xref: /freebsd/sys/kern/subr_smp.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * This module holds the global variables and machine independent functions
30  * used for the kernel SMP support.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/ktr.h>
40 #include <sys/proc.h>
41 #include <sys/bus.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/pcpu.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 
50 #include <machine/cpu.h>
51 #include <machine/smp.h>
52 
53 #include "opt_sched.h"
54 
55 #ifdef SMP
56 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
57 
58 volatile cpuset_t stopped_cpus;
59 volatile cpuset_t started_cpus;
60 volatile cpuset_t suspended_cpus;
61 cpuset_t hlt_cpus_mask;
62 cpuset_t logical_cpus_mask;
63 
64 void (*cpustop_restartfunc)(void);
65 #endif
66 
67 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
68 
69 /* This is used in modules that need to work in both SMP and UP. */
70 cpuset_t all_cpus;
71 
72 int mp_ncpus;
73 /* export this for libkvm consumers. */
74 int mp_maxcpus = MAXCPU;
75 
76 volatile int smp_started;
77 u_int mp_maxid;
78 
79 static SYSCTL_NODE(_kern, OID_AUTO, smp,
80     CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
81     "Kernel SMP");
82 
83 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
84     "Max CPU ID.");
85 
86 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
87     0, "Max number of CPUs that the system was compiled for.");
88 
89 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
90     NULL, 0, sysctl_kern_smp_active, "I",
91     "Indicates system is running in SMP mode");
92 
93 int smp_disabled = 0;	/* has smp been disabled? */
94 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
95     &smp_disabled, 0, "SMP has been disabled from the loader");
96 
97 int smp_cpus = 1;	/* how many cpu's running */
98 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
99     "Number of CPUs online");
100 
101 int smp_threads_per_core = 1;	/* how many SMT threads are running per core */
102 SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
103     &smp_threads_per_core, 0, "Number of SMT threads online per core");
104 
105 int mp_ncores = -1;	/* how many physical cores running */
106 SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
107     "Number of physical cores online");
108 
109 int smp_topology = 0;	/* Which topology we're using. */
110 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
111     "Topology override setting; 0 is default provided by hardware.");
112 
113 #ifdef SMP
114 /* Enable forwarding of a signal to a process running on a different CPU */
115 static int forward_signal_enabled = 1;
116 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
117 	   &forward_signal_enabled, 0,
118 	   "Forwarding of a signal to a process on a different CPU");
119 
120 /* Variables needed for SMP rendezvous. */
121 static volatile int smp_rv_ncpus;
122 static void (*volatile smp_rv_setup_func)(void *arg);
123 static void (*volatile smp_rv_action_func)(void *arg);
124 static void (*volatile smp_rv_teardown_func)(void *arg);
125 static void *volatile smp_rv_func_arg;
126 static volatile int smp_rv_waiters[4];
127 
128 /*
129  * Shared mutex to restrict busywaits between smp_rendezvous() and
130  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
131  * functions trigger at once and cause multiple CPUs to busywait with
132  * interrupts disabled.
133  */
134 struct mtx smp_ipi_mtx;
135 
136 /*
137  * Let the MD SMP code initialize mp_maxid very early if it can.
138  */
139 static void
140 mp_setmaxid(void *dummy)
141 {
142 
143 	cpu_mp_setmaxid();
144 
145 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
146 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
147 	    ("%s: one CPU but mp_maxid is not zero", __func__));
148 	KASSERT(mp_maxid >= mp_ncpus - 1,
149 	    ("%s: counters out of sync: max %d, count %d", __func__,
150 		mp_maxid, mp_ncpus));
151 
152 	cpusetsizemin = howmany(mp_maxid + 1, NBBY);
153 }
154 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
155 
156 /*
157  * Call the MD SMP initialization code.
158  */
159 static void
160 mp_start(void *dummy)
161 {
162 
163 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
164 
165 	/* Probe for MP hardware. */
166 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
167 		mp_ncores = 1;
168 		mp_ncpus = 1;
169 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
170 		return;
171 	}
172 
173 	cpu_mp_start();
174 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
175 	    mp_ncpus);
176 
177 	/* Provide a default for most architectures that don't have SMT/HTT. */
178 	if (mp_ncores < 0)
179 		mp_ncores = mp_ncpus;
180 
181 	cpu_mp_announce();
182 }
183 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
184 
185 void
186 forward_signal(struct thread *td)
187 {
188 	int id;
189 
190 	/*
191 	 * signotify() has already set TDA_AST and TDA_SIG on td_ast for
192 	 * this thread, so all we need to do is poke it if it is currently
193 	 * executing so that it executes ast().
194 	 */
195 	THREAD_LOCK_ASSERT(td, MA_OWNED);
196 	KASSERT(TD_IS_RUNNING(td),
197 	    ("forward_signal: thread is not TDS_RUNNING"));
198 
199 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
200 
201 	if (!smp_started || cold || KERNEL_PANICKED())
202 		return;
203 	if (!forward_signal_enabled)
204 		return;
205 
206 	/* No need to IPI ourself. */
207 	if (td == curthread)
208 		return;
209 
210 	id = td->td_oncpu;
211 	if (id == NOCPU)
212 		return;
213 	ipi_cpu(id, IPI_AST);
214 }
215 
216 /*
217  * When called the executing CPU will send an IPI to all other CPUs
218  *  requesting that they halt execution.
219  *
220  * Usually (but not necessarily) called with 'other_cpus' as its arg.
221  *
222  *  - Signals all CPUs in map to stop.
223  *  - Waits for each to stop.
224  *
225  * Returns:
226  *  -1: error
227  *   0: NA
228  *   1: ok
229  *
230  */
231 #if defined(__amd64__) || defined(__i386__)
232 #define	X86	1
233 #else
234 #define	X86	0
235 #endif
236 static int
237 generic_stop_cpus(cpuset_t map, u_int type)
238 {
239 #ifdef KTR
240 	char cpusetbuf[CPUSETBUFSIZ];
241 #endif
242 	static volatile u_int stopping_cpu = NOCPU;
243 	int i;
244 	volatile cpuset_t *cpus;
245 
246 	KASSERT(
247 	    type == IPI_STOP || type == IPI_STOP_HARD
248 #if X86
249 	    || type == IPI_SUSPEND
250 #endif
251 	    , ("%s: invalid stop type", __func__));
252 
253 	if (!smp_started)
254 		return (0);
255 
256 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
257 	    cpusetobj_strprint(cpusetbuf, &map), type);
258 
259 #if X86
260 	/*
261 	 * When suspending, ensure there are are no IPIs in progress.
262 	 * IPIs that have been issued, but not yet delivered (e.g.
263 	 * not pending on a vCPU when running under virtualization)
264 	 * will be lost, violating FreeBSD's assumption of reliable
265 	 * IPI delivery.
266 	 */
267 	if (type == IPI_SUSPEND)
268 		mtx_lock_spin(&smp_ipi_mtx);
269 #endif
270 
271 #if X86
272 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
273 #endif
274 	if (stopping_cpu != PCPU_GET(cpuid))
275 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
276 		    PCPU_GET(cpuid)) == 0)
277 			while (stopping_cpu != NOCPU)
278 				cpu_spinwait(); /* spin */
279 
280 	/* send the stop IPI to all CPUs in map */
281 	ipi_selected(map, type);
282 #if X86
283 	}
284 #endif
285 
286 #if X86
287 	if (type == IPI_SUSPEND)
288 		cpus = &suspended_cpus;
289 	else
290 #endif
291 		cpus = &stopped_cpus;
292 
293 	i = 0;
294 	while (!CPU_SUBSET(cpus, &map)) {
295 		/* spin */
296 		cpu_spinwait();
297 		i++;
298 		if (i == 100000000) {
299 			printf("timeout stopping cpus\n");
300 			break;
301 		}
302 	}
303 
304 #if X86
305 	if (type == IPI_SUSPEND)
306 		mtx_unlock_spin(&smp_ipi_mtx);
307 #endif
308 
309 	stopping_cpu = NOCPU;
310 	return (1);
311 }
312 
313 int
314 stop_cpus(cpuset_t map)
315 {
316 
317 	return (generic_stop_cpus(map, IPI_STOP));
318 }
319 
320 int
321 stop_cpus_hard(cpuset_t map)
322 {
323 
324 	return (generic_stop_cpus(map, IPI_STOP_HARD));
325 }
326 
327 #if X86
328 int
329 suspend_cpus(cpuset_t map)
330 {
331 
332 	return (generic_stop_cpus(map, IPI_SUSPEND));
333 }
334 #endif
335 
336 /*
337  * Called by a CPU to restart stopped CPUs.
338  *
339  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
340  *
341  *  - Signals all CPUs in map to restart.
342  *  - Waits for each to restart.
343  *
344  * Returns:
345  *  -1: error
346  *   0: NA
347  *   1: ok
348  */
349 static int
350 generic_restart_cpus(cpuset_t map, u_int type)
351 {
352 #ifdef KTR
353 	char cpusetbuf[CPUSETBUFSIZ];
354 #endif
355 	volatile cpuset_t *cpus;
356 
357 #if X86
358 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
359 	    || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
360 
361 	if (!smp_started)
362 		return (0);
363 
364 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
365 
366 	if (type == IPI_SUSPEND)
367 		cpus = &resuming_cpus;
368 	else
369 		cpus = &stopped_cpus;
370 
371 	/* signal other cpus to restart */
372 	if (type == IPI_SUSPEND)
373 		CPU_COPY_STORE_REL(&map, &toresume_cpus);
374 	else
375 		CPU_COPY_STORE_REL(&map, &started_cpus);
376 
377 	/*
378 	 * Wake up any CPUs stopped with MWAIT.  From MI code we can't tell if
379 	 * MONITOR/MWAIT is enabled, but the potentially redundant writes are
380 	 * relatively inexpensive.
381 	 */
382 	if (type == IPI_STOP) {
383 		struct monitorbuf *mb;
384 		u_int id;
385 
386 		CPU_FOREACH(id) {
387 			if (!CPU_ISSET(id, &map))
388 				continue;
389 
390 			mb = &pcpu_find(id)->pc_monitorbuf;
391 			atomic_store_int(&mb->stop_state,
392 			    MONITOR_STOPSTATE_RUNNING);
393 		}
394 	}
395 
396 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
397 		/* wait for each to clear its bit */
398 		while (CPU_OVERLAP(cpus, &map))
399 			cpu_spinwait();
400 	}
401 #else /* !X86 */
402 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
403 	    ("%s: invalid stop type", __func__));
404 
405 	if (!smp_started)
406 		return (0);
407 
408 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
409 
410 	cpus = &stopped_cpus;
411 
412 	/* signal other cpus to restart */
413 	CPU_COPY_STORE_REL(&map, &started_cpus);
414 
415 	/* wait for each to clear its bit */
416 	while (CPU_OVERLAP(cpus, &map))
417 		cpu_spinwait();
418 #endif
419 	return (1);
420 }
421 
422 int
423 restart_cpus(cpuset_t map)
424 {
425 
426 	return (generic_restart_cpus(map, IPI_STOP));
427 }
428 
429 #if X86
430 int
431 resume_cpus(cpuset_t map)
432 {
433 
434 	return (generic_restart_cpus(map, IPI_SUSPEND));
435 }
436 #endif
437 #undef X86
438 
439 /*
440  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
441  * (if specified), rendezvous, execute the action function (if specified),
442  * rendezvous again, execute the teardown function (if specified), and then
443  * resume.
444  *
445  * Note that the supplied external functions _must_ be reentrant and aware
446  * that they are running in parallel and in an unknown lock context.
447  */
448 void
449 smp_rendezvous_action(void)
450 {
451 	struct thread *td;
452 	void *local_func_arg;
453 	void (*local_setup_func)(void*);
454 	void (*local_action_func)(void*);
455 	void (*local_teardown_func)(void*);
456 #ifdef INVARIANTS
457 	int owepreempt;
458 #endif
459 
460 	/* Ensure we have up-to-date values. */
461 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
462 	while (smp_rv_waiters[0] < smp_rv_ncpus)
463 		cpu_spinwait();
464 
465 	/* Fetch rendezvous parameters after acquire barrier. */
466 	local_func_arg = smp_rv_func_arg;
467 	local_setup_func = smp_rv_setup_func;
468 	local_action_func = smp_rv_action_func;
469 	local_teardown_func = smp_rv_teardown_func;
470 
471 	/*
472 	 * Use a nested critical section to prevent any preemptions
473 	 * from occurring during a rendezvous action routine.
474 	 * Specifically, if a rendezvous handler is invoked via an IPI
475 	 * and the interrupted thread was in the critical_exit()
476 	 * function after setting td_critnest to 0 but before
477 	 * performing a deferred preemption, this routine can be
478 	 * invoked with td_critnest set to 0 and td_owepreempt true.
479 	 * In that case, a critical_exit() during the rendezvous
480 	 * action would trigger a preemption which is not permitted in
481 	 * a rendezvous action.  To fix this, wrap all of the
482 	 * rendezvous action handlers in a critical section.  We
483 	 * cannot use a regular critical section however as having
484 	 * critical_exit() preempt from this routine would also be
485 	 * problematic (the preemption must not occur before the IPI
486 	 * has been acknowledged via an EOI).  Instead, we
487 	 * intentionally ignore td_owepreempt when leaving the
488 	 * critical section.  This should be harmless because we do
489 	 * not permit rendezvous action routines to schedule threads,
490 	 * and thus td_owepreempt should never transition from 0 to 1
491 	 * during this routine.
492 	 */
493 	td = curthread;
494 	td->td_critnest++;
495 #ifdef INVARIANTS
496 	owepreempt = td->td_owepreempt;
497 #endif
498 
499 	/*
500 	 * If requested, run a setup function before the main action
501 	 * function.  Ensure all CPUs have completed the setup
502 	 * function before moving on to the action function.
503 	 */
504 	if (local_setup_func != smp_no_rendezvous_barrier) {
505 		if (local_setup_func != NULL)
506 			local_setup_func(local_func_arg);
507 		atomic_add_int(&smp_rv_waiters[1], 1);
508 		while (smp_rv_waiters[1] < smp_rv_ncpus)
509                 	cpu_spinwait();
510 	}
511 
512 	if (local_action_func != NULL)
513 		local_action_func(local_func_arg);
514 
515 	if (local_teardown_func != smp_no_rendezvous_barrier) {
516 		/*
517 		 * Signal that the main action has been completed.  If a
518 		 * full exit rendezvous is requested, then all CPUs will
519 		 * wait here until all CPUs have finished the main action.
520 		 */
521 		atomic_add_int(&smp_rv_waiters[2], 1);
522 		while (smp_rv_waiters[2] < smp_rv_ncpus)
523 			cpu_spinwait();
524 
525 		if (local_teardown_func != NULL)
526 			local_teardown_func(local_func_arg);
527 	}
528 
529 	/*
530 	 * Signal that the rendezvous is fully completed by this CPU.
531 	 * This means that no member of smp_rv_* pseudo-structure will be
532 	 * accessed by this target CPU after this point; in particular,
533 	 * memory pointed by smp_rv_func_arg.
534 	 *
535 	 * The release semantic ensures that all accesses performed by
536 	 * the current CPU are visible when smp_rendezvous_cpus()
537 	 * returns, by synchronizing with the
538 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
539 	 */
540 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
541 
542 	td->td_critnest--;
543 	KASSERT(owepreempt == td->td_owepreempt,
544 	    ("rendezvous action changed td_owepreempt"));
545 }
546 
547 void
548 smp_rendezvous_cpus(cpuset_t map,
549 	void (* setup_func)(void *),
550 	void (* action_func)(void *),
551 	void (* teardown_func)(void *),
552 	void *arg)
553 {
554 	int curcpumap, i, ncpus = 0;
555 
556 	/* See comments in the !SMP case. */
557 	if (!smp_started) {
558 		spinlock_enter();
559 		if (setup_func != NULL)
560 			setup_func(arg);
561 		if (action_func != NULL)
562 			action_func(arg);
563 		if (teardown_func != NULL)
564 			teardown_func(arg);
565 		spinlock_exit();
566 		return;
567 	}
568 
569 	/*
570 	 * Make sure we come here with interrupts enabled.  Otherwise we
571 	 * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
572 	 */
573 	MPASS(curthread->td_md.md_spinlock_count == 0);
574 
575 	CPU_FOREACH(i) {
576 		if (CPU_ISSET(i, &map))
577 			ncpus++;
578 	}
579 	if (ncpus == 0)
580 		panic("ncpus is 0 with non-zero map");
581 
582 	mtx_lock_spin(&smp_ipi_mtx);
583 
584 	/* Pass rendezvous parameters via global variables. */
585 	smp_rv_ncpus = ncpus;
586 	smp_rv_setup_func = setup_func;
587 	smp_rv_action_func = action_func;
588 	smp_rv_teardown_func = teardown_func;
589 	smp_rv_func_arg = arg;
590 	smp_rv_waiters[1] = 0;
591 	smp_rv_waiters[2] = 0;
592 	smp_rv_waiters[3] = 0;
593 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
594 
595 	/*
596 	 * Signal other processors, which will enter the IPI with
597 	 * interrupts off.
598 	 */
599 	curcpumap = CPU_ISSET(curcpu, &map);
600 	CPU_CLR(curcpu, &map);
601 	ipi_selected(map, IPI_RENDEZVOUS);
602 
603 	/* Check if the current CPU is in the map */
604 	if (curcpumap != 0)
605 		smp_rendezvous_action();
606 
607 	/*
608 	 * Ensure that the master CPU waits for all the other
609 	 * CPUs to finish the rendezvous, so that smp_rv_*
610 	 * pseudo-structure and the arg are guaranteed to not
611 	 * be in use.
612 	 *
613 	 * Load acquire synchronizes with the release add in
614 	 * smp_rendezvous_action(), which ensures that our caller sees
615 	 * all memory actions done by the called functions on other
616 	 * CPUs.
617 	 */
618 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
619 		cpu_spinwait();
620 
621 	mtx_unlock_spin(&smp_ipi_mtx);
622 }
623 
624 void
625 smp_rendezvous(void (* setup_func)(void *),
626 	       void (* action_func)(void *),
627 	       void (* teardown_func)(void *),
628 	       void *arg)
629 {
630 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
631 }
632 
633 static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1];
634 
635 static void
636 smp_topo_fill(struct cpu_group *cg)
637 {
638 	int c;
639 
640 	for (c = 0; c < cg->cg_children; c++)
641 		smp_topo_fill(&cg->cg_child[c]);
642 	cg->cg_first = CPU_FFS(&cg->cg_mask) - 1;
643 	cg->cg_last = CPU_FLS(&cg->cg_mask) - 1;
644 }
645 
646 struct cpu_group *
647 smp_topo(void)
648 {
649 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
650 	struct cpu_group *top;
651 
652 	/*
653 	 * Check for a fake topology request for debugging purposes.
654 	 */
655 	switch (smp_topology) {
656 	case 1:
657 		/* Dual core with no sharing.  */
658 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
659 		break;
660 	case 2:
661 		/* No topology, all cpus are equal. */
662 		top = smp_topo_none();
663 		break;
664 	case 3:
665 		/* Dual core with shared L2.  */
666 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
667 		break;
668 	case 4:
669 		/* quad core, shared l3 among each package, private l2.  */
670 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
671 		break;
672 	case 5:
673 		/* quad core,  2 dualcore parts on each package share l2.  */
674 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
675 		break;
676 	case 6:
677 		/* Single-core 2xHTT */
678 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
679 		break;
680 	case 7:
681 		/* quad core with a shared l3, 8 threads sharing L2.  */
682 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
683 		    CG_FLAG_SMT);
684 		break;
685 	default:
686 		/* Default, ask the system what it wants. */
687 		top = cpu_topo();
688 		break;
689 	}
690 	/*
691 	 * Verify the returned topology.
692 	 */
693 	if (top->cg_count != mp_ncpus)
694 		panic("Built bad topology at %p.  CPU count %d != %d",
695 		    top, top->cg_count, mp_ncpus);
696 	if (CPU_CMP(&top->cg_mask, &all_cpus))
697 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
698 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
699 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
700 
701 	/*
702 	 * Collapse nonsense levels that may be created out of convenience by
703 	 * the MD layers.  They cause extra work in the search functions.
704 	 */
705 	while (top->cg_children == 1) {
706 		top = &top->cg_child[0];
707 		top->cg_parent = NULL;
708 	}
709 	smp_topo_fill(top);
710 	return (top);
711 }
712 
713 struct cpu_group *
714 smp_topo_alloc(u_int count)
715 {
716 	static u_int index;
717 	u_int curr;
718 
719 	curr = index;
720 	index += count;
721 	return (&group[curr]);
722 }
723 
724 struct cpu_group *
725 smp_topo_none(void)
726 {
727 	struct cpu_group *top;
728 
729 	top = &group[0];
730 	top->cg_parent = NULL;
731 	top->cg_child = NULL;
732 	top->cg_mask = all_cpus;
733 	top->cg_count = mp_ncpus;
734 	top->cg_children = 0;
735 	top->cg_level = CG_SHARE_NONE;
736 	top->cg_flags = 0;
737 
738 	return (top);
739 }
740 
741 static int
742 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
743     int count, int flags, int start)
744 {
745 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
746 	cpuset_t mask;
747 	int i;
748 
749 	CPU_ZERO(&mask);
750 	for (i = 0; i < count; i++, start++)
751 		CPU_SET(start, &mask);
752 	child->cg_parent = parent;
753 	child->cg_child = NULL;
754 	child->cg_children = 0;
755 	child->cg_level = share;
756 	child->cg_count = count;
757 	child->cg_flags = flags;
758 	child->cg_mask = mask;
759 	parent->cg_children++;
760 	for (; parent != NULL; parent = parent->cg_parent) {
761 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
762 			panic("Duplicate children in %p.  mask (%s) child (%s)",
763 			    parent,
764 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
765 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
766 		CPU_OR(&parent->cg_mask, &parent->cg_mask, &child->cg_mask);
767 		parent->cg_count += child->cg_count;
768 	}
769 
770 	return (start);
771 }
772 
773 struct cpu_group *
774 smp_topo_1level(int share, int count, int flags)
775 {
776 	struct cpu_group *child;
777 	struct cpu_group *top;
778 	int packages;
779 	int cpu;
780 	int i;
781 
782 	cpu = 0;
783 	top = &group[0];
784 	packages = mp_ncpus / count;
785 	top->cg_child = child = &group[1];
786 	top->cg_level = CG_SHARE_NONE;
787 	for (i = 0; i < packages; i++, child++)
788 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
789 	return (top);
790 }
791 
792 struct cpu_group *
793 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
794     int l1flags)
795 {
796 	struct cpu_group *top;
797 	struct cpu_group *l1g;
798 	struct cpu_group *l2g;
799 	int cpu;
800 	int i;
801 	int j;
802 
803 	cpu = 0;
804 	top = &group[0];
805 	l2g = &group[1];
806 	top->cg_child = l2g;
807 	top->cg_level = CG_SHARE_NONE;
808 	top->cg_children = mp_ncpus / (l2count * l1count);
809 	l1g = l2g + top->cg_children;
810 	for (i = 0; i < top->cg_children; i++, l2g++) {
811 		l2g->cg_parent = top;
812 		l2g->cg_child = l1g;
813 		l2g->cg_level = l2share;
814 		for (j = 0; j < l2count; j++, l1g++)
815 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
816 			    l1flags, cpu);
817 	}
818 	return (top);
819 }
820 
821 struct cpu_group *
822 smp_topo_find(struct cpu_group *top, int cpu)
823 {
824 	struct cpu_group *cg;
825 	cpuset_t mask;
826 	int children;
827 	int i;
828 
829 	CPU_SETOF(cpu, &mask);
830 	cg = top;
831 	for (;;) {
832 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
833 			return (NULL);
834 		if (cg->cg_children == 0)
835 			return (cg);
836 		children = cg->cg_children;
837 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
838 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
839 				break;
840 	}
841 	return (NULL);
842 }
843 #else /* !SMP */
844 
845 void
846 smp_rendezvous_cpus(cpuset_t map,
847 	void (*setup_func)(void *),
848 	void (*action_func)(void *),
849 	void (*teardown_func)(void *),
850 	void *arg)
851 {
852 	/*
853 	 * In the !SMP case we just need to ensure the same initial conditions
854 	 * as the SMP case.
855 	 */
856 	spinlock_enter();
857 	if (setup_func != NULL)
858 		setup_func(arg);
859 	if (action_func != NULL)
860 		action_func(arg);
861 	if (teardown_func != NULL)
862 		teardown_func(arg);
863 	spinlock_exit();
864 }
865 
866 void
867 smp_rendezvous(void (*setup_func)(void *),
868 	       void (*action_func)(void *),
869 	       void (*teardown_func)(void *),
870 	       void *arg)
871 {
872 
873 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
874 	    arg);
875 }
876 
877 /*
878  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
879  * APIs will still work using this dummy support.
880  */
881 static void
882 mp_setvariables_for_up(void *dummy)
883 {
884 	mp_ncpus = 1;
885 	mp_ncores = 1;
886 	mp_maxid = PCPU_GET(cpuid);
887 	CPU_SETOF(mp_maxid, &all_cpus);
888 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
889 }
890 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
891     mp_setvariables_for_up, NULL);
892 #endif /* SMP */
893 
894 void
895 smp_no_rendezvous_barrier(void *dummy)
896 {
897 #ifdef SMP
898 	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
899 #endif
900 }
901 
902 void
903 smp_rendezvous_cpus_retry(cpuset_t map,
904 	void (* setup_func)(void *),
905 	void (* action_func)(void *),
906 	void (* teardown_func)(void *),
907 	void (* wait_func)(void *, int),
908 	struct smp_rendezvous_cpus_retry_arg *arg)
909 {
910 	int cpu;
911 
912 	CPU_COPY(&map, &arg->cpus);
913 
914 	/*
915 	 * Only one CPU to execute on.
916 	 */
917 	if (!smp_started) {
918 		spinlock_enter();
919 		if (setup_func != NULL)
920 			setup_func(arg);
921 		if (action_func != NULL)
922 			action_func(arg);
923 		if (teardown_func != NULL)
924 			teardown_func(arg);
925 		spinlock_exit();
926 		return;
927 	}
928 
929 	/*
930 	 * Execute an action on all specified CPUs while retrying until they
931 	 * all acknowledge completion.
932 	 */
933 	for (;;) {
934 		smp_rendezvous_cpus(
935 		    arg->cpus,
936 		    setup_func,
937 		    action_func,
938 		    teardown_func,
939 		    arg);
940 
941 		if (CPU_EMPTY(&arg->cpus))
942 			break;
943 
944 		CPU_FOREACH(cpu) {
945 			if (!CPU_ISSET(cpu, &arg->cpus))
946 				continue;
947 			wait_func(arg, cpu);
948 		}
949 	}
950 }
951 
952 void
953 smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
954 {
955 
956 	CPU_CLR_ATOMIC(curcpu, &arg->cpus);
957 }
958 
959 /*
960  * If (prio & PDROP) == 0:
961  * Wait for specified idle threads to switch once.  This ensures that even
962  * preempted threads have cycled through the switch function once,
963  * exiting their codepaths.  This allows us to change global pointers
964  * with no other synchronization.
965  * If (prio & PDROP) != 0:
966  * Force the specified CPUs to switch context at least once.
967  */
968 int
969 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
970 {
971 	struct pcpu *pcpu;
972 	u_int *gen;
973 	int error;
974 	int cpu;
975 
976 	error = 0;
977 	if ((prio & PDROP) == 0) {
978 		gen = malloc(sizeof(u_int) * MAXCPU, M_TEMP, M_WAITOK);
979 		for (cpu = 0; cpu <= mp_maxid; cpu++) {
980 			if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
981 				continue;
982 			pcpu = pcpu_find(cpu);
983 			gen[cpu] = pcpu->pc_idlethread->td_generation;
984 		}
985 	}
986 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
987 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
988 			continue;
989 		pcpu = pcpu_find(cpu);
990 		thread_lock(curthread);
991 		sched_bind(curthread, cpu);
992 		thread_unlock(curthread);
993 		if ((prio & PDROP) != 0)
994 			continue;
995 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
996 			error = tsleep(quiesce_cpus, prio & ~PDROP, wmesg, 1);
997 			if (error != EWOULDBLOCK)
998 				goto out;
999 			error = 0;
1000 		}
1001 	}
1002 out:
1003 	thread_lock(curthread);
1004 	sched_unbind(curthread);
1005 	thread_unlock(curthread);
1006 	if ((prio & PDROP) == 0)
1007 		free(gen, M_TEMP);
1008 
1009 	return (error);
1010 }
1011 
1012 int
1013 quiesce_all_cpus(const char *wmesg, int prio)
1014 {
1015 
1016 	return quiesce_cpus(all_cpus, wmesg, prio);
1017 }
1018 
1019 /*
1020  * Observe all CPUs not executing in critical section.
1021  * We are not in one so the check for us is safe. If the found
1022  * thread changes to something else we know the section was
1023  * exited as well.
1024  */
1025 void
1026 quiesce_all_critical(void)
1027 {
1028 	struct thread *td, *newtd;
1029 	struct pcpu *pcpu;
1030 	int cpu;
1031 
1032 	MPASS(curthread->td_critnest == 0);
1033 
1034 	CPU_FOREACH(cpu) {
1035 		pcpu = cpuid_to_pcpu[cpu];
1036 		td = pcpu->pc_curthread;
1037 		for (;;) {
1038 			if (td->td_critnest == 0)
1039 				break;
1040 			cpu_spinwait();
1041 			newtd = (struct thread *)
1042 			    atomic_load_acq_ptr((void *)pcpu->pc_curthread);
1043 			if (td != newtd)
1044 				break;
1045 		}
1046 	}
1047 }
1048 
1049 static void
1050 cpus_fence_seq_cst_issue(void *arg __unused)
1051 {
1052 
1053 	atomic_thread_fence_seq_cst();
1054 }
1055 
1056 /*
1057  * Send an IPI forcing a sequentially consistent fence.
1058  *
1059  * Allows replacement of an explicitly fence with a compiler barrier.
1060  * Trades speed up during normal execution for a significant slowdown when
1061  * the barrier is needed.
1062  */
1063 void
1064 cpus_fence_seq_cst(void)
1065 {
1066 
1067 #ifdef SMP
1068 	smp_rendezvous(
1069 	    smp_no_rendezvous_barrier,
1070 	    cpus_fence_seq_cst_issue,
1071 	    smp_no_rendezvous_barrier,
1072 	    NULL
1073 	);
1074 #else
1075 	cpus_fence_seq_cst_issue(NULL);
1076 #endif
1077 }
1078 
1079 /* Extra care is taken with this sysctl because the data type is volatile */
1080 static int
1081 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
1082 {
1083 	int error, active;
1084 
1085 	active = smp_started;
1086 	error = SYSCTL_OUT(req, &active, sizeof(active));
1087 	return (error);
1088 }
1089 
1090 #ifdef SMP
1091 void
1092 topo_init_node(struct topo_node *node)
1093 {
1094 
1095 	bzero(node, sizeof(*node));
1096 	TAILQ_INIT(&node->children);
1097 }
1098 
1099 void
1100 topo_init_root(struct topo_node *root)
1101 {
1102 
1103 	topo_init_node(root);
1104 	root->type = TOPO_TYPE_SYSTEM;
1105 }
1106 
1107 /*
1108  * Add a child node with the given ID under the given parent.
1109  * Do nothing if there is already a child with that ID.
1110  */
1111 struct topo_node *
1112 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
1113     topo_node_type type, uintptr_t subtype)
1114 {
1115 	struct topo_node *node;
1116 
1117 	TAILQ_FOREACH_REVERSE(node, &parent->children,
1118 	    topo_children, siblings) {
1119 		if (node->hwid == hwid
1120 		    && node->type == type && node->subtype == subtype) {
1121 			return (node);
1122 		}
1123 	}
1124 
1125 	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
1126 	topo_init_node(node);
1127 	node->parent = parent;
1128 	node->hwid = hwid;
1129 	node->type = type;
1130 	node->subtype = subtype;
1131 	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
1132 	parent->nchildren++;
1133 
1134 	return (node);
1135 }
1136 
1137 /*
1138  * Find a child node with the given ID under the given parent.
1139  */
1140 struct topo_node *
1141 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
1142     topo_node_type type, uintptr_t subtype)
1143 {
1144 
1145 	struct topo_node *node;
1146 
1147 	TAILQ_FOREACH(node, &parent->children, siblings) {
1148 		if (node->hwid == hwid
1149 		    && node->type == type && node->subtype == subtype) {
1150 			return (node);
1151 		}
1152 	}
1153 
1154 	return (NULL);
1155 }
1156 
1157 /*
1158  * Given a node change the order of its parent's child nodes such
1159  * that the node becomes the firt child while preserving the cyclic
1160  * order of the children.  In other words, the given node is promoted
1161  * by rotation.
1162  */
1163 void
1164 topo_promote_child(struct topo_node *child)
1165 {
1166 	struct topo_node *next;
1167 	struct topo_node *node;
1168 	struct topo_node *parent;
1169 
1170 	parent = child->parent;
1171 	next = TAILQ_NEXT(child, siblings);
1172 	TAILQ_REMOVE(&parent->children, child, siblings);
1173 	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1174 
1175 	while (next != NULL) {
1176 		node = next;
1177 		next = TAILQ_NEXT(node, siblings);
1178 		TAILQ_REMOVE(&parent->children, node, siblings);
1179 		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1180 		child = node;
1181 	}
1182 }
1183 
1184 /*
1185  * Iterate to the next node in the depth-first search (traversal) of
1186  * the topology tree.
1187  */
1188 struct topo_node *
1189 topo_next_node(struct topo_node *top, struct topo_node *node)
1190 {
1191 	struct topo_node *next;
1192 
1193 	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1194 		return (next);
1195 
1196 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1197 		return (next);
1198 
1199 	while (node != top && (node = node->parent) != top)
1200 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1201 			return (next);
1202 
1203 	return (NULL);
1204 }
1205 
1206 /*
1207  * Iterate to the next node in the depth-first search of the topology tree,
1208  * but without descending below the current node.
1209  */
1210 struct topo_node *
1211 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1212 {
1213 	struct topo_node *next;
1214 
1215 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1216 		return (next);
1217 
1218 	while (node != top && (node = node->parent) != top)
1219 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1220 			return (next);
1221 
1222 	return (NULL);
1223 }
1224 
1225 /*
1226  * Assign the given ID to the given topology node that represents a logical
1227  * processor.
1228  */
1229 void
1230 topo_set_pu_id(struct topo_node *node, cpuid_t id)
1231 {
1232 
1233 	KASSERT(node->type == TOPO_TYPE_PU,
1234 	    ("topo_set_pu_id: wrong node type: %u", node->type));
1235 	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1236 	    ("topo_set_pu_id: cpuset already not empty"));
1237 	node->id = id;
1238 	CPU_SET(id, &node->cpuset);
1239 	node->cpu_count = 1;
1240 	node->subtype = 1;
1241 
1242 	while ((node = node->parent) != NULL) {
1243 		KASSERT(!CPU_ISSET(id, &node->cpuset),
1244 		    ("logical ID %u is already set in node %p", id, node));
1245 		CPU_SET(id, &node->cpuset);
1246 		node->cpu_count++;
1247 	}
1248 }
1249 
1250 static struct topology_spec {
1251 	topo_node_type	type;
1252 	bool		match_subtype;
1253 	uintptr_t	subtype;
1254 } topology_level_table[TOPO_LEVEL_COUNT] = {
1255 	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1256 	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1257 	[TOPO_LEVEL_CACHEGROUP] = {
1258 		.type = TOPO_TYPE_CACHE,
1259 		.match_subtype = true,
1260 		.subtype = CG_SHARE_L3,
1261 	},
1262 	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1263 	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1264 };
1265 
1266 static bool
1267 topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1268     struct topo_analysis *results)
1269 {
1270 	struct topology_spec *spec;
1271 	struct topo_node *node;
1272 	int count;
1273 
1274 	if (level >= TOPO_LEVEL_COUNT)
1275 		return (true);
1276 
1277 	spec = &topology_level_table[level];
1278 	count = 0;
1279 	node = topo_next_node(root, root);
1280 
1281 	while (node != NULL) {
1282 		if (node->type != spec->type ||
1283 		    (spec->match_subtype && node->subtype != spec->subtype)) {
1284 			node = topo_next_node(root, node);
1285 			continue;
1286 		}
1287 		if (!all && CPU_EMPTY(&node->cpuset)) {
1288 			node = topo_next_nonchild_node(root, node);
1289 			continue;
1290 		}
1291 
1292 		count++;
1293 
1294 		if (!topo_analyze_table(node, all, level + 1, results))
1295 			return (false);
1296 
1297 		node = topo_next_nonchild_node(root, node);
1298 	}
1299 
1300 	/* No explicit subgroups is essentially one subgroup. */
1301 	if (count == 0) {
1302 		count = 1;
1303 
1304 		if (!topo_analyze_table(root, all, level + 1, results))
1305 			return (false);
1306 	}
1307 
1308 	if (results->entities[level] == -1)
1309 		results->entities[level] = count;
1310 	else if (results->entities[level] != count)
1311 		return (false);
1312 
1313 	return (true);
1314 }
1315 
1316 /*
1317  * Check if the topology is uniform, that is, each package has the same number
1318  * of cores in it and each core has the same number of threads (logical
1319  * processors) in it.  If so, calculate the number of packages, the number of
1320  * groups per package, the number of cachegroups per group, and the number of
1321  * logical processors per cachegroup.  'all' parameter tells whether to include
1322  * administratively disabled logical processors into the analysis.
1323  */
1324 int
1325 topo_analyze(struct topo_node *topo_root, int all,
1326     struct topo_analysis *results)
1327 {
1328 
1329 	results->entities[TOPO_LEVEL_PKG] = -1;
1330 	results->entities[TOPO_LEVEL_CORE] = -1;
1331 	results->entities[TOPO_LEVEL_THREAD] = -1;
1332 	results->entities[TOPO_LEVEL_GROUP] = -1;
1333 	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1334 
1335 	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1336 		return (0);
1337 
1338 	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1339 		("bug in topology or analysis"));
1340 
1341 	return (1);
1342 }
1343 
1344 #endif /* SMP */
1345