldt.h"
30 
31 #ifdef SMP
32 #include <machine/smptests.h>
33 #else
34 #error
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/bus.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/sysctl.h>
43 #include <sys/malloc.h>
44 #include <sys/memrange.h>
45 #include <sys/mutex.h>
46 #ifdef BETTER_CLOCK
47 #include <sys/dkstat.h>
48 #endif
49 #include <sys/cons.h>	/* cngetc() */
50 
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_extern.h>
56 #ifdef BETTER_CLOCK
57 #include <sys/lock.h>
58 #include <vm/vm_map.h>
59 #include <sys/user.h>
60 #ifdef GPROF
61 #include <sys/gmon.h>
62 #endif
63 #endif
64 
65 #include <machine/smp.h>
66 #include <machine/apic.h>
67 #include <machine/atomic.h>
68 #include <machine/cpufunc.h>
69 #include <machine/mpapic.h>
70 #include <machine/psl.h>
71 #include <machine/segments.h>
72 #include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
73 #include <machine/tss.h>
74 #include <machine/specialreg.h>
75 #include <machine/globaldata.h>
76 
77 #if defined(APIC_IO)
78 #include <machine/md_var.h>		/* setidt() */
79 #include <i386/isa/icu.h>		/* IPIs */
80 #include <i386/isa/intr_machdep.h>	/* IPIs */
81 #endif	/* APIC_IO */
82 
83 #if defined(TEST_DEFAULT_CONFIG)
84 #define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
85 #else
86 #define MPFPS_MPFB1	mpfps->mpfb1
87 #endif  /* TEST_DEFAULT_CONFIG */
88 
89 #define WARMBOOT_TARGET		0
90 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
91 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
92 
93 #ifdef PC98
94 #define BIOS_BASE		(0xe8000)
95 #define BIOS_SIZE		(0x18000)
96 #else
97 #define BIOS_BASE		(0xf0000)
98 #define BIOS_SIZE		(0x10000)
99 #endif
100 #define BIOS_COUNT		(BIOS_SIZE/4)
101 
102 #define CMOS_REG		(0x70)
103 #define CMOS_DATA		(0x71)
104 #define BIOS_RESET		(0x0f)
105 #define BIOS_WARM		(0x0a)
106 
107 #define PROCENTRY_FLAG_EN	0x01
108 #define PROCENTRY_FLAG_BP	0x02
109 #define IOAPICENTRY_FLAG_EN	0x01
110 
111 
112 /* MP Floating Pointer Structure */
113 typedef struct MPFPS {
114 	char    signature[4];
115 	void   *pap;
116 	u_char  length;
117 	u_char  spec_rev;
118 	u_char  checksum;
119 	u_char  mpfb1;
120 	u_char  mpfb2;
121 	u_char  mpfb3;
122 	u_char  mpfb4;
123 	u_char  mpfb5;
124 }      *mpfps_t;
125 
126 /* MP Configuration Table Header */
127 typedef struct MPCTH {
128 	char    signature[4];
129 	u_short base_table_length;
130 	u_char  spec_rev;
131 	u_char  checksum;
132 	u_char  oem_id[8];
133 	u_char  product_id[12];
134 	void   *oem_table_pointer;
135 	u_short oem_table_size;
136 	u_short entry_count;
137 	void   *apic_address;
138 	u_short extended_table_length;
139 	u_char  extended_table_checksum;
140 	u_char  reserved;
141 }      *mpcth_t;
142 
143 
144 typedef struct PROCENTRY {
145 	u_char  type;
146 	u_char  apic_id;
147 	u_char  apic_version;
148 	u_char  cpu_flags;
149 	u_long  cpu_signature;
150 	u_long  feature_flags;
151 	u_long  reserved1;
152 	u_long  reserved2;
153 }      *proc_entry_ptr;
154 
155 typedef struct BUSENTRY {
156 	u_char  type;
157 	u_char  bus_id;
158 	char    bus_type[6];
159 }      *bus_entry_ptr;
160 
161 typedef struct IOAPICENTRY {
162 	u_char  type;
163 	u_char  apic_id;
164 	u_char  apic_version;
165 	u_char  apic_flags;
166 	void   *apic_address;
167 }      *io_apic_entry_ptr;
168 
169 typedef struct INTENTRY {
170 	u_char  type;
171 	u_char  int_type;
172 	u_short int_flags;
173 	u_char  src_bus_id;
174 	u_char  src_bus_irq;
175 	u_char  dst_apic_id;
176 	u_char  dst_apic_int;
177 }      *int_entry_ptr;
178 
179 /* descriptions of MP basetable entries */
180 typedef struct BASETABLE_ENTRY {
181 	u_char  type;
182 	u_char  length;
183 	char    name[16];
184 }       basetable_entry;
185 
186 /*
187  * this code MUST be enabled here and in mpboot.s.
188  * it follows the very early stages of AP boot by placing values in CMOS ram.
189  * it NORMALLY will never be needed and thus the primitive method for enabling.
190  *
191 #define CHECK_POINTS
192  */
193 
194 #if defined(CHECK_POINTS) && !defined(PC98)
195 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
196 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
197 
198 #define CHECK_INIT(D);				\
199 	CHECK_WRITE(0x34, (D));			\
200 	CHECK_WRITE(0x35, (D));			\
201 	CHECK_WRITE(0x36, (D));			\
202 	CHECK_WRITE(0x37, (D));			\
203 	CHECK_WRITE(0x38, (D));			\
204 	CHECK_WRITE(0x39, (D));
205 
206 #define CHECK_PRINT(S);				\
207 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
208 	   (S),					\
209 	   CHECK_READ(0x34),			\
210 	   CHECK_READ(0x35),			\
211 	   CHECK_READ(0x36),			\
212 	   CHECK_READ(0x37),			\
213 	   CHECK_READ(0x38),			\
214 	   CHECK_READ(0x39));
215 
216 #else				/* CHECK_POINTS */
217 
218 #define CHECK_INIT(D)
219 #define CHECK_PRINT(S)
220 
221 #endif				/* CHECK_POINTS */
222 
223 /*
224  * Values to send to the POST hardware.
225  */
226 #define MP_BOOTADDRESS_POST	0x10
227 #define MP_PROBE_POST		0x11
228 #define MPTABLE_PASS1_POST	0x12
229 
230 #define MP_START_POST		0x13
231 #define MP_ENABLE_POST		0x14
232 #define MPTABLE_PASS2_POST	0x15
233 
234 #define START_ALL_APS_POST	0x16
235 #define INSTALL_AP_TRAMP_POST	0x17
236 #define START_AP_POST		0x18
237 
238 #define MP_ANNOUNCE_POST	0x19
239 
240 /* used to hold the AP's until we are ready to release them */
241 struct simplelock	ap_boot_lock;
242 
243 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
244 int	current_postcode;
245 
246 /** XXX FIXME: what system files declare these??? */
247 extern struct region_descriptor r_gdt, r_idt;
248 
249 int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
250 int	mp_ncpus;		/* # of CPUs, including BSP */
251 int	mp_naps;		/* # of Applications processors */
252 int	mp_nbusses;		/* # of busses */
253 int	mp_napics;		/* # of IO APICs */
254 int	boot_cpu_id;		/* designated BSP */
255 vm_offset_t cpu_apic_address;
256 vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
257 extern	int nkpt;
258 
259 u_int32_t cpu_apic_versions[MAXCPU];
260 u_int32_t *io_apic_versions;
261 
262 #ifdef APIC_INTR_DIAGNOSTIC
263 int apic_itrace_enter[32];
264 int apic_itrace_tryisrlock[32];
265 int apic_itrace_gotisrlock[32];
266 int apic_itrace_active[32];
267 int apic_itrace_masked[32];
268 int apic_itrace_noisrlock[32];
269 int apic_itrace_masked2[32];
270 int apic_itrace_unmask[32];
271 int apic_itrace_noforward[32];
272 int apic_itrace_leave[32];
273 int apic_itrace_enter2[32];
274 int apic_itrace_doreti[32];
275 int apic_itrace_splz[32];
276 int apic_itrace_eoi[32];
277 #ifdef APIC_INTR_DIAGNOSTIC_IRQ
278 unsigned short apic_itrace_debugbuffer[32768];
279 int apic_itrace_debugbuffer_idx;
280 struct simplelock apic_itrace_debuglock;
281 #endif
282 #endif
283 
284 #ifdef APIC_INTR_REORDER
285 struct {
286 	volatile int *location;
287 	int bit;
288 } apic_isrbit_location[32];
289 #endif
290 
291 struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
292 
293 /*
294  * APIC ID logical/physical mapping structures.
295  * We oversize these to simplify boot-time config.
296  */
297 int     cpu_num_to_apic_id[NAPICID];
298 int     io_num_to_apic_id[NAPICID];
299 int     apic_id_to_logical[NAPICID];
300 
301 
302 /* Bitmap of all available CPUs */
303 u_int	all_cpus;
304 
305 /* AP uses this during bootstrap.  Do not staticize.  */
306 char *bootSTK;
307 static int bootAP;
308 
309 /* Hotwire a 0->4MB V==P mapping */
310 extern pt_entry_t *KPTphys;
311 
312 /* SMP page table page */
313 extern pt_entry_t *SMPpt;
314 
315 struct pcb stoppcbs[MAXCPU];
316 
317 int smp_started;		/* has the system started? */
318 
319 /*
320  * Local data and functions.
321  */
322 
323 static int	mp_capable;
324 static u_int	boot_address;
325 static u_int	base_memory;
326 
327 static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
328 static mpfps_t	mpfps;
329 static int	search_for_sig(u_int32_t target, int count);
330 static void	mp_enable(u_int boot_addr);
331 
332 static void	mptable_pass1(void);
333 static int	mptable_pass2(void);
334 static void	default_mp_table(int type);
335 static void	fix_mp_table(void);
336 static void	setup_apic_irq_mapping(void);
337 static void	init_locks(void);
338 static int	start_all_aps(u_int boot_addr);
339 static void	install_ap_tramp(u_int boot_addr);
340 static int	start_ap(int logicalCpu, u_int boot_addr);
341 static int	apic_int_is_bus_type(int intr, int bus_type);
342 static void	release_aps(void *dummy);
343 
344 /*
345  * Calculate usable address in base memory for AP trampoline code.
346  */
347 u_int
348 mp_bootaddress(u_int basemem)
349 {
350 	POSTCODE(MP_BOOTADDRESS_POST);
351 
352 	base_memory = basemem * 1024;	/* convert to bytes */
353 
354 	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
355 	if ((base_memory - boot_address) < bootMP_size)
356 		boot_address -= 4096;	/* not enough, lower by 4k */
357 
358 	return boot_address;
359 }
360 
361 
362 /*
363  * Look for an Intel MP spec table (ie, SMP capable hardware).
364  */
365 int
366 mp_probe(void)
367 {
368 	int     x;
369 	u_long  segment;
370 	u_int32_t target;
371 
372 	POSTCODE(MP_PROBE_POST);
373 
374 	/* see if EBDA exists */
375 	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
376 		/* search first 1K of EBDA */
377 		target = (u_int32_t) (segment << 4);
378 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
379 			goto found;
380 	} else {
381 		/* last 1K of base memory, effective 'top of base' passed in */
382 		target = (u_int32_t) (base_memory - 0x400);
383 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
384 			goto found;
385 	}
386 
387 	/* search the BIOS */
388 	target = (u_int32_t) BIOS_BASE;
389 	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
390 		goto found;
391 
392 	/* nothing found */
393 	mpfps = (mpfps_t)0;
394 	mp_capable = 0;
395 	return 0;
396 
397 found:
398 	/* calculate needed resources */
399 	mpfps = (mpfps_t)x;
400 	mptable_pass1();
401 
402 	/* flag fact that we are running multiple processors */
403 	mp_capable = 1;
404 	return 1;
405 }
406 
407 
408 /*
409  * Initialize the SMP hardware and the APIC and start up the AP's.
410  */
411 void
412 mp_start(void)
413 {
414 	POSTCODE(MP_START_POST);
415 
416 	/* look for MP capable motherboard */
417 	if (mp_capable)
418 		mp_enable(boot_address);
419 	else
420 		panic("MP hardware not found!");
421 }
422 
423 
424 /*
425  * Print various information about the SMP system hardware and setup.
426  */
427 void
428 mp_announce(void)
429 {
430 	int     x;
431 
432 	POSTCODE(MP_ANNOUNCE_POST);
433 
434 	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
435 	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
436 	printf(", version: 0x%08x", cpu_apic_versions[0]);
437 	printf(", at 0x%08x\n", cpu_apic_address);
438 	for (x = 1; x <= mp_naps; ++x) {
439 		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
440 		printf(", version: 0x%08x", cpu_apic_versions[x]);
441 		printf(", at 0x%08x\n", cpu_apic_address);
442 	}
443 
444 #if defined(APIC_IO)
445 	for (x = 0; x < mp_napics; ++x) {
446 		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
447 		printf(", version: 0x%08x", io_apic_versions[x]);
448 		printf(", at 0x%08x\n", io_apic_address[x]);
449 	}
450 #else
451 	printf(" Warning: APIC I/O disabled\n");
452 #endif	/* APIC_IO */
453 }
454 
455 /*
456  * AP cpu's call this to sync up protected mode.
457  */
458 void
459 init_secondary(void)
460 {
461 	int	gsel_tss;
462 	int	x, myid = bootAP;
463 
464 	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
465 	gdt_segs[GPROC0_SEL].ssd_base =
466 		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
467 	SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid];
468 
469 	for (x = 0; x < NGDT; x++) {
470 		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
471 	}
472 
473 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
474 	r_gdt.rd_base = (int) &gdt[myid * NGDT];
475 	lgdt(&r_gdt);			/* does magic intra-segment return */
476 
477 	lidt(&r_idt);
478 
479 	lldt(_default_ldt);
480 #ifdef USER_LDT
481 	PCPU_SET(currentldt, _default_ldt);
482 #endif
483 
484 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
485 	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
486 	common_tss.tss_esp0 = 0;	/* not used until after switch */
487 	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
488 	common_tss.tss_ioopt = (sizeof common_tss) << 16;
489 	tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
490 	common_tssd = *tss_gdt;
491 	ltr(gsel_tss);
492 
493 	pmap_set_opt();
494 }
495 
496 
497 #if defined(APIC_IO)
498 /*
499  * Final configuration of the BSP's local APIC:
500  *  - disable 'pic mode'.
501  *  - disable 'virtual wire mode'.
502  *  - enable NMI.
503  */
504 void
505 bsp_apic_configure(void)
506 {
507 	u_char		byte;
508 	u_int32_t	temp;
509 
510 	/* leave 'pic mode' if necessary */
511 	if (picmode) {
512 		outb(0x22, 0x70);	/* select IMCR */
513 		byte = inb(0x23);	/* current contents */
514 		byte |= 0x01;		/* mask external INTR */
515 		outb(0x23, byte);	/* disconnect 8259s/NMI */
516 	}
517 
518 	/* mask lint0 (the 8259 'virtual wire' connection) */
519 	temp = lapic.lvt_lint0;
520 	temp |= APIC_LVT_M;		/* set the mask */
521 	lapic.lvt_lint0 = temp;
522 
523         /* setup lint1 to handle NMI */
524         temp = lapic.lvt_lint1;
525         temp &= ~APIC_LVT_M;		/* clear the mask */
526         lapic.lvt_lint1 = temp;
527 
528 	if (bootverbose)
529 		apic_dump("bsp_apic_configure()");
530 }
531 #endif  /* APIC_IO */
532 
533 
534 /*******************************************************************
535  * local functions and data
536  */
537 
538 /*
539  * start the SMP system
540  */
541 static void
542 mp_enable(u_int boot_addr)
543 {
544 	int     x;
545 #if defined(APIC_IO)
546 	int     apic;
547 	u_int   ux;
548 #endif	/* APIC_IO */
549 
550 	POSTCODE(MP_ENABLE_POST);
551 
552 	/* turn on 4MB of V == P addressing so we can get to MP table */
553 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
554 	invltlb();
555 
556 	/* examine the MP table for needed info, uses physical addresses */
557 	x = mptable_pass2();
558 
559 	*(int *)PTD = 0;
560 	invltlb();
561 
562 	/* can't process default configs till the CPU APIC is pmapped */
563 	if (x)
564 		default_mp_table(x);
565 
566 	/* post scan cleanup */
567 	fix_mp_table();
568 	setup_apic_irq_mapping();
569 
570 #if defined(APIC_IO)
571 
572 	/* fill the LOGICAL io_apic_versions table */
573 	for (apic = 0; apic < mp_napics; ++apic) {
574 		ux = io_apic_read(apic, IOAPIC_VER);
575 		io_apic_versions[apic] = ux;
576 		io_apic_set_id(apic, IO_TO_ID(apic));
577 	}
578 
579 	/* program each IO APIC in the system */
580 	for (apic = 0; apic < mp_napics; ++apic)
581 		if (io_apic_setup(apic) < 0)
582 			panic("IO APIC setup failure");
583 
584 	/* install a 'Spurious INTerrupt' vector */
585 	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
586 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
587 
588 	/* install an inter-CPU IPI for TLB invalidation */
589 	setidt(XINVLTLB_OFFSET, Xinvltlb,
590 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
591 
592 #ifdef BETTER_CLOCK
593 	/* install an inter-CPU IPI for reading processor state */
594 	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
595 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
596 #endif
597 
598 	/* install an inter-CPU IPI for all-CPU rendezvous */
599 	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
600 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
601 
602 	/* install an inter-CPU IPI for forcing an additional software trap */
603 	setidt(XCPUAST_OFFSET, Xcpuast,
604 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
605 
606 	/* install an inter-CPU IPI for interrupt forwarding */
607 	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
608 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
609 
610 	/* install an inter-CPU IPI for CPU stop/restart */
611 	setidt(XCPUSTOP_OFFSET, Xcpustop,
612 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
613 
614 #if defined(TEST_TEST1)
615 	/* install a "fake hardware INTerrupt" vector */
616 	setidt(XTEST1_OFFSET, Xtest1,
617 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
618 #endif  /** TEST_TEST1 */
619 
620 #endif	/* APIC_IO */
621 
622 	/* initialize all SMP locks */
623 	init_locks();
624 
625 	/* obtain the ap_boot_lock */
626 	s_lock(&ap_boot_lock);
627 
628 	/* start each Application Processor */
629 	start_all_aps(boot_addr);
630 }
631 
632 
633 /*
634  * look for the MP spec signature
635  */
636 
637 /* string defined by the Intel MP Spec as identifying the MP table */
638 #define MP_SIG		0x5f504d5f	/* _MP_ */
639 #define NEXT(X)		((X) += 4)
640 static int
641 search_for_sig(u_int32_t target, int count)
642 {
643 	int     x;
644 	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
645 
646 	for (x = 0; x < count; NEXT(x))
647 		if (addr[x] == MP_SIG)
648 			/* make array index a byte index */
649 			return (target + (x * sizeof(u_int32_t)));
650 
651 	return -1;
652 }
653 
654 
655 static basetable_entry basetable_entry_types[] =
656 {
657 	{0, 20, "Processor"},
658 	{1, 8, "Bus"},
659 	{2, 8, "I/O APIC"},
660 	{3, 8, "I/O INT"},
661 	{4, 8, "Local INT"}
662 };
663 
664 typedef struct BUSDATA {
665 	u_char  bus_id;
666 	enum busTypes bus_type;
667 }       bus_datum;
668 
669 typedef struct INTDATA {
670 	u_char  int_type;
671 	u_short int_flags;
672 	u_char  src_bus_id;
673 	u_char  src_bus_irq;
674 	u_char  dst_apic_id;
675 	u_char  dst_apic_int;
676 	u_char	int_vector;
677 }       io_int, local_int;
678 
679 typedef struct BUSTYPENAME {
680 	u_char  type;
681 	char    name[7];
682 }       bus_type_name;
683 
684 static bus_type_name bus_type_table[] =
685 {
686 	{CBUS, "CBUS"},
687 	{CBUSII, "CBUSII"},
688 	{EISA, "EISA"},
689 	{MCA, "MCA"},
690 	{UNKNOWN_BUSTYPE, "---"},
691 	{ISA, "ISA"},
692 	{MCA, "MCA"},
693 	{UNKNOWN_BUSTYPE, "---"},
694 	{UNKNOWN_BUSTYPE, "---"},
695 	{UNKNOWN_BUSTYPE, "---"},
696 	{UNKNOWN_BUSTYPE, "---"},
697 	{UNKNOWN_BUSTYPE, "---"},
698 	{PCI, "PCI"},
699 	{UNKNOWN_BUSTYPE, "---"},
700 	{UNKNOWN_BUSTYPE, "---"},
701 	{UNKNOWN_BUSTYPE, "---"},
702 	{UNKNOWN_BUSTYPE, "---"},
703 	{XPRESS, "XPRESS"},
704 	{UNKNOWN_BUSTYPE, "---"}
705 };
706 /* from MP spec v1.4, table 5-1 */
707 static int default_data[7][5] =
708 {
709 /*   nbus, id0, type0, id1, type1 */
710 	{1, 0, ISA, 255, 255},
711 	{1, 0, EISA, 255, 255},
712 	{1, 0, EISA, 255, 255},
713 	{1, 0, MCA, 255, 255},
714 	{2, 0, ISA, 1, PCI},
715 	{2, 0, EISA, 1, PCI},
716 	{2, 0, MCA, 1, PCI}
717 };
718 
719 
720 /* the bus data */
721 static bus_datum *bus_data;
722 
723 /* the IO INT data, one entry per possible APIC INTerrupt */
724 static io_int  *io_apic_ints;
725 
726 static int nintrs;
727 
728 static int processor_entry	__P((proc_entry_ptr entry, int cpu));
729 static int bus_entry		__P((bus_entry_ptr entry, int bus));
730 static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
731 static int int_entry		__P((int_entry_ptr entry, int intr));
732 static int lookup_bus_type	__P((char *name));
733 
734 
735 /*
736  * 1st pass on motherboard's Intel MP specification table.
737  *
738  * initializes:
739  *	mp_ncpus = 1
740  *
741  * determines:
742  *	cpu_apic_address (common to all CPUs)
743  *	io_apic_address[N]
744  *	mp_naps
745  *	mp_nbusses
746  *	mp_napics
747  *	nintrs
748  */
749 static void
750 mptable_pass1(void)
751 {
752 	int	x;
753 	mpcth_t	cth;
754 	int	totalSize;
755 	void*	position;
756 	int	count;
757 	int	type;
758 
759 	POSTCODE(MPTABLE_PASS1_POST);
760 
761 	/* clear various tables */
762 	for (x = 0; x < NAPICID; ++x) {
763 		io_apic_address[x] = ~0;	/* IO APIC address table */
764 	}
765 
766 	/* init everything to empty */
767 	mp_naps = 0;
768 	mp_nbusses = 0;
769 	mp_napics = 0;
770 	nintrs = 0;
771 
772 	/* check for use of 'default' configuration */
773 	if (MPFPS_MPFB1 != 0) {
774 		/* use default addresses */
775 		cpu_apic_address = DEFAULT_APIC_BASE;
776 		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
777 
778 		/* fill in with defaults */
779 		mp_naps = 2;		/* includes BSP */
780 		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
781 #if defined(APIC_IO)
782 		mp_napics = 1;
783 		nintrs = 16;
784 #endif	/* APIC_IO */
785 	}
786 	else {
787 		if ((cth = mpfps->pap) == 0)
788 			panic("MP Configuration Table Header MISSING!");
789 
790 		cpu_apic_address = (vm_offset_t) cth->apic_address;
791 
792 		/* walk the table, recording info of interest */
793 		totalSize = cth->base_table_length - sizeof(struct MPCTH);
794 		position = (u_char *) cth + sizeof(struct MPCTH);
795 		count = cth->entry_count;
796 
797 		while (count--) {
798 			switch (type = *(u_char *) position) {
799 			case 0: /* processor_entry */
800 				if (((proc_entry_ptr)position)->cpu_flags
801 					& PROCENTRY_FLAG_EN)
802 					++mp_naps;
803 				break;
804 			case 1: /* bus_entry */
805 				++mp_nbusses;
806 				break;
807 			case 2: /* io_apic_entry */
808 				if (((io_apic_entry_ptr)position)->apic_flags
809 					& IOAPICENTRY_FLAG_EN)
810 					io_apic_address[mp_napics++] =
811 					    (vm_offset_t)((io_apic_entry_ptr)
812 						position)->apic_address;
813 				break;
814 			case 3: /* int_entry */
815 				++nintrs;
816 				break;
817 			case 4:	/* int_entry */
818 				break;
819 			default:
820 				panic("mpfps Base Table HOSED!");
821 				/* NOTREACHED */
822 			}
823 
824 			totalSize -= basetable_entry_types[type].length;
825 			(u_char*)position += basetable_entry_types[type].length;
826 		}
827 	}
828 
829 	/* qualify the numbers */
830 	if (mp_naps > MAXCPU) {
831 		printf("Warning: only using %d of %d available CPUs!\n",
832 			MAXCPU, mp_naps);
833 		mp_naps = MAXCPU;
834 	}
835 
836 	/*
837 	 * Count the BSP.
838 	 * This is also used as a counter while starting the APs.
839 	 */
840 	mp_ncpus = 1;
841 
842 	--mp_naps;	/* subtract the BSP */
843 }
844 
845 
846 /*
847  * 2nd pass on motherboard's Intel MP specification table.
848  *
849  * sets:
850  *	boot_cpu_id
851  *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
852  *	CPU_TO_ID(N), logical CPU to APIC ID table
853  *	IO_TO_ID(N), logical IO to APIC ID table
854  *	bus_data[N]
855  *	io_apic_ints[N]
856  */
857 static int
858 mptable_pass2(void)
859 {
860 	int     x;
861 	mpcth_t cth;
862 	int     totalSize;
863 	void*   position;
864 	int     count;
865 	int     type;
866 	int     apic, bus, cpu, intr;
867 	int	i, j;
868 	int	pgeflag;
869 
870 	POSTCODE(MPTABLE_PASS2_POST);
871 
872 	pgeflag = 0;		/* XXX - Not used under SMP yet.  */
873 
874 	MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
875 	    M_DEVBUF, M_WAITOK);
876 	MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
877 	    M_DEVBUF, M_WAITOK);
878 	MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
879 	    M_DEVBUF, M_WAITOK);
880 	MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
881 	    M_DEVBUF, M_WAITOK);
882 
883 	bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
884 
885 	for (i = 0; i < mp_napics; i++) {
886 		for (j = 0; j < mp_napics; j++) {
887 			/* same page frame as a previous IO apic? */
888 			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
889 			    (io_apic_address[i] & PG_FRAME)) {
890 				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
891 					+ (NPTEPG-2-j) * PAGE_SIZE
892 					+ (io_apic_address[i] & PAGE_MASK));
893 				break;
894 			}
895 			/* use this slot if available */
896 			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
897 				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
898 				    pgeflag | (io_apic_address[i] & PG_FRAME));
899 				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
900 					+ (NPTEPG-2-j) * PAGE_SIZE
901 					+ (io_apic_address[i] & PAGE_MASK));
902 				break;
903 			}
904 		}
905 	}
906 
907 	/* clear various tables */
908 	for (x = 0; x < NAPICID; ++x) {
909 		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
910 		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
911 		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
912 	}
913 
914 	/* clear bus data table */
915 	for (x = 0; x < mp_nbusses; ++x)
916 		bus_data[x].bus_id = 0xff;
917 
918 	/* clear IO APIC INT table */
919 	for (x = 0; x < (nintrs + 1); ++x) {
920 		io_apic_ints[x].int_type = 0xff;
921 		io_apic_ints[x].int_vector = 0xff;
922 	}
923 
924 	/* setup the cpu/apic mapping arrays */
925 	boot_cpu_id = -1;
926 
927 	/* record whether PIC or virtual-wire mode */
928 	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
929 
930 	/* check for use of 'default' configuration */
931 	if (MPFPS_MPFB1 != 0)
932 		return MPFPS_MPFB1;	/* return default configuration type */
933 
934 	if ((cth = mpfps->pap) == 0)
935 		panic("MP Configuration Table Header MISSING!");
936 
937 	/* walk the table, recording info of interest */
938 	totalSize = cth->base_table_length - sizeof(struct MPCTH);
939 	position = (u_char *) cth + sizeof(struct MPCTH);
940 	count = cth->entry_count;
941 	apic = bus = intr = 0;
942 	cpu = 1;				/* pre-count the BSP */
943 
944 	while (count--) {
945 		switch (type = *(u_char *) position) {
946 		case 0:
947 			if (processor_entry(position, cpu))
948 				++cpu;
949 			break;
950 		case 1:
951 			if (bus_entry(position, bus))
952 				++bus;
953 			break;
954 		case 2:
955 			if (io_apic_entry(position, apic))
956 				++apic;
957 			break;
958 		case 3:
959 			if (int_entry(position, intr))
960 				++intr;
961 			break;
962 		case 4:
963 			/* int_entry(position); */
964 			break;
965 		default:
966 			panic("mpfps Base Table HOSED!");
967 			/* NOTREACHED */
968 		}
969 
970 		totalSize -= basetable_entry_types[type].length;
971 		(u_char *) position += basetable_entry_types[type].length;
972 	}
973 
974 	if (boot_cpu_id == -1)
975 		panic("NO BSP found!");
976 
977 	/* report fact that its NOT a default configuration */
978 	return 0;
979 }
980 
981 
982 void
983 assign_apic_irq(int apic, int intpin, int irq)
984 {
985 	int x;
986 
987 	if (int_to_apicintpin[irq].ioapic != -1)
988 		panic("assign_apic_irq: inconsistent table");
989 
990 	int_to_apicintpin[irq].ioapic = apic;
991 	int_to_apicintpin[irq].int_pin = intpin;
992 	int_to_apicintpin[irq].apic_address = ioapic[apic];
993 	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
994 
995 	for (x = 0; x < nintrs; x++) {
996 		if ((io_apic_ints[x].int_type == 0 ||
997 		     io_apic_ints[x].int_type == 3) &&
998 		    io_apic_ints[x].int_vector == 0xff &&
999 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
1000 		    io_apic_ints[x].dst_apic_int == intpin)
1001 			io_apic_ints[x].int_vector = irq;
1002 	}
1003 }
1004 
1005 void
1006 revoke_apic_irq(int irq)
1007 {
1008 	int x;
1009 	int oldapic;
1010 	int oldintpin;
1011 
1012 	if (int_to_apicintpin[irq].ioapic == -1)
1013 		panic("assign_apic_irq: inconsistent table");
1014 
1015 	oldapic = int_to_apicintpin[irq].ioapic;
1016 	oldintpin = int_to_apicintpin[irq].int_pin;
1017 
1018 	int_to_apicintpin[irq].ioapic = -1;
1019 	int_to_apicintpin[irq].int_pin = 0;
1020 	int_to_apicintpin[irq].apic_address = NULL;
1021 	int_to_apicintpin[irq].redirindex = 0;
1022 
1023 	for (x = 0; x < nintrs; x++) {
1024 		if ((io_apic_ints[x].int_type == 0 ||
1025 		     io_apic_ints[x].int_type == 3) &&
1026 		    io_apic_ints[x].int_vector == 0xff &&
1027 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1028 		    io_apic_ints[x].dst_apic_int == oldintpin)
1029 			io_apic_ints[x].int_vector = 0xff;
1030 	}
1031 }
1032 
1033 
1034 
1035 static void
1036 swap_apic_id(int apic, int oldid, int newid)
1037 {
1038 	int x;
1039 	int oapic;
1040 
1041 
1042 	if (oldid == newid)
1043 		return;			/* Nothing to do */
1044 
1045 	printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
1046 	       apic, oldid, newid);
1047 
1048 	/* Swap physical APIC IDs in interrupt entries */
1049 	for (x = 0; x < nintrs; x++) {
1050 		if (io_apic_ints[x].dst_apic_id == oldid)
1051 			io_apic_ints[x].dst_apic_id = newid;
1052 		else if (io_apic_ints[x].dst_apic_id == newid)
1053 			io_apic_ints[x].dst_apic_id = oldid;
1054 	}
1055 
1056 	/* Swap physical APIC IDs in IO_TO_ID mappings */
1057 	for (oapic = 0; oapic < mp_napics; oapic++)
1058 		if (IO_TO_ID(oapic) == newid)
1059 			break;
1060 
1061 	if (oapic < mp_napics) {
1062 		printf("Changing APIC ID for IO APIC #%d from "
1063 		       "%d to %d in MP table\n",
1064 		       oapic, newid, oldid);
1065 		IO_TO_ID(oapic) = oldid;
1066 	}
1067 	IO_TO_ID(apic) = newid;
1068 }
1069 
1070 
1071 static void
1072 fix_id_to_io_mapping(void)
1073 {
1074 	int x;
1075 
1076 	for (x = 0; x < NAPICID; x++)
1077 		ID_TO_IO(x) = -1;
1078 
1079 	for (x = 0; x <= mp_naps; x++)
1080 		if (CPU_TO_ID(x) < NAPICID)
1081 			ID_TO_IO(CPU_TO_ID(x)) = x;
1082 
1083 	for (x = 0; x < mp_napics; x++)
1084 		if (IO_TO_ID(x) < NAPICID)
1085 			ID_TO_IO(IO_TO_ID(x)) = x;
1086 }
1087 
1088 
1089 static int
1090 first_free_apic_id(void)
1091 {
1092 	int freeid, x;
1093 
1094 	for (freeid = 0; freeid < NAPICID; freeid++) {
1095 		for (x = 0; x <= mp_naps; x++)
1096 			if (CPU_TO_ID(x) == freeid)
1097 				break;
1098 		if (x <= mp_naps)
1099 			continue;
1100 		for (x = 0; x < mp_napics; x++)
1101 			if (IO_TO_ID(x) == freeid)
1102 				break;
1103 		if (x < mp_napics)
1104 			continue;
1105 		return freeid;
1106 	}
1107 	return freeid;
1108 }
1109 
1110 
1111 static int
1112 io_apic_id_acceptable(int apic, int id)
1113 {
1114 	int cpu;		/* Logical CPU number */
1115 	int oapic;		/* Logical IO APIC number for other IO APIC */
1116 
1117 	if (id >= NAPICID)
1118 		return 0;	/* Out of range */
1119 
1120 	for (cpu = 0; cpu <= mp_naps; cpu++)
1121 		if (CPU_TO_ID(cpu) == id)
1122 			return 0;	/* Conflict with CPU */
1123 
1124 	for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
1125 		if (IO_TO_ID(oapic) == id)
1126 			return 0;	/* Conflict with other APIC */
1127 
1128 	return 1;		/* ID is acceptable for IO APIC */
1129 }
1130 
1131 
1132 /*
1133  * parse an Intel MP specification table
1134  */
1135 static void
1136 fix_mp_table(void)
1137 {
1138 	int	x;
1139 	int	id;
1140 	int	bus_0 = 0;	/* Stop GCC warning */
1141 	int	bus_pci = 0;	/* Stop GCC warning */
1142 	int	num_pci_bus;
1143 	int	apic;		/* IO APIC unit number */
1144 	int     freeid;		/* Free physical APIC ID */
1145 	int	physid;		/* Current physical IO APIC ID */
1146 
1147 	/*
1148 	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1149 	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1150 	 * exists the BIOS must begin with bus entries for the PCI bus and use
1151 	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1152 	 * exists the BIOS can choose to ignore this ordering, and indeed many
1153 	 * MP motherboards do ignore it.  This causes a problem when the PCI
1154 	 * sub-system makes requests of the MP sub-system based on PCI bus
1155 	 * numbers.	So here we look for the situation and renumber the
1156 	 * busses and associated INTs in an effort to "make it right".
1157 	 */
1158 
1159 	/* find bus 0, PCI bus, count the number of PCI busses */
1160 	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1161 		if (bus_data[x].bus_id == 0) {
1162 			bus_0 = x;
1163 		}
1164 		if (bus_data[x].bus_type == PCI) {
1165 			++num_pci_bus;
1166 			bus_pci = x;
1167 		}
1168 	}
1169 	/*
1170 	 * bus_0 == slot of bus with ID of 0
1171 	 * bus_pci == slot of last PCI bus encountered
1172 	 */
1173 
1174 	/* check the 1 PCI bus case for sanity */
1175 	/* if it is number 0 all is well */
1176 	if (num_pci_bus == 1 &&
1177 	    bus_data[bus_pci].bus_id != 0) {
1178 
1179 		/* mis-numbered, swap with whichever bus uses slot 0 */
1180 
1181 		/* swap the bus entry types */
1182 		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1183 		bus_data[bus_0].bus_type = PCI;
1184 
1185 		/* swap each relavant INTerrupt entry */
1186 		id = bus_data[bus_pci].bus_id;
1187 		for (x = 0; x < nintrs; ++x) {
1188 			if (io_apic_ints[x].src_bus_id == id) {
1189 				io_apic_ints[x].src_bus_id = 0;
1190 			}
1191 			else if (io_apic_ints[x].src_bus_id == 0) {
1192 				io_apic_ints[x].src_bus_id = id;
1193 			}
1194 		}
1195 	}
1196 
1197 	/* Assign IO APIC IDs.
1198 	 *
1199 	 * First try the existing ID. If a conflict is detected, try
1200 	 * the ID in the MP table.  If a conflict is still detected, find
1201 	 * a free id.
1202 	 *
1203 	 * We cannot use the ID_TO_IO table before all conflicts has been
1204 	 * resolved and the table has been corrected.
1205 	 */
1206 	for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
1207 
1208 		/* First try to use the value set by the BIOS */
1209 		physid = io_apic_get_id(apic);
1210 		if (io_apic_id_acceptable(apic, physid)) {
1211 			if (IO_TO_ID(apic) != physid)
1212 				swap_apic_id(apic, IO_TO_ID(apic), physid);
1213 			continue;
1214 		}
1215 
1216 		/* Then check if the value in the MP table is acceptable */
1217 		if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
1218 			continue;
1219 
1220 		/* Last resort, find a free APIC ID and use it */
1221 		freeid = first_free_apic_id();
1222 		if (freeid >= NAPICID)
1223 			panic("No free physical APIC IDs found");
1224 
1225 		if (io_apic_id_acceptable(apic, freeid)) {
1226 			swap_apic_id(apic, IO_TO_ID(apic), freeid);
1227 			continue;
1228 		}
1229 		panic("Free physical APIC ID not usable");
1230 	}
1231 	fix_id_to_io_mapping();
1232 
1233 	/* detect and fix broken Compaq MP table */
1234 	if (apic_int_type(0, 0) == -1) {
1235 		printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
1236 		io_apic_ints[nintrs].int_type = 3;	/* ExtInt */
1237 		io_apic_ints[nintrs].int_vector = 0xff;	/* Unassigned */
1238 		/* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
1239 		io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
1240 		io_apic_ints[nintrs].dst_apic_int = 0;	/* Pin 0 */
1241 		nintrs++;
1242 	}
1243 }
1244 
1245 
1246 /* Assign low level interrupt handlers */
1247 static void
1248 setup_apic_irq_mapping(void)
1249 {
1250 	int	x;
1251 	int	int_vector;
1252 
1253 	/* Clear array */
1254 	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1255 		int_to_apicintpin[x].ioapic = -1;
1256 		int_to_apicintpin[x].int_pin = 0;
1257 		int_to_apicintpin[x].apic_address = NULL;
1258 		int_to_apicintpin[x].redirindex = 0;
1259 	}
1260 
1261 	/* First assign ISA/EISA interrupts */
1262 	for (x = 0; x < nintrs; x++) {
1263 		int_vector = io_apic_ints[x].src_bus_irq;
1264 		if (int_vector < APIC_INTMAPSIZE &&
1265 		    io_apic_ints[x].int_vector == 0xff &&
1266 		    int_to_apicintpin[int_vector].ioapic == -1 &&
1267 		    (apic_int_is_bus_type(x, ISA) ||
1268 		     apic_int_is_bus_type(x, EISA)) &&
1269 		    io_apic_ints[x].int_type == 0) {
1270 			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1271 					io_apic_ints[x].dst_apic_int,
1272 					int_vector);
1273 		}
1274 	}
1275 
1276 	/* Assign first set of interrupts to intpins on IOAPIC #0 */
1277 	for (x = 0; x < nintrs; x++) {
1278 		int_vector = io_apic_ints[x].dst_apic_int;
1279 		if (int_vector < APIC_INTMAPSIZE &&
1280 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1281 		    io_apic_ints[x].int_vector == 0xff &&
1282 		    int_to_apicintpin[int_vector].ioapic == -1 &&
1283 		    (io_apic_ints[x].int_type == 0 ||
1284 		     io_apic_ints[x].int_type == 3)) {
1285 			assign_apic_irq(0,
1286 					io_apic_ints[x].dst_apic_int,
1287 					int_vector);
1288 		}
1289 	}
1290 	/*
1291 	 * Assign interrupts for remaining intpins.
1292 	 * Skip IOAPIC #0 intpin 0 if the type is ExtInt, since this indicates
1293 	 * that an entry for ISA/EISA irq 0 exist, and a fallback to mixed mode
1294 	 * due to 8254 interrupts not being delivered can reuse that low level
1295 	 * interrupt handler.
1296 	 */
1297 	int_vector = 0;
1298 	while (int_vector < APIC_INTMAPSIZE &&
1299 	       int_to_apicintpin[int_vector].ioapic != -1)
1300 		int_vector++;
1301 	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1302 		if ((io_apic_ints[x].int_type == 0 ||
1303 		     (io_apic_ints[x].int_type == 3 &&
1304 		      (io_apic_ints[x].dst_apic_id != IO_TO_ID(0) ||
1305 		       io_apic_ints[x].dst_apic_int != 0))) &&
1306 		    io_apic_ints[x].int_vector == 0xff) {
1307 			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1308 					io_apic_ints[x].dst_apic_int,
1309 					int_vector);
1310 			int_vector++;
1311 			while (int_vector < APIC_INTMAPSIZE &&
1312 			       int_to_apicintpin[int_vector].ioapic != -1)
1313 				int_vector++;
1314 		}
1315 	}
1316 }
1317 
1318 
1319 static int
1320 processor_entry(proc_entry_ptr entry, int cpu)
1321 {
1322 	/* check for usability */
1323 	if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1324 		return 0;
1325 
1326 	if(entry->apic_id >= NAPICID)
1327 		panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
1328 	/* check for BSP flag */
1329 	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1330 		boot_cpu_id = entry->apic_id;
1331 		CPU_TO_ID(0) = entry->apic_id;
1332 		ID_TO_CPU(entry->apic_id) = 0;
1333 		return 0;	/* its already been counted */
1334 	}
1335 
1336 	/* add another AP to list, if less than max number of CPUs */
1337 	else if (cpu < MAXCPU) {
1338 		CPU_TO_ID(cpu) = entry->apic_id;
1339 		ID_TO_CPU(entry->apic_id) = cpu;
1340 		return 1;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 
1347 static int
1348 bus_entry(bus_entry_ptr entry, int bus)
1349 {
1350 	int     x;
1351 	char    c, name[8];
1352 
1353 	/* encode the name into an index */
1354 	for (x = 0; x < 6; ++x) {
1355 		if ((c = entry->bus_type[x]) == ' ')
1356 			break;
1357 		name[x] = c;
1358 	}
1359 	name[x] = '\0';
1360 
1361 	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1362 		panic("unknown bus type: '%s'", name);
1363 
1364 	bus_data[bus].bus_id = entry->bus_id;
1365 	bus_data[bus].bus_type = x;
1366 
1367 	return 1;
1368 }
1369 
1370 
1371 static int
1372 io_apic_entry(io_apic_entry_ptr entry, int apic)
1373 {
1374 	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1375 		return 0;
1376 
1377 	IO_TO_ID(apic) = entry->apic_id;
1378 	if (entry->apic_id < NAPICID)
1379 		ID_TO_IO(entry->apic_id) = apic;
1380 
1381 	return 1;
1382 }
1383 
1384 
1385 static int
1386 lookup_bus_type(char *name)
1387 {
1388 	int     x;
1389 
1390 	for (x = 0; x < MAX_BUSTYPE; ++x)
1391 		if (strcmp(bus_type_table[x].name, name) == 0)
1392 			return bus_type_table[x].type;
1393 
1394 	return UNKNOWN_BUSTYPE;
1395 }
1396 
1397 
1398 static int
1399 int_entry(int_entry_ptr entry, int intr)
1400 {
1401 	int apic;
1402 
1403 	io_apic_ints[intr].int_type = entry->int_type;
1404 	io_apic_ints[intr].int_flags = entry->int_flags;
1405 	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1406 	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1407 	if (entry->dst_apic_id == 255) {
1408 		/* This signal goes to all IO APICS.  Select an IO APIC
1409 		   with sufficient number of interrupt pins */
1410 		for (apic = 0; apic < mp_napics; apic++)
1411 			if (((io_apic_read(apic, IOAPIC_VER) &
1412 			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1413 			    entry->dst_apic_int)
1414 				break;
1415 		if (apic < mp_napics)
1416 			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1417 		else
1418 			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1419 	} else
1420 		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1421 	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1422 
1423 	return 1;
1424 }
1425 
1426 
1427 static int
1428 apic_int_is_bus_type(int intr, int bus_type)
1429 {
1430 	int     bus;
1431 
1432 	for (bus = 0; bus < mp_nbusses; ++bus)
1433 		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1434 		    && ((int) bus_data[bus].bus_type == bus_type))
1435 			return 1;
1436 
1437 	return 0;
1438 }
1439 
1440 
1441 /*
1442  * Given a traditional ISA INT mask, return an APIC mask.
1443  */
1444 u_int
1445 isa_apic_mask(u_int isa_mask)
1446 {
1447 	int isa_irq;
1448 	int apic_pin;
1449 
1450 #if defined(SKIP_IRQ15_REDIRECT)
1451 	if (isa_mask == (1 << 15)) {
1452 		printf("skipping ISA IRQ15 redirect\n");
1453 		return isa_mask;
1454 	}
1455 #endif  /* SKIP_IRQ15_REDIRECT */
1456 
1457 	isa_irq = ffs(isa_mask);		/* find its bit position */
1458 	if (isa_irq == 0)			/* doesn't exist */
1459 		return 0;
1460 	--isa_irq;				/* make it zero based */
1461 
1462 	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1463 	if (apic_pin == -1)
1464 		return 0;
1465 
1466 	return (1 << apic_pin);			/* convert pin# to a mask */
1467 }
1468 
1469 
1470 /*
1471  * Determine which APIC pin an ISA/EISA INT is attached to.
1472  */
1473 #define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1474 #define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1475 #define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1476 #define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1477 
1478 #define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1479 int
1480 isa_apic_irq(int isa_irq)
1481 {
1482 	int     intr;
1483 
1484 	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1485 		if (INTTYPE(intr) == 0) {		/* standard INT */
1486 			if (SRCBUSIRQ(intr) == isa_irq) {
1487 				if (apic_int_is_bus_type(intr, ISA) ||
1488 			            apic_int_is_bus_type(intr, EISA))
1489 					return INTIRQ(intr);	/* found */
1490 			}
1491 		}
1492 	}
1493 	return -1;					/* NOT found */
1494 }
1495 
1496 
1497 /*
1498  * Determine which APIC pin a PCI INT is attached to.
1499  */
1500 #define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1501 #define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1502 #define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1503 int
1504 pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1505 {
1506 	int     intr;
1507 
1508 	--pciInt;					/* zero based */
1509 
1510 	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1511 		if ((INTTYPE(intr) == 0)		/* standard INT */
1512 		    && (SRCBUSID(intr) == pciBus)
1513 		    && (SRCBUSDEVICE(intr) == pciDevice)
1514 		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1515 			if (apic_int_is_bus_type(intr, PCI))
1516 				return INTIRQ(intr);	/* exact match */
1517 
1518 	return -1;					/* NOT found */
1519 }
1520 
1521 int
1522 next_apic_irq(int irq)
1523 {
1524 	int intr, ointr;
1525 	int bus, bustype;
1526 
1527 	bus = 0;
1528 	bustype = 0;
1529 	for (intr = 0; intr < nintrs; intr++) {
1530 		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1531 			continue;
1532 		bus = SRCBUSID(intr);
1533 		bustype = apic_bus_type(bus);
1534 		if (bustype != ISA &&
1535 		    bustype != EISA &&
1536 		    bustype != PCI)
1537 			continue;
1538 		break;
1539 	}
1540 	if (intr >= nintrs) {
1541 		return -1;
1542 	}
1543 	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1544 		if (INTTYPE(ointr) != 0)
1545 			continue;
1546 		if (bus != SRCBUSID(ointr))
1547 			continue;
1548 		if (bustype == PCI) {
1549 			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1550 				continue;
1551 			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1552 				continue;
1553 		}
1554 		if (bustype == ISA || bustype == EISA) {
1555 			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1556 				continue;
1557 		}
1558 		if (INTPIN(intr) == INTPIN(ointr))
1559 			continue;
1560 		break;
1561 	}
1562 	if (ointr >= nintrs) {
1563 		return -1;
1564 	}
1565 	return INTIRQ(ointr);
1566 }
1567 #undef SRCBUSLINE
1568 #undef SRCBUSDEVICE
1569 #undef SRCBUSID
1570 #undef SRCBUSIRQ
1571 
1572 #undef INTPIN
1573 #undef INTIRQ
1574 #undef INTAPIC
1575 #undef INTTYPE
1576 
1577 
1578 /*
1579  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1580  *
1581  * XXX FIXME:
1582  *  Exactly what this means is unclear at this point.  It is a solution
1583  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1584  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1585  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1586  *  option.
1587  */
1588 int
1589 undirect_isa_irq(int rirq)
1590 {
1591 #if defined(READY)
1592 	if (bootverbose)
1593 	    printf("Freeing redirected ISA irq %d.\n", rirq);
1594 	/** FIXME: tickle the MB redirector chip */
1595 	return ???;
1596 #else
1597 	if (bootverbose)
1598 	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1599 	return 0;
1600 #endif  /* READY */
1601 }
1602 
1603 
1604 /*
1605  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1606  */
1607 int
1608 undirect_pci_irq(int rirq)
1609 {
1610 #if defined(READY)
1611 	if (bootverbose)
1612 		printf("Freeing redirected PCI irq %d.\n", rirq);
1613 
1614 	/** FIXME: tickle the MB redirector chip */
1615 	return ???;
1616 #else
1617 	if (bootverbose)
1618 		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1619 		       rirq);
1620 	return 0;
1621 #endif  /* READY */
1622 }
1623 
1624 
1625 /*
1626  * given a bus ID, return:
1627  *  the bus type if found
1628  *  -1 if NOT found
1629  */
1630 int
1631 apic_bus_type(int id)
1632 {
1633 	int     x;
1634 
1635 	for (x = 0; x < mp_nbusses; ++x)
1636 		if (bus_data[x].bus_id == id)
1637 			return bus_data[x].bus_type;
1638 
1639 	return -1;
1640 }
1641 
1642 
1643 /*
1644  * given a LOGICAL APIC# and pin#, return:
1645  *  the associated src bus ID if found
1646  *  -1 if NOT found
1647  */
1648 int
1649 apic_src_bus_id(int apic, int pin)
1650 {
1651 	int     x;
1652 
1653 	/* search each of the possible INTerrupt sources */
1654 	for (x = 0; x < nintrs; ++x)
1655 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1656 		    (pin == io_apic_ints[x].dst_apic_int))
1657 			return (io_apic_ints[x].src_bus_id);
1658 
1659 	return -1;		/* NOT found */
1660 }
1661 
1662 
1663 /*
1664  * given a LOGICAL APIC# and pin#, return:
1665  *  the associated src bus IRQ if found
1666  *  -1 if NOT found
1667  */
1668 int
1669 apic_src_bus_irq(int apic, int pin)
1670 {
1671 	int     x;
1672 
1673 	for (x = 0; x < nintrs; x++)
1674 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1675 		    (pin == io_apic_ints[x].dst_apic_int))
1676 			return (io_apic_ints[x].src_bus_irq);
1677 
1678 	return -1;		/* NOT found */
1679 }
1680 
1681 
1682 /*
1683  * given a LOGICAL APIC# and pin#, return:
1684  *  the associated INTerrupt type if found
1685  *  -1 if NOT found
1686  */
1687 int
1688 apic_int_type(int apic, int pin)
1689 {
1690 	int     x;
1691 
1692 	/* search each of the possible INTerrupt sources */
1693 	for (x = 0; x < nintrs; ++x)
1694 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1695 		    (pin == io_apic_ints[x].dst_apic_int))
1696 			return (io_apic_ints[x].int_type);
1697 
1698 	return -1;		/* NOT found */
1699 }
1700 
1701 int
1702 apic_irq(int apic, int pin)
1703 {
1704 	int x;
1705 	int res;
1706 
1707 	for (x = 0; x < nintrs; ++x)
1708 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1709 		    (pin == io_apic_ints[x].dst_apic_int)) {
1710 			res = io_apic_ints[x].int_vector;
1711 			if (res == 0xff)
1712 				return -1;
1713 			if (apic != int_to_apicintpin[res].ioapic)
1714 				panic("apic_irq: inconsistent table");
1715 			if (pin != int_to_apicintpin[res].int_pin)
1716 				panic("apic_irq inconsistent table (2)");
1717 			return res;
1718 		}
1719 	return -1;
1720 }
1721 
1722 
1723 /*
1724  * given a LOGICAL APIC# and pin#, return:
1725  *  the associated trigger mode if found
1726  *  -1 if NOT found
1727  */
1728 int
1729 apic_trigger(int apic, int pin)
1730 {
1731 	int     x;
1732 
1733 	/* search each of the possible INTerrupt sources */
1734 	for (x = 0; x < nintrs; ++x)
1735 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1736 		    (pin == io_apic_ints[x].dst_apic_int))
1737 			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1738 
1739 	return -1;		/* NOT found */
1740 }
1741 
1742 
1743 /*
1744  * given a LOGICAL APIC# and pin#, return:
1745  *  the associated 'active' level if found
1746  *  -1 if NOT found
1747  */
1748 int
1749 apic_polarity(int apic, int pin)
1750 {
1751 	int     x;
1752 
1753 	/* search each of the possible INTerrupt sources */
1754 	for (x = 0; x < nintrs; ++x)
1755 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1756 		    (pin == io_apic_ints[x].dst_apic_int))
1757 			return (io_apic_ints[x].int_flags & 0x03);
1758 
1759 	return -1;		/* NOT found */
1760 }
1761 
1762 
1763 /*
1764  * set data according to MP defaults
1765  * FIXME: probably not complete yet...
1766  */
1767 static void
1768 default_mp_table(int type)
1769 {
1770 	int     ap_cpu_id;
1771 #if defined(APIC_IO)
1772 	int     io_apic_id;
1773 	int     pin;
1774 #endif	/* APIC_IO */
1775 
1776 #if 0
1777 	printf("  MP default config type: %d\n", type);
1778 	switch (type) {
1779 	case 1:
1780 		printf("   bus: ISA, APIC: 82489DX\n");
1781 		break;
1782 	case 2:
1783 		printf("   bus: EISA, APIC: 82489DX\n");
1784 		break;
1785 	case 3:
1786 		printf("   bus: EISA, APIC: 82489DX\n");
1787 		break;
1788 	case 4:
1789 		printf("   bus: MCA, APIC: 82489DX\n");
1790 		break;
1791 	case 5:
1792 		printf("   bus: ISA+PCI, APIC: Integrated\n");
1793 		break;
1794 	case 6:
1795 		printf("   bus: EISA+PCI, APIC: Integrated\n");
1796 		break;
1797 	case 7:
1798 		printf("   bus: MCA+PCI, APIC: Integrated\n");
1799 		break;
1800 	default:
1801 		printf("   future type\n");
1802 		break;
1803 		/* NOTREACHED */
1804 	}
1805 #endif	/* 0 */
1806 
1807 	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1808 	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1809 
1810 	/* BSP */
1811 	CPU_TO_ID(0) = boot_cpu_id;
1812 	ID_TO_CPU(boot_cpu_id) = 0;
1813 
1814 	/* one and only AP */
1815 	CPU_TO_ID(1) = ap_cpu_id;
1816 	ID_TO_CPU(ap_cpu_id) = 1;
1817 
1818 #if defined(APIC_IO)
1819 	/* one and only IO APIC */
1820 	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1821 
1822 	/*
1823 	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1824 	 * necessary as some hardware isn't properly setting up the IO APIC
1825 	 */
1826 #if defined(REALLY_ANAL_IOAPICID_VALUE)
1827 	if (io_apic_id != 2) {
1828 #else
1829 	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1830 #endif	/* REALLY_ANAL_IOAPICID_VALUE */
1831 		io_apic_set_id(0, 2);
1832 		io_apic_id = 2;
1833 	}
1834 	IO_TO_ID(0) = io_apic_id;
1835 	ID_TO_IO(io_apic_id) = 0;
1836 #endif	/* APIC_IO */
1837 
1838 	/* fill out bus entries */
1839 	switch (type) {
1840 	case 1:
1841 	case 2:
1842 	case 3:
1843 	case 4:
1844 	case 5:
1845 	case 6:
1846 	case 7:
1847 		bus_data[0].bus_id = default_data[type - 1][1];
1848 		bus_data[0].bus_type = default_data[type - 1][2];
1849 		bus_data[1].bus_id = default_data[type - 1][3];
1850 		bus_data[1].bus_type = default_data[type - 1][4];
1851 		break;
1852 
1853 	/* case 4: case 7:		   MCA NOT supported */
1854 	default:		/* illegal/reserved */
1855 		panic("BAD default MP config: %d", type);
1856 		/* NOTREACHED */
1857 	}
1858 
1859 #if defined(APIC_IO)
1860 	/* general cases from MP v1.4, table 5-2 */
1861 	for (pin = 0; pin < 16; ++pin) {
1862 		io_apic_ints[pin].int_type = 0;
1863 		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1864 		io_apic_ints[pin].src_bus_id = 0;
1865 		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1866 		io_apic_ints[pin].dst_apic_id = io_apic_id;
1867 		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1868 	}
1869 
1870 	/* special cases from MP v1.4, table 5-2 */
1871 	if (type == 2) {
1872 		io_apic_ints[2].int_type = 0xff;	/* N/C */
1873 		io_apic_ints[13].int_type = 0xff;	/* N/C */
1874 #if !defined(APIC_MIXED_MODE)
1875 		/** FIXME: ??? */
1876 		panic("sorry, can't support type 2 default yet");
1877 #endif	/* APIC_MIXED_MODE */
1878 	}
1879 	else
1880 		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1881 
1882 	if (type == 7)
1883 		io_apic_ints[0].int_type = 0xff;	/* N/C */
1884 	else
1885 		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1886 #endif	/* APIC_IO */
1887 }
1888 
1889 
1890 /*
1891  * initialize all the SMP locks
1892  */
1893 
1894 /* critical region around IO APIC, apic_imen */
1895 struct simplelock	imen_lock;
1896 
1897 /* critical region around splxx(), cpl, cml, cil, ipending */
1898 struct simplelock	cpl_lock;
1899 
1900 /* Make FAST_INTR() routines sequential */
1901 struct simplelock	fast_intr_lock;
1902 
1903 /* critical region around INTR() routines */
1904 struct simplelock	intr_lock;
1905 
1906 /* lock region used by kernel profiling */
1907 struct simplelock	mcount_lock;
1908 
1909 #ifdef USE_COMLOCK
1910 /* locks com (tty) data/hardware accesses: a FASTINTR() */
1911 struct simplelock	com_lock;
1912 #endif /* USE_COMLOCK */
1913 
1914 /* lock around the MP rendezvous */
1915 static struct simplelock smp_rv_lock;
1916 
1917 /* only 1 CPU can panic at a time :) */
1918 struct simplelock	panic_lock;
1919 
1920 static void
1921 init_locks(void)
1922 {
1923 #if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1924 	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1925 #endif
1926 
1927 	s_lock_init((struct simplelock*)&mcount_lock);
1928 
1929 	s_lock_init((struct simplelock*)&fast_intr_lock);
1930 	s_lock_init((struct simplelock*)&intr_lock);
1931 	s_lock_init((struct simplelock*)&imen_lock);
1932 	s_lock_init((struct simplelock*)&cpl_lock);
1933 	s_lock_init(&smp_rv_lock);
1934 	s_lock_init(&panic_lock);
1935 
1936 #ifdef USE_COMLOCK
1937 	s_lock_init((struct simplelock*)&com_lock);
1938 #endif /* USE_COMLOCK */
1939 
1940 	s_lock_init(&ap_boot_lock);
1941 }
1942 
1943 /*
1944  * start each AP in our list
1945  */
1946 static int
1947 start_all_aps(u_int boot_addr)
1948 {
1949 	int     x, i, pg;
1950 	u_char  mpbiosreason;
1951 	u_long  mpbioswarmvec;
1952 	struct globaldata *gd;
1953 	char *stack;
1954 
1955 	POSTCODE(START_ALL_APS_POST);
1956 
1957 	/* initialize BSP's local APIC */
1958 	apic_initialize();
1959 	bsp_apic_ready = 1;
1960 
1961 	/* install the AP 1st level boot code */
1962 	install_ap_tramp(boot_addr);
1963 
1964 
1965 	/* save the current value of the warm-start vector */
1966 	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1967 #ifndef PC98
1968 	outb(CMOS_REG, BIOS_RESET);
1969 	mpbiosreason = inb(CMOS_DATA);
1970 #endif
1971 
1972 	/* record BSP in CPU map */
1973 	all_cpus = 1;
1974 
1975 	/* set up 0 -> 4MB P==V mapping for AP boot */
1976 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1977 	invltlb();
1978 
1979 	/* start each AP */
1980 	for (x = 1; x <= mp_naps; ++x) {
1981 
1982 		/* This is a bit verbose, it will go away soon.  */
1983 
1984 		/* first page of AP's private space */
1985 		pg = x * i386_btop(sizeof(struct privatespace));
1986 
1987 		/* allocate a new private data page */
1988 		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1989 
1990 		/* wire it into the private page table page */
1991 		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1992 
1993 		/* allocate and set up an idle stack data page */
1994 		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1995 		for (i = 0; i < UPAGES; i++)
1996 			SMPpt[pg + 5 + i] = (pt_entry_t)
1997 			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1998 
1999 		SMPpt[pg + 1] = 0;		/* *prv_CMAP1 */
2000 		SMPpt[pg + 2] = 0;		/* *prv_CMAP2 */
2001 		SMPpt[pg + 3] = 0;		/* *prv_CMAP3 */
2002 		SMPpt[pg + 4] = 0;		/* *prv_PMAP1 */
2003 
2004 		/* prime data page for it to use */
2005 		SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu);
2006 		gd->gd_cpuid = x;
2007 		gd->gd_cpu_lockid = x << 24;
2008 		gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
2009 		gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
2010 		gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
2011 		gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
2012 		gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
2013 		gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
2014 		gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
2015 		gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
2016 
2017 		/* setup a vector to our boot code */
2018 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
2019 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
2020 #ifndef PC98
2021 		outb(CMOS_REG, BIOS_RESET);
2022 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
2023 #endif
2024 
2025 		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
2026 		bootAP = x;
2027 
2028 		/* attempt to start the Application Processor */
2029 		CHECK_INIT(99);	/* setup checkpoints */
2030 		if (!start_ap(x, boot_addr)) {
2031 			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
2032 			CHECK_PRINT("trace");	/* show checkpoints */
2033 			/* better panic as the AP may be running loose */
2034 			printf("panic y/n? [y] ");
2035 			if (cngetc() != 'n')
2036 				panic("bye-bye");
2037 		}
2038 		CHECK_PRINT("trace");		/* show checkpoints */
2039 
2040 		/* record its version info */
2041 		cpu_apic_versions[x] = cpu_apic_versions[0];
2042 
2043 		all_cpus |= (1 << x);		/* record AP in CPU map */
2044 	}
2045 
2046 	/* build our map of 'other' CPUs */
2047 	other_cpus = all_cpus & ~(1 << cpuid);
2048 
2049 	/* fill in our (BSP) APIC version */
2050 	cpu_apic_versions[0] = lapic.version;
2051 
2052 	/* restore the warmstart vector */
2053 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
2054 #ifndef PC98
2055 	outb(CMOS_REG, BIOS_RESET);
2056 	outb(CMOS_DATA, mpbiosreason);
2057 #endif
2058 
2059 	/*
2060 	 * Set up the idle context for the BSP.  Similar to above except
2061 	 * that some was done by locore, some by pmap.c and some is implicit
2062 	 * because the BSP is cpu#0 and the page is initially zero, and also
2063 	 * because we can refer to variables by name on the BSP..
2064 	 */
2065 
2066 	/* Allocate and setup BSP idle stack */
2067 	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
2068 	for (i = 0; i < UPAGES; i++)
2069 		SMPpt[5 + i] = (pt_entry_t)
2070 		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
2071 
2072 	*(int *)PTD = 0;
2073 	pmap_set_opt();
2074 
2075 	/* number of APs actually started */
2076 	return mp_ncpus - 1;
2077 }
2078 
2079 
2080 /*
2081  * load the 1st level AP boot code into base memory.
2082  */
2083 
2084 /* targets for relocation */
2085 extern void bigJump(void);
2086 extern void bootCodeSeg(void);
2087 extern void bootDataSeg(void);
2088 extern void MPentry(void);
2089 extern u_int MP_GDT;
2090 extern u_int mp_gdtbase;
2091 
2092 static void
2093 install_ap_tramp(u_int boot_addr)
2094 {
2095 	int     x;
2096 	int     size = *(int *) ((u_long) & bootMP_size);
2097 	u_char *src = (u_char *) ((u_long) bootMP);
2098 	u_char *dst = (u_char *) boot_addr + KERNBASE;
2099 	u_int   boot_base = (u_int) bootMP;
2100 	u_int8_t *dst8;
2101 	u_int16_t *dst16;
2102 	u_int32_t *dst32;
2103 
2104 	POSTCODE(INSTALL_AP_TRAMP_POST);
2105 
2106 	for (x = 0; x < size; ++x)
2107 		*dst++ = *src++;
2108 
2109 	/*
2110 	 * modify addresses in code we just moved to basemem. unfortunately we
2111 	 * need fairly detailed info about mpboot.s for this to work.  changes
2112 	 * to mpboot.s might require changes here.
2113 	 */
2114 
2115 	/* boot code is located in KERNEL space */
2116 	dst = (u_char *) boot_addr + KERNBASE;
2117 
2118 	/* modify the lgdt arg */
2119 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
2120 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
2121 
2122 	/* modify the ljmp target for MPentry() */
2123 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
2124 	*dst32 = ((u_int) MPentry - KERNBASE);
2125 
2126 	/* modify the target for boot code segment */
2127 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
2128 	dst8 = (u_int8_t *) (dst16 + 1);
2129 	*dst16 = (u_int) boot_addr & 0xffff;
2130 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2131 
2132 	/* modify the target for boot data segment */
2133 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
2134 	dst8 = (u_int8_t *) (dst16 + 1);
2135 	*dst16 = (u_int) boot_addr & 0xffff;
2136 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2137 }
2138 
2139 
2140 /*
2141  * this function starts the AP (application processor) identified
2142  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
2143  * to accomplish this.  This is necessary because of the nuances
2144  * of the different hardware we might encounter.  It ain't pretty,
2145  * but it seems to work.
2146  */
2147 static int
2148 start_ap(int logical_cpu, u_int boot_addr)
2149 {
2150 	int     physical_cpu;
2151 	int     vector;
2152 	int     cpus;
2153 	u_long  icr_lo, icr_hi;
2154 
2155 	POSTCODE(START_AP_POST);
2156 
2157 	/* get the PHYSICAL APIC ID# */
2158 	physical_cpu = CPU_TO_ID(logical_cpu);
2159 
2160 	/* calculate the vector */
2161 	vector = (boot_addr >> 12) & 0xff;
2162 
2163 	/* used as a watchpoint to signal AP startup */
2164 	cpus = mp_ncpus;
2165 
2166 	/*
2167 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2168 	 * and running the target CPU. OR this INIT IPI might be latched (P5
2169 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2170 	 * ignored.
2171 	 */
2172 
2173 	/* setup the address for the target AP */
2174 	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2175 	icr_hi |= (physical_cpu << 24);
2176 	lapic.icr_hi = icr_hi;
2177 
2178 	/* do an INIT IPI: assert RESET */
2179 	icr_lo = lapic.icr_lo & 0xfff00000;
2180 	lapic.icr_lo = icr_lo | 0x0000c500;
2181 
2182 	/* wait for pending status end */
2183 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2184 		 /* spin */ ;
2185 
2186 	/* do an INIT IPI: deassert RESET */
2187 	lapic.icr_lo = icr_lo | 0x00008500;
2188 
2189 	/* wait for pending status end */
2190 	u_sleep(10000);		/* wait ~10mS */
2191 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2192 		 /* spin */ ;
2193 
2194 	/*
2195 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2196 	 * latched, (P5 bug) this 1st STARTUP would then terminate
2197 	 * immediately, and the previously started INIT IPI would continue. OR
2198 	 * the previous INIT IPI has already run. and this STARTUP IPI will
2199 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2200 	 * will run.
2201 	 */
2202 
2203 	/* do a STARTUP IPI */
2204 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2205 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2206 		 /* spin */ ;
2207 	u_sleep(200);		/* wait ~200uS */
2208 
2209 	/*
2210 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2211 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2212 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2213 	 * recognized after hardware RESET or INIT IPI.
2214 	 */
2215 
2216 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2217 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2218 		 /* spin */ ;
2219 	u_sleep(200);		/* wait ~200uS */
2220 
2221 	/* wait for it to start */
2222 	set_apic_timer(5000000);/* == 5 seconds */
2223 	while (read_apic_timer())
2224 		if (mp_ncpus > cpus)
2225 			return 1;	/* return SUCCESS */
2226 
2227 	return 0;		/* return FAILURE */
2228 }
2229 
2230 /*
2231  * Flush the TLB on all other CPU's
2232  *
2233  * XXX: Needs to handshake and wait for completion before proceding.
2234  */
2235 void
2236 smp_invltlb(void)
2237 {
2238 #if defined(APIC_IO)
2239 	if (smp_started && invltlb_ok)
2240 		all_but_self_ipi(XINVLTLB_OFFSET);
2241 #endif  /* APIC_IO */
2242 }
2243 
2244 void
2245 invlpg(u_int addr)
2246 {
2247 	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2248 
2249 	/* send a message to the other CPUs */
2250 	smp_invltlb();
2251 }
2252 
2253 void
2254 invltlb(void)
2255 {
2256 	u_long  temp;
2257 
2258 	/*
2259 	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2260 	 * inlined.
2261 	 */
2262 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2263 
2264 	/* send a message to the other CPUs */
2265 	smp_invltlb();
2266 }
2267 
2268 
2269 /*
2270  * When called the executing CPU will send an IPI to all other CPUs
2271  *  requesting that they halt execution.
2272  *
2273  * Usually (but not necessarily) called with 'other_cpus' as its arg.
2274  *
2275  *  - Signals all CPUs in map to stop.
2276  *  - Waits for each to stop.
2277  *
2278  * Returns:
2279  *  -1: error
2280  *   0: NA
2281  *   1: ok
2282  *
2283  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2284  *            from executing at same time.
2285  */
2286 int
2287 stop_cpus(u_int map)
2288 {
2289 	int count = 0;
2290 
2291 	if (!smp_started)
2292 		return 0;
2293 
2294 	/* send the Xcpustop IPI to all CPUs in map */
2295 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2296 
2297 	while (count++ < 100000 && (stopped_cpus & map) != map)
2298 		/* spin */ ;
2299 
2300 #ifdef DIAGNOSTIC
2301 	if ((stopped_cpus & map) != map)
2302 		printf("Warning: CPUs 0x%x did not stop!\n",
2303 		    (~(stopped_cpus & map)) & map);
2304 #endif
2305 
2306 	return 1;
2307 }
2308 
2309 
2310 /*
2311  * Called by a CPU to restart stopped CPUs.
2312  *
2313  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2314  *
2315  *  - Signals all CPUs in map to restart.
2316  *  - Waits for each to restart.
2317  *
2318  * Returns:
2319  *  -1: error
2320  *   0: NA
2321  *   1: ok
2322  */
2323 int
2324 restart_cpus(u_int map)
2325 {
2326 	int count = 0;
2327 
2328 	if (!smp_started)
2329 		return 0;
2330 
2331 	started_cpus = map;		/* signal other cpus to restart */
2332 
2333 	/* wait for each to clear its bit */
2334 	while (count++ < 100000 && (stopped_cpus & map) != 0)
2335 		/* spin */ ;
2336 
2337 #ifdef DIAGNOSTIC
2338 	if ((stopped_cpus & map) != 0)
2339 		printf("Warning: CPUs 0x%x did not restart!\n",
2340 		    (~(stopped_cpus & map)) & map);
2341 #endif
2342 
2343 	return 1;
2344 }
2345 
2346 int smp_active = 0;	/* are the APs allowed to run? */
2347 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2348 
2349 /* XXX maybe should be hw.ncpu */
2350 static int smp_cpus = 1;	/* how many cpu's running */
2351 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2352 
2353 int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2354 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2355 
2356 /* Warning: Do not staticize.  Used from swtch.s */
2357 int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2358 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2359 	   &do_page_zero_idle, 0, "");
2360 
2361 /* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2362 int forward_irq_enabled = 1;
2363 SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2364 	   &forward_irq_enabled, 0, "");
2365 
2366 /* Enable forwarding of a signal to a process running on a different CPU */
2367 static int forward_signal_enabled = 1;
2368 SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2369 	   &forward_signal_enabled, 0, "");
2370 
2371 /* Enable forwarding of roundrobin to all other cpus */
2372 static int forward_roundrobin_enabled = 1;
2373 SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2374 	   &forward_roundrobin_enabled, 0, "");
2375 
2376 /*
2377  * This is called once the rest of the system is up and running and we're
2378  * ready to let the AP's out of the pen.
2379  */
2380 void ap_init(void);
2381 
2382 void
2383 ap_init(void)
2384 {
2385 	u_int	apic_id;
2386 
2387 	/* lock against other AP's that are waking up */
2388 	s_lock(&ap_boot_lock);
2389 
2390 	/* BSP may have changed PTD while we're waiting for the lock */
2391 	cpu_invltlb();
2392 
2393 	smp_cpus++;
2394 
2395 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2396 	lidt(&r_idt);
2397 #endif
2398 
2399 	/* Build our map of 'other' CPUs. */
2400 	other_cpus = all_cpus & ~(1 << cpuid);
2401 
2402 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2403 
2404 	/* set up CPU registers and state */
2405 	cpu_setregs();
2406 
2407 	/* set up FPU state on the AP */
2408 	npxinit(__INITIAL_NPXCW__);
2409 
2410 	/* A quick check from sanity claus */
2411 	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2412 	if (cpuid != apic_id) {
2413 		printf("SMP: cpuid = %d\n", cpuid);
2414 		printf("SMP: apic_id = %d\n", apic_id);
2415 		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2416 		panic("cpuid mismatch! boom!!");
2417 	}
2418 
2419 	/* Init local apic for irq's */
2420 	apic_initialize();
2421 
2422 	/* Set memory range attributes for this CPU to match the BSP */
2423 	mem_range_AP_init();
2424 
2425 	/*
2426 	 * Activate smp_invltlb, although strictly speaking, this isn't
2427 	 * quite correct yet.  We should have a bitfield for cpus willing
2428 	 * to accept TLB flush IPI's or something and sync them.
2429 	 */
2430 	if (smp_cpus == mp_ncpus) {
2431 		invltlb_ok = 1;
2432 		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2433 		smp_active = 1;	 /* historic */
2434 	}
2435 
2436 	/* let other AP's wake up now */
2437 	s_unlock(&ap_boot_lock);
2438 
2439 	/* wait until all the AP's are up */
2440 	while (smp_started == 0)
2441 		; /* nothing */
2442 
2443 	/*
2444 	 * Set curproc to our per-cpu idleproc so that mutexes have
2445 	 * something unique to lock with.
2446 	 */
2447 	PCPU_SET(curproc,idleproc);
2448 
2449 	microuptime(&switchtime);
2450 	switchticks = ticks;
2451 
2452 	/* ok, now grab sched_lock and enter the scheduler */
2453 	enable_intr();
2454 	mtx_enter(&sched_lock, MTX_SPIN);
2455 	cpu_throw();	/* doesn't return */
2456 
2457 	panic("scheduler returned us to ap_init");
2458 }
2459 
2460 #ifdef BETTER_CLOCK
2461 
2462 #define CHECKSTATE_USER	0
2463 #define CHECKSTATE_SYS	1
2464 #define CHECKSTATE_INTR	2
2465 
2466 /* Do not staticize.  Used from apic_vector.s */
2467 struct proc*	checkstate_curproc[MAXCPU];
2468 int		checkstate_cpustate[MAXCPU];
2469 u_long		checkstate_pc[MAXCPU];
2470 
2471 #define PC_TO_INDEX(pc, prof)				\
2472         ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2473             (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2474 
2475 static void
2476 addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2477 {
2478 	int i;
2479 	struct uprof *prof;
2480 	u_long pc;
2481 
2482 	pc = checkstate_pc[id];
2483 	prof = &p->p_stats->p_prof;
2484 	if (pc >= prof->pr_off &&
2485 	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2486 		if ((p->p_flag & P_OWEUPC) == 0) {
2487 			prof->pr_addr = pc;
2488 			prof->pr_ticks = 1;
2489 			p->p_flag |= P_OWEUPC;
2490 		}
2491 		*astmap |= (1 << id);
2492 	}
2493 }
2494 
2495 static void
2496 forwarded_statclock(int id, int pscnt, int *astmap)
2497 {
2498 	struct pstats *pstats;
2499 	long rss;
2500 	struct rusage *ru;
2501 	struct vmspace *vm;
2502 	int cpustate;
2503 	struct proc *p;
2504 #ifdef GPROF
2505 	register struct gmonparam *g;
2506 	int i;
2507 #endif
2508 
2509 	p = checkstate_curproc[id];
2510 	cpustate = checkstate_cpustate[id];
2511 
2512 	/* XXX */
2513 	if (p->p_ithd)
2514 		cpustate = CHECKSTATE_INTR;
2515 	else if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2516 		cpustate = CHECKSTATE_SYS;
2517 
2518 	switch (cpustate) {
2519 	case CHECKSTATE_USER:
2520 		if (p->p_flag & P_PROFIL)
2521 			addupc_intr_forwarded(p, id, astmap);
2522 		if (pscnt > 1)
2523 			return;
2524 		p->p_uticks++;
2525 		if (p->p_nice > NZERO)
2526 			cp_time[CP_NICE]++;
2527 		else
2528 			cp_time[CP_USER]++;
2529 		break;
2530 	case CHECKSTATE_SYS:
2531 #ifdef GPROF
2532 		/*
2533 		 * Kernel statistics are just like addupc_intr, only easier.
2534 		 */
2535 		g = &_gmonparam;
2536 		if (g->state == GMON_PROF_ON) {
2537 			i = checkstate_pc[id] - g->lowpc;
2538 			if (i < g->textsize) {
2539 				i /= HISTFRACTION * sizeof(*g->kcount);
2540 				g->kcount[i]++;
2541 			}
2542 		}
2543 #endif
2544 		if (pscnt > 1)
2545 			return;
2546 
2547 		p->p_sticks++;
2548 		if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2549 			cp_time[CP_IDLE]++;
2550 		else
2551 			cp_time[CP_SYS]++;
2552 		break;
2553 	case CHECKSTATE_INTR:
2554 	default:
2555 #ifdef GPROF
2556 		/*
2557 		 * Kernel statistics are just like addupc_intr, only easier.
2558 		 */
2559 		g = &_gmonparam;
2560 		if (g->state == GMON_PROF_ON) {
2561 			i = checkstate_pc[id] - g->lowpc;
2562 			if (i < g->textsize) {
2563 				i /= HISTFRACTION * sizeof(*g->kcount);
2564 				g->kcount[i]++;
2565 			}
2566 		}
2567 #endif
2568 		if (pscnt > 1)
2569 			return;
2570 		if (p)
2571 			p->p_iticks++;
2572 		cp_time[CP_INTR]++;
2573 	}
2574 	schedclock(p);
2575 
2576 	/* Update resource usage integrals and maximums. */
2577 	if ((pstats = p->p_stats) != NULL &&
2578 	    (ru = &pstats->p_ru) != NULL &&
2579 	    (vm = p->p_vmspace) != NULL) {
2580 		ru->ru_ixrss += pgtok(vm->vm_tsize);
2581 		ru->ru_idrss += pgtok(vm->vm_dsize);
2582 		ru->ru_isrss += pgtok(vm->vm_ssize);
2583 		rss = pgtok(vmspace_resident_count(vm));
2584 		if (ru->ru_maxrss < rss)
2585 			ru->ru_maxrss = rss;
2586 	}
2587 }
2588 
2589 void
2590 forward_statclock(int pscnt)
2591 {
2592 	int map;
2593 	int id;
2594 	int i;
2595 
2596 	/* Kludge. We don't yet have separate locks for the interrupts
2597 	 * and the kernel. This means that we cannot let the other processors
2598 	 * handle complex interrupts while inhibiting them from entering
2599 	 * the kernel in a non-interrupt context.
2600 	 *
2601 	 * What we can do, without changing the locking mechanisms yet,
2602 	 * is letting the other processors handle a very simple interrupt
2603 	 * (wich determines the processor states), and do the main
2604 	 * work ourself.
2605 	 */
2606 
2607 	if (!smp_started || !invltlb_ok || cold || panicstr)
2608 		return;
2609 
2610 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2611 
2612 	map = other_cpus & ~stopped_cpus ;
2613 	checkstate_probed_cpus = 0;
2614 	if (map != 0)
2615 		selected_apic_ipi(map,
2616 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2617 
2618 	i = 0;
2619 	while (checkstate_probed_cpus != map) {
2620 		/* spin */
2621 		i++;
2622 		if (i == 100000) {
2623 #ifdef BETTER_CLOCK_DIAGNOSTIC
2624 			printf("forward_statclock: checkstate %x\n",
2625 			       checkstate_probed_cpus);
2626 #endif
2627 			break;
2628 		}
2629 	}
2630 
2631 	/*
2632 	 * Step 2: walk through other processors processes, update ticks and
2633 	 * profiling info.
2634 	 */
2635 
2636 	map = 0;
2637 	for (id = 0; id < mp_ncpus; id++) {
2638 		if (id == cpuid)
2639 			continue;
2640 		if (((1 << id) & checkstate_probed_cpus) == 0)
2641 			continue;
2642 		forwarded_statclock(id, pscnt, &map);
2643 	}
2644 	if (map != 0) {
2645 		checkstate_need_ast |= map;
2646 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2647 		i = 0;
2648 		while ((checkstate_need_ast & map) != 0) {
2649 			/* spin */
2650 			i++;
2651 			if (i > 100000) {
2652 #ifdef BETTER_CLOCK_DIAGNOSTIC
2653 				printf("forward_statclock: dropped ast 0x%x\n",
2654 				       checkstate_need_ast & map);
2655 #endif
2656 				break;
2657 			}
2658 		}
2659 	}
2660 }
2661 
2662 void
2663 forward_hardclock(int pscnt)
2664 {
2665 	int map;
2666 	int id;
2667 	struct proc *p;
2668 	struct pstats *pstats;
2669 	int i;
2670 
2671 	/* Kludge. We don't yet have separate locks for the interrupts
2672 	 * and the kernel. This means that we cannot let the other processors
2673 	 * handle complex interrupts while inhibiting them from entering
2674 	 * the kernel in a non-interrupt context.
2675 	 *
2676 	 * What we can do, without changing the locking mechanisms yet,
2677 	 * is letting the other processors handle a very simple interrupt
2678 	 * (wich determines the processor states), and do the main
2679 	 * work ourself.
2680 	 */
2681 
2682 	if (!smp_started || !invltlb_ok || cold || panicstr)
2683 		return;
2684 
2685 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2686 
2687 	map = other_cpus & ~stopped_cpus ;
2688 	checkstate_probed_cpus = 0;
2689 	if (map != 0)
2690 		selected_apic_ipi(map,
2691 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2692 
2693 	i = 0;
2694 	while (checkstate_probed_cpus != map) {
2695 		/* spin */
2696 		i++;
2697 		if (i == 100000) {
2698 #ifdef BETTER_CLOCK_DIAGNOSTIC
2699 			printf("forward_hardclock: checkstate %x\n",
2700 			       checkstate_probed_cpus);
2701 #endif
2702 			break;
2703 		}
2704 	}
2705 
2706 	/*
2707 	 * Step 2: walk through other processors processes, update virtual
2708 	 * timer and profiling timer. If stathz == 0, also update ticks and
2709 	 * profiling info.
2710 	 */
2711 
2712 	map = 0;
2713 	for (id = 0; id < mp_ncpus; id++) {
2714 		if (id == cpuid)
2715 			continue;
2716 		if (((1 << id) & checkstate_probed_cpus) == 0)
2717 			continue;
2718 		p = checkstate_curproc[id];
2719 		if (p) {
2720 			pstats = p->p_stats;
2721 			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2722 			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2723 			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2724 				psignal(p, SIGVTALRM);
2725 				map |= (1 << id);
2726 			}
2727 			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2728 			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2729 				psignal(p, SIGPROF);
2730 				map |= (1 << id);
2731 			}
2732 		}
2733 		if (stathz == 0) {
2734 			forwarded_statclock( id, pscnt, &map);
2735 		}
2736 	}
2737 	if (map != 0) {
2738 		checkstate_need_ast |= map;
2739 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2740 		i = 0;
2741 		while ((checkstate_need_ast & map) != 0) {
2742 			/* spin */
2743 			i++;
2744 			if (i > 100000) {
2745 #ifdef BETTER_CLOCK_DIAGNOSTIC
2746 				printf("forward_hardclock: dropped ast 0x%x\n",
2747 				       checkstate_need_ast & map);
2748 #endif
2749 				break;
2750 			}
2751 		}
2752 	}
2753 }
2754 
2755 #endif /* BETTER_CLOCK */
2756 
2757 void
2758 forward_signal(struct proc *p)
2759 {
2760 	int map;
2761 	int id;
2762 	int i;
2763 
2764 	/* Kludge. We don't yet have separate locks for the interrupts
2765 	 * and the kernel. This means that we cannot let the other processors
2766 	 * handle complex interrupts while inhibiting them from entering
2767 	 * the kernel in a non-interrupt context.
2768 	 *
2769 	 * What we can do, without changing the locking mechanisms yet,
2770 	 * is letting the other processors handle a very simple interrupt
2771 	 * (wich determines the processor states), and do the main
2772 	 * work ourself.
2773 	 */
2774 
2775 	if (!smp_started || !invltlb_ok || cold || panicstr)
2776 		return;
2777 	if (!forward_signal_enabled)
2778 		return;
2779 	while (1) {
2780 		if (p->p_stat != SRUN)
2781 			return;
2782 		id = p->p_oncpu;
2783 		if (id == 0xff)
2784 			return;
2785 		map = (1<<id);
2786 		checkstate_need_ast |= map;
2787 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2788 		i = 0;
2789 		while ((checkstate_need_ast & map) != 0) {
2790 			/* spin */
2791 			i++;
2792 			if (i > 100000) {
2793 #if 0
2794 				printf("forward_signal: dropped ast 0x%x\n",
2795 				       checkstate_need_ast & map);
2796 #endif
2797 				break;
2798 			}
2799 		}
2800 		if (id == p->p_oncpu)
2801 			return;
2802 	}
2803 }
2804 
2805 void
2806 forward_roundrobin(void)
2807 {
2808 	u_int map;
2809 	int i;
2810 
2811 	if (!smp_started || !invltlb_ok || cold || panicstr)
2812 		return;
2813 	if (!forward_roundrobin_enabled)
2814 		return;
2815 	resched_cpus |= other_cpus;
2816 	map = other_cpus & ~stopped_cpus ;
2817 #if 1
2818 	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2819 #else
2820 	(void) all_but_self_ipi(XCPUAST_OFFSET);
2821 #endif
2822 	i = 0;
2823 	while ((checkstate_need_ast & map) != 0) {
2824 		/* spin */
2825 		i++;
2826 		if (i > 100000) {
2827 #if 0
2828 			printf("forward_roundrobin: dropped ast 0x%x\n",
2829 			       checkstate_need_ast & map);
2830 #endif
2831 			break;
2832 		}
2833 	}
2834 }
2835 
2836 
2837 #ifdef APIC_INTR_REORDER
2838 /*
2839  *	Maintain mapping from softintr vector to isr bit in local apic.
2840  */
2841 void
2842 set_lapic_isrloc(int intr, int vector)
2843 {
2844 	if (intr < 0 || intr > 32)
2845 		panic("set_apic_isrloc: bad intr argument: %d",intr);
2846 	if (vector < ICU_OFFSET || vector > 255)
2847 		panic("set_apic_isrloc: bad vector argument: %d",vector);
2848 	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2849 	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2850 }
2851 #endif
2852 
2853 /*
2854  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
2855  * (if specified), rendezvous, execute the action function (if specified),
2856  * rendezvous again, execute the teardown function (if specified), and then
2857  * resume.
2858  *
2859  * Note that the supplied external functions _must_ be reentrant and aware
2860  * that they are running in parallel and in an unknown lock context.
2861  */
2862 static void (*smp_rv_setup_func)(void *arg);
2863 static void (*smp_rv_action_func)(void *arg);
2864 static void (*smp_rv_teardown_func)(void *arg);
2865 static void *smp_rv_func_arg;
2866 static volatile int smp_rv_waiters[2];
2867 
2868 void
2869 smp_rendezvous_action(void)
2870 {
2871 	/* setup function */
2872 	if (smp_rv_setup_func != NULL)
2873 		smp_rv_setup_func(smp_rv_func_arg);
2874 	/* spin on entry rendezvous */
2875 	atomic_add_int(&smp_rv_waiters[0], 1);
2876 	while (smp_rv_waiters[0] < mp_ncpus)
2877 		;
2878 	/* action function */
2879 	if (smp_rv_action_func != NULL)
2880 		smp_rv_action_func(smp_rv_func_arg);
2881 	/* spin on exit rendezvous */
2882 	atomic_add_int(&smp_rv_waiters[1], 1);
2883 	while (smp_rv_waiters[1] < mp_ncpus)
2884 		;
2885 	/* teardown function */
2886 	if (smp_rv_teardown_func != NULL)
2887 		smp_rv_teardown_func(smp_rv_func_arg);
2888 }
2889 
2890 void
2891 smp_rendezvous(void (* setup_func)(void *),
2892 	       void (* action_func)(void *),
2893 	       void (* teardown_func)(void *),
2894 	       void *arg)
2895 {
2896 	u_int	efl;
2897 
2898 	/* obtain rendezvous lock */
2899 	s_lock(&smp_rv_lock);		/* XXX sleep here? NOWAIT flag? */
2900 
2901 	/* set static function pointers */
2902 	smp_rv_setup_func = setup_func;
2903 	smp_rv_action_func = action_func;
2904 	smp_rv_teardown_func = teardown_func;
2905 	smp_rv_func_arg = arg;
2906 	smp_rv_waiters[0] = 0;
2907 	smp_rv_waiters[1] = 0;
2908 
2909 	/* disable interrupts on this CPU, save interrupt status */
2910 	efl = read_eflags();
2911 	write_eflags(efl & ~PSL_I);
2912 
2913 	/* signal other processors, which will enter the IPI with interrupts off */
2914 	all_but_self_ipi(XRENDEZVOUS_OFFSET);
2915 
2916 	/* call executor function */
2917 	smp_rendezvous_action();
2918 
2919 	/* restore interrupt flag */
2920 	write_eflags(efl);
2921 
2922 	/* release lock */
2923 	s_unlock(&smp_rv_lock);
2924 }
2925 
2926 void
2927 release_aps(void *dummy __unused)
2928 {
2929 	s_unlock(&ap_boot_lock);
2930 }
2931 
2932 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
2933