xref: /freebsd/sys/kern/subr_smp.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * This module holds the global variables and machine independent functions
31  * used for the kernel SMP support.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/ktr.h>
41 #include <sys/proc.h>
42 #include <sys/bus.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/pcpu.h>
47 #include <sys/sched.h>
48 #include <sys/smp.h>
49 #include <sys/sysctl.h>
50 
51 #include <machine/cpu.h>
52 #include <machine/smp.h>
53 
54 #include "opt_sched.h"
55 
56 #ifdef SMP
57 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
58 
59 volatile cpuset_t stopped_cpus;
60 volatile cpuset_t started_cpus;
61 volatile cpuset_t suspended_cpus;
62 cpuset_t hlt_cpus_mask;
63 cpuset_t logical_cpus_mask;
64 
65 void (*cpustop_restartfunc)(void);
66 #endif
67 
68 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
69 
70 /* This is used in modules that need to work in both SMP and UP. */
71 cpuset_t all_cpus;
72 
73 int mp_ncpus;
74 /* export this for libkvm consumers. */
75 int mp_maxcpus = MAXCPU;
76 
77 volatile int smp_started;
78 u_int mp_maxid;
79 
80 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
81     "Kernel SMP");
82 
83 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
84     "Max CPU ID.");
85 
86 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
87     0, "Max number of CPUs that the system was compiled for.");
88 
89 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
90     NULL, 0, sysctl_kern_smp_active, "I",
91     "Indicates system is running in SMP mode");
92 
93 int smp_disabled = 0;	/* has smp been disabled? */
94 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
95     &smp_disabled, 0, "SMP has been disabled from the loader");
96 
97 int smp_cpus = 1;	/* how many cpu's running */
98 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
99     "Number of CPUs online");
100 
101 int smp_topology = 0;	/* Which topology we're using. */
102 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
103     "Topology override setting; 0 is default provided by hardware.");
104 
105 #ifdef SMP
106 /* Enable forwarding of a signal to a process running on a different CPU */
107 static int forward_signal_enabled = 1;
108 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
109 	   &forward_signal_enabled, 0,
110 	   "Forwarding of a signal to a process on a different CPU");
111 
112 /* Variables needed for SMP rendezvous. */
113 static volatile int smp_rv_ncpus;
114 static void (*volatile smp_rv_setup_func)(void *arg);
115 static void (*volatile smp_rv_action_func)(void *arg);
116 static void (*volatile smp_rv_teardown_func)(void *arg);
117 static void *volatile smp_rv_func_arg;
118 static volatile int smp_rv_waiters[4];
119 
120 /*
121  * Shared mutex to restrict busywaits between smp_rendezvous() and
122  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
123  * functions trigger at once and cause multiple CPUs to busywait with
124  * interrupts disabled.
125  */
126 struct mtx smp_ipi_mtx;
127 
128 /*
129  * Let the MD SMP code initialize mp_maxid very early if it can.
130  */
131 static void
132 mp_setmaxid(void *dummy)
133 {
134 
135 	cpu_mp_setmaxid();
136 
137 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
138 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
139 	    ("%s: one CPU but mp_maxid is not zero", __func__));
140 	KASSERT(mp_maxid >= mp_ncpus - 1,
141 	    ("%s: counters out of sync: max %d, count %d", __func__,
142 		mp_maxid, mp_ncpus));
143 }
144 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
145 
146 /*
147  * Call the MD SMP initialization code.
148  */
149 static void
150 mp_start(void *dummy)
151 {
152 
153 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
154 
155 	/* Probe for MP hardware. */
156 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
157 		mp_ncpus = 1;
158 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
159 		return;
160 	}
161 
162 	cpu_mp_start();
163 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
164 	    mp_ncpus);
165 	cpu_mp_announce();
166 }
167 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
168 
169 void
170 forward_signal(struct thread *td)
171 {
172 	int id;
173 
174 	/*
175 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
176 	 * this thread, so all we need to do is poke it if it is currently
177 	 * executing so that it executes ast().
178 	 */
179 	THREAD_LOCK_ASSERT(td, MA_OWNED);
180 	KASSERT(TD_IS_RUNNING(td),
181 	    ("forward_signal: thread is not TDS_RUNNING"));
182 
183 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
184 
185 	if (!smp_started || cold || panicstr)
186 		return;
187 	if (!forward_signal_enabled)
188 		return;
189 
190 	/* No need to IPI ourself. */
191 	if (td == curthread)
192 		return;
193 
194 	id = td->td_oncpu;
195 	if (id == NOCPU)
196 		return;
197 	ipi_cpu(id, IPI_AST);
198 }
199 
200 /*
201  * When called the executing CPU will send an IPI to all other CPUs
202  *  requesting that they halt execution.
203  *
204  * Usually (but not necessarily) called with 'other_cpus' as its arg.
205  *
206  *  - Signals all CPUs in map to stop.
207  *  - Waits for each to stop.
208  *
209  * Returns:
210  *  -1: error
211  *   0: NA
212  *   1: ok
213  *
214  */
215 #if defined(__amd64__) || defined(__i386__)
216 #define	X86	1
217 #else
218 #define	X86	0
219 #endif
220 static int
221 generic_stop_cpus(cpuset_t map, u_int type)
222 {
223 #ifdef KTR
224 	char cpusetbuf[CPUSETBUFSIZ];
225 #endif
226 	static volatile u_int stopping_cpu = NOCPU;
227 	int i;
228 	volatile cpuset_t *cpus;
229 
230 	KASSERT(
231 	    type == IPI_STOP || type == IPI_STOP_HARD
232 #if X86
233 	    || type == IPI_SUSPEND
234 #endif
235 	    , ("%s: invalid stop type", __func__));
236 
237 	if (!smp_started)
238 		return (0);
239 
240 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
241 	    cpusetobj_strprint(cpusetbuf, &map), type);
242 
243 #if X86
244 	/*
245 	 * When suspending, ensure there are are no IPIs in progress.
246 	 * IPIs that have been issued, but not yet delivered (e.g.
247 	 * not pending on a vCPU when running under virtualization)
248 	 * will be lost, violating FreeBSD's assumption of reliable
249 	 * IPI delivery.
250 	 */
251 	if (type == IPI_SUSPEND)
252 		mtx_lock_spin(&smp_ipi_mtx);
253 #endif
254 
255 #if X86
256 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
257 #endif
258 	if (stopping_cpu != PCPU_GET(cpuid))
259 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
260 		    PCPU_GET(cpuid)) == 0)
261 			while (stopping_cpu != NOCPU)
262 				cpu_spinwait(); /* spin */
263 
264 	/* send the stop IPI to all CPUs in map */
265 	ipi_selected(map, type);
266 #if X86
267 	}
268 #endif
269 
270 #if X86
271 	if (type == IPI_SUSPEND)
272 		cpus = &suspended_cpus;
273 	else
274 #endif
275 		cpus = &stopped_cpus;
276 
277 	i = 0;
278 	while (!CPU_SUBSET(cpus, &map)) {
279 		/* spin */
280 		cpu_spinwait();
281 		i++;
282 		if (i == 100000000) {
283 			printf("timeout stopping cpus\n");
284 			break;
285 		}
286 	}
287 
288 #if X86
289 	if (type == IPI_SUSPEND)
290 		mtx_unlock_spin(&smp_ipi_mtx);
291 #endif
292 
293 	stopping_cpu = NOCPU;
294 	return (1);
295 }
296 
297 int
298 stop_cpus(cpuset_t map)
299 {
300 
301 	return (generic_stop_cpus(map, IPI_STOP));
302 }
303 
304 int
305 stop_cpus_hard(cpuset_t map)
306 {
307 
308 	return (generic_stop_cpus(map, IPI_STOP_HARD));
309 }
310 
311 #if X86
312 int
313 suspend_cpus(cpuset_t map)
314 {
315 
316 	return (generic_stop_cpus(map, IPI_SUSPEND));
317 }
318 #endif
319 
320 /*
321  * Called by a CPU to restart stopped CPUs.
322  *
323  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
324  *
325  *  - Signals all CPUs in map to restart.
326  *  - Waits for each to restart.
327  *
328  * Returns:
329  *  -1: error
330  *   0: NA
331  *   1: ok
332  */
333 static int
334 generic_restart_cpus(cpuset_t map, u_int type)
335 {
336 #ifdef KTR
337 	char cpusetbuf[CPUSETBUFSIZ];
338 #endif
339 	volatile cpuset_t *cpus;
340 
341 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
342 #if X86
343 	    || type == IPI_SUSPEND
344 #endif
345 	    , ("%s: invalid stop type", __func__));
346 
347 	if (!smp_started)
348 		return (0);
349 
350 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
351 
352 #if X86
353 	if (type == IPI_SUSPEND)
354 		cpus = &resuming_cpus;
355 	else
356 #endif
357 		cpus = &stopped_cpus;
358 
359 	/* signal other cpus to restart */
360 #if X86
361 	if (type == IPI_SUSPEND)
362 		CPU_COPY_STORE_REL(&map, &toresume_cpus);
363 	else
364 #endif
365 		CPU_COPY_STORE_REL(&map, &started_cpus);
366 
367 #if X86
368 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
369 #endif
370 	/* wait for each to clear its bit */
371 	while (CPU_OVERLAP(cpus, &map))
372 		cpu_spinwait();
373 #if X86
374 	}
375 #endif
376 
377 	return (1);
378 }
379 
380 int
381 restart_cpus(cpuset_t map)
382 {
383 
384 	return (generic_restart_cpus(map, IPI_STOP));
385 }
386 
387 #if X86
388 int
389 resume_cpus(cpuset_t map)
390 {
391 
392 	return (generic_restart_cpus(map, IPI_SUSPEND));
393 }
394 #endif
395 #undef X86
396 
397 /*
398  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
399  * (if specified), rendezvous, execute the action function (if specified),
400  * rendezvous again, execute the teardown function (if specified), and then
401  * resume.
402  *
403  * Note that the supplied external functions _must_ be reentrant and aware
404  * that they are running in parallel and in an unknown lock context.
405  */
406 void
407 smp_rendezvous_action(void)
408 {
409 	struct thread *td;
410 	void *local_func_arg;
411 	void (*local_setup_func)(void*);
412 	void (*local_action_func)(void*);
413 	void (*local_teardown_func)(void*);
414 #ifdef INVARIANTS
415 	int owepreempt;
416 #endif
417 
418 	/* Ensure we have up-to-date values. */
419 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
420 	while (smp_rv_waiters[0] < smp_rv_ncpus)
421 		cpu_spinwait();
422 
423 	/* Fetch rendezvous parameters after acquire barrier. */
424 	local_func_arg = smp_rv_func_arg;
425 	local_setup_func = smp_rv_setup_func;
426 	local_action_func = smp_rv_action_func;
427 	local_teardown_func = smp_rv_teardown_func;
428 
429 	/*
430 	 * Use a nested critical section to prevent any preemptions
431 	 * from occurring during a rendezvous action routine.
432 	 * Specifically, if a rendezvous handler is invoked via an IPI
433 	 * and the interrupted thread was in the critical_exit()
434 	 * function after setting td_critnest to 0 but before
435 	 * performing a deferred preemption, this routine can be
436 	 * invoked with td_critnest set to 0 and td_owepreempt true.
437 	 * In that case, a critical_exit() during the rendezvous
438 	 * action would trigger a preemption which is not permitted in
439 	 * a rendezvous action.  To fix this, wrap all of the
440 	 * rendezvous action handlers in a critical section.  We
441 	 * cannot use a regular critical section however as having
442 	 * critical_exit() preempt from this routine would also be
443 	 * problematic (the preemption must not occur before the IPI
444 	 * has been acknowledged via an EOI).  Instead, we
445 	 * intentionally ignore td_owepreempt when leaving the
446 	 * critical section.  This should be harmless because we do
447 	 * not permit rendezvous action routines to schedule threads,
448 	 * and thus td_owepreempt should never transition from 0 to 1
449 	 * during this routine.
450 	 */
451 	td = curthread;
452 	td->td_critnest++;
453 #ifdef INVARIANTS
454 	owepreempt = td->td_owepreempt;
455 #endif
456 
457 	/*
458 	 * If requested, run a setup function before the main action
459 	 * function.  Ensure all CPUs have completed the setup
460 	 * function before moving on to the action function.
461 	 */
462 	if (local_setup_func != smp_no_rendezvous_barrier) {
463 		if (smp_rv_setup_func != NULL)
464 			smp_rv_setup_func(smp_rv_func_arg);
465 		atomic_add_int(&smp_rv_waiters[1], 1);
466 		while (smp_rv_waiters[1] < smp_rv_ncpus)
467                 	cpu_spinwait();
468 	}
469 
470 	if (local_action_func != NULL)
471 		local_action_func(local_func_arg);
472 
473 	if (local_teardown_func != smp_no_rendezvous_barrier) {
474 		/*
475 		 * Signal that the main action has been completed.  If a
476 		 * full exit rendezvous is requested, then all CPUs will
477 		 * wait here until all CPUs have finished the main action.
478 		 */
479 		atomic_add_int(&smp_rv_waiters[2], 1);
480 		while (smp_rv_waiters[2] < smp_rv_ncpus)
481 			cpu_spinwait();
482 
483 		if (local_teardown_func != NULL)
484 			local_teardown_func(local_func_arg);
485 	}
486 
487 	/*
488 	 * Signal that the rendezvous is fully completed by this CPU.
489 	 * This means that no member of smp_rv_* pseudo-structure will be
490 	 * accessed by this target CPU after this point; in particular,
491 	 * memory pointed by smp_rv_func_arg.
492 	 *
493 	 * The release semantic ensures that all accesses performed by
494 	 * the current CPU are visible when smp_rendezvous_cpus()
495 	 * returns, by synchronizing with the
496 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
497 	 */
498 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
499 
500 	td->td_critnest--;
501 	KASSERT(owepreempt == td->td_owepreempt,
502 	    ("rendezvous action changed td_owepreempt"));
503 }
504 
505 void
506 smp_rendezvous_cpus(cpuset_t map,
507 	void (* setup_func)(void *),
508 	void (* action_func)(void *),
509 	void (* teardown_func)(void *),
510 	void *arg)
511 {
512 	int curcpumap, i, ncpus = 0;
513 
514 	/* Look comments in the !SMP case. */
515 	if (!smp_started) {
516 		spinlock_enter();
517 		if (setup_func != NULL)
518 			setup_func(arg);
519 		if (action_func != NULL)
520 			action_func(arg);
521 		if (teardown_func != NULL)
522 			teardown_func(arg);
523 		spinlock_exit();
524 		return;
525 	}
526 
527 	CPU_FOREACH(i) {
528 		if (CPU_ISSET(i, &map))
529 			ncpus++;
530 	}
531 	if (ncpus == 0)
532 		panic("ncpus is 0 with non-zero map");
533 
534 	mtx_lock_spin(&smp_ipi_mtx);
535 
536 	/* Pass rendezvous parameters via global variables. */
537 	smp_rv_ncpus = ncpus;
538 	smp_rv_setup_func = setup_func;
539 	smp_rv_action_func = action_func;
540 	smp_rv_teardown_func = teardown_func;
541 	smp_rv_func_arg = arg;
542 	smp_rv_waiters[1] = 0;
543 	smp_rv_waiters[2] = 0;
544 	smp_rv_waiters[3] = 0;
545 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
546 
547 	/*
548 	 * Signal other processors, which will enter the IPI with
549 	 * interrupts off.
550 	 */
551 	curcpumap = CPU_ISSET(curcpu, &map);
552 	CPU_CLR(curcpu, &map);
553 	ipi_selected(map, IPI_RENDEZVOUS);
554 
555 	/* Check if the current CPU is in the map */
556 	if (curcpumap != 0)
557 		smp_rendezvous_action();
558 
559 	/*
560 	 * Ensure that the master CPU waits for all the other
561 	 * CPUs to finish the rendezvous, so that smp_rv_*
562 	 * pseudo-structure and the arg are guaranteed to not
563 	 * be in use.
564 	 *
565 	 * Load acquire synchronizes with the release add in
566 	 * smp_rendezvous_action(), which ensures that our caller sees
567 	 * all memory actions done by the called functions on other
568 	 * CPUs.
569 	 */
570 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
571 		cpu_spinwait();
572 
573 	mtx_unlock_spin(&smp_ipi_mtx);
574 }
575 
576 void
577 smp_rendezvous(void (* setup_func)(void *),
578 	       void (* action_func)(void *),
579 	       void (* teardown_func)(void *),
580 	       void *arg)
581 {
582 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
583 }
584 
585 static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1];
586 
587 struct cpu_group *
588 smp_topo(void)
589 {
590 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
591 	struct cpu_group *top;
592 
593 	/*
594 	 * Check for a fake topology request for debugging purposes.
595 	 */
596 	switch (smp_topology) {
597 	case 1:
598 		/* Dual core with no sharing.  */
599 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
600 		break;
601 	case 2:
602 		/* No topology, all cpus are equal. */
603 		top = smp_topo_none();
604 		break;
605 	case 3:
606 		/* Dual core with shared L2.  */
607 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
608 		break;
609 	case 4:
610 		/* quad core, shared l3 among each package, private l2.  */
611 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
612 		break;
613 	case 5:
614 		/* quad core,  2 dualcore parts on each package share l2.  */
615 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
616 		break;
617 	case 6:
618 		/* Single-core 2xHTT */
619 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
620 		break;
621 	case 7:
622 		/* quad core with a shared l3, 8 threads sharing L2.  */
623 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
624 		    CG_FLAG_SMT);
625 		break;
626 	default:
627 		/* Default, ask the system what it wants. */
628 		top = cpu_topo();
629 		break;
630 	}
631 	/*
632 	 * Verify the returned topology.
633 	 */
634 	if (top->cg_count != mp_ncpus)
635 		panic("Built bad topology at %p.  CPU count %d != %d",
636 		    top, top->cg_count, mp_ncpus);
637 	if (CPU_CMP(&top->cg_mask, &all_cpus))
638 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
639 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
640 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
641 
642 	/*
643 	 * Collapse nonsense levels that may be created out of convenience by
644 	 * the MD layers.  They cause extra work in the search functions.
645 	 */
646 	while (top->cg_children == 1) {
647 		top = &top->cg_child[0];
648 		top->cg_parent = NULL;
649 	}
650 	return (top);
651 }
652 
653 struct cpu_group *
654 smp_topo_alloc(u_int count)
655 {
656 	static u_int index;
657 	u_int curr;
658 
659 	curr = index;
660 	index += count;
661 	return (&group[curr]);
662 }
663 
664 struct cpu_group *
665 smp_topo_none(void)
666 {
667 	struct cpu_group *top;
668 
669 	top = &group[0];
670 	top->cg_parent = NULL;
671 	top->cg_child = NULL;
672 	top->cg_mask = all_cpus;
673 	top->cg_count = mp_ncpus;
674 	top->cg_children = 0;
675 	top->cg_level = CG_SHARE_NONE;
676 	top->cg_flags = 0;
677 
678 	return (top);
679 }
680 
681 static int
682 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
683     int count, int flags, int start)
684 {
685 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
686 	cpuset_t mask;
687 	int i;
688 
689 	CPU_ZERO(&mask);
690 	for (i = 0; i < count; i++, start++)
691 		CPU_SET(start, &mask);
692 	child->cg_parent = parent;
693 	child->cg_child = NULL;
694 	child->cg_children = 0;
695 	child->cg_level = share;
696 	child->cg_count = count;
697 	child->cg_flags = flags;
698 	child->cg_mask = mask;
699 	parent->cg_children++;
700 	for (; parent != NULL; parent = parent->cg_parent) {
701 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
702 			panic("Duplicate children in %p.  mask (%s) child (%s)",
703 			    parent,
704 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
705 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
706 		CPU_OR(&parent->cg_mask, &child->cg_mask);
707 		parent->cg_count += child->cg_count;
708 	}
709 
710 	return (start);
711 }
712 
713 struct cpu_group *
714 smp_topo_1level(int share, int count, int flags)
715 {
716 	struct cpu_group *child;
717 	struct cpu_group *top;
718 	int packages;
719 	int cpu;
720 	int i;
721 
722 	cpu = 0;
723 	top = &group[0];
724 	packages = mp_ncpus / count;
725 	top->cg_child = child = &group[1];
726 	top->cg_level = CG_SHARE_NONE;
727 	for (i = 0; i < packages; i++, child++)
728 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
729 	return (top);
730 }
731 
732 struct cpu_group *
733 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
734     int l1flags)
735 {
736 	struct cpu_group *top;
737 	struct cpu_group *l1g;
738 	struct cpu_group *l2g;
739 	int cpu;
740 	int i;
741 	int j;
742 
743 	cpu = 0;
744 	top = &group[0];
745 	l2g = &group[1];
746 	top->cg_child = l2g;
747 	top->cg_level = CG_SHARE_NONE;
748 	top->cg_children = mp_ncpus / (l2count * l1count);
749 	l1g = l2g + top->cg_children;
750 	for (i = 0; i < top->cg_children; i++, l2g++) {
751 		l2g->cg_parent = top;
752 		l2g->cg_child = l1g;
753 		l2g->cg_level = l2share;
754 		for (j = 0; j < l2count; j++, l1g++)
755 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
756 			    l1flags, cpu);
757 	}
758 	return (top);
759 }
760 
761 
762 struct cpu_group *
763 smp_topo_find(struct cpu_group *top, int cpu)
764 {
765 	struct cpu_group *cg;
766 	cpuset_t mask;
767 	int children;
768 	int i;
769 
770 	CPU_SETOF(cpu, &mask);
771 	cg = top;
772 	for (;;) {
773 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
774 			return (NULL);
775 		if (cg->cg_children == 0)
776 			return (cg);
777 		children = cg->cg_children;
778 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
779 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
780 				break;
781 	}
782 	return (NULL);
783 }
784 #else /* !SMP */
785 
786 void
787 smp_rendezvous_cpus(cpuset_t map,
788 	void (*setup_func)(void *),
789 	void (*action_func)(void *),
790 	void (*teardown_func)(void *),
791 	void *arg)
792 {
793 	/*
794 	 * In the !SMP case we just need to ensure the same initial conditions
795 	 * as the SMP case.
796 	 */
797 	spinlock_enter();
798 	if (setup_func != NULL)
799 		setup_func(arg);
800 	if (action_func != NULL)
801 		action_func(arg);
802 	if (teardown_func != NULL)
803 		teardown_func(arg);
804 	spinlock_exit();
805 }
806 
807 void
808 smp_rendezvous(void (*setup_func)(void *),
809 	       void (*action_func)(void *),
810 	       void (*teardown_func)(void *),
811 	       void *arg)
812 {
813 
814 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
815 	    arg);
816 }
817 
818 /*
819  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
820  * APIs will still work using this dummy support.
821  */
822 static void
823 mp_setvariables_for_up(void *dummy)
824 {
825 	mp_ncpus = 1;
826 	mp_maxid = PCPU_GET(cpuid);
827 	CPU_SETOF(mp_maxid, &all_cpus);
828 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
829 }
830 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
831     mp_setvariables_for_up, NULL);
832 #endif /* SMP */
833 
834 void
835 smp_no_rendezvous_barrier(void *dummy)
836 {
837 #ifdef SMP
838 	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
839 #endif
840 }
841 
842 /*
843  * Wait for specified idle threads to switch once.  This ensures that even
844  * preempted threads have cycled through the switch function once,
845  * exiting their codepaths.  This allows us to change global pointers
846  * with no other synchronization.
847  */
848 int
849 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
850 {
851 	struct pcpu *pcpu;
852 	u_int gen[MAXCPU];
853 	int error;
854 	int cpu;
855 
856 	error = 0;
857 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
858 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
859 			continue;
860 		pcpu = pcpu_find(cpu);
861 		gen[cpu] = pcpu->pc_idlethread->td_generation;
862 	}
863 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
864 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
865 			continue;
866 		pcpu = pcpu_find(cpu);
867 		thread_lock(curthread);
868 		sched_bind(curthread, cpu);
869 		thread_unlock(curthread);
870 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
871 			error = tsleep(quiesce_cpus, prio, wmesg, 1);
872 			if (error != EWOULDBLOCK)
873 				goto out;
874 			error = 0;
875 		}
876 	}
877 out:
878 	thread_lock(curthread);
879 	sched_unbind(curthread);
880 	thread_unlock(curthread);
881 
882 	return (error);
883 }
884 
885 int
886 quiesce_all_cpus(const char *wmesg, int prio)
887 {
888 
889 	return quiesce_cpus(all_cpus, wmesg, prio);
890 }
891 
892 /* Extra care is taken with this sysctl because the data type is volatile */
893 static int
894 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
895 {
896 	int error, active;
897 
898 	active = smp_started;
899 	error = SYSCTL_OUT(req, &active, sizeof(active));
900 	return (error);
901 }
902 
903 
904 #ifdef SMP
905 void
906 topo_init_node(struct topo_node *node)
907 {
908 
909 	bzero(node, sizeof(*node));
910 	TAILQ_INIT(&node->children);
911 }
912 
913 void
914 topo_init_root(struct topo_node *root)
915 {
916 
917 	topo_init_node(root);
918 	root->type = TOPO_TYPE_SYSTEM;
919 }
920 
921 /*
922  * Add a child node with the given ID under the given parent.
923  * Do nothing if there is already a child with that ID.
924  */
925 struct topo_node *
926 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
927     topo_node_type type, uintptr_t subtype)
928 {
929 	struct topo_node *node;
930 
931 	TAILQ_FOREACH_REVERSE(node, &parent->children,
932 	    topo_children, siblings) {
933 		if (node->hwid == hwid
934 		    && node->type == type && node->subtype == subtype) {
935 			return (node);
936 		}
937 	}
938 
939 	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
940 	topo_init_node(node);
941 	node->parent = parent;
942 	node->hwid = hwid;
943 	node->type = type;
944 	node->subtype = subtype;
945 	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
946 	parent->nchildren++;
947 
948 	return (node);
949 }
950 
951 /*
952  * Find a child node with the given ID under the given parent.
953  */
954 struct topo_node *
955 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
956     topo_node_type type, uintptr_t subtype)
957 {
958 
959 	struct topo_node *node;
960 
961 	TAILQ_FOREACH(node, &parent->children, siblings) {
962 		if (node->hwid == hwid
963 		    && node->type == type && node->subtype == subtype) {
964 			return (node);
965 		}
966 	}
967 
968 	return (NULL);
969 }
970 
971 /*
972  * Given a node change the order of its parent's child nodes such
973  * that the node becomes the firt child while preserving the cyclic
974  * order of the children.  In other words, the given node is promoted
975  * by rotation.
976  */
977 void
978 topo_promote_child(struct topo_node *child)
979 {
980 	struct topo_node *next;
981 	struct topo_node *node;
982 	struct topo_node *parent;
983 
984 	parent = child->parent;
985 	next = TAILQ_NEXT(child, siblings);
986 	TAILQ_REMOVE(&parent->children, child, siblings);
987 	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
988 
989 	while (next != NULL) {
990 		node = next;
991 		next = TAILQ_NEXT(node, siblings);
992 		TAILQ_REMOVE(&parent->children, node, siblings);
993 		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
994 		child = node;
995 	}
996 }
997 
998 /*
999  * Iterate to the next node in the depth-first search (traversal) of
1000  * the topology tree.
1001  */
1002 struct topo_node *
1003 topo_next_node(struct topo_node *top, struct topo_node *node)
1004 {
1005 	struct topo_node *next;
1006 
1007 	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1008 		return (next);
1009 
1010 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1011 		return (next);
1012 
1013 	while (node != top && (node = node->parent) != top)
1014 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1015 			return (next);
1016 
1017 	return (NULL);
1018 }
1019 
1020 /*
1021  * Iterate to the next node in the depth-first search of the topology tree,
1022  * but without descending below the current node.
1023  */
1024 struct topo_node *
1025 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1026 {
1027 	struct topo_node *next;
1028 
1029 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1030 		return (next);
1031 
1032 	while (node != top && (node = node->parent) != top)
1033 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1034 			return (next);
1035 
1036 	return (NULL);
1037 }
1038 
1039 /*
1040  * Assign the given ID to the given topology node that represents a logical
1041  * processor.
1042  */
1043 void
1044 topo_set_pu_id(struct topo_node *node, cpuid_t id)
1045 {
1046 
1047 	KASSERT(node->type == TOPO_TYPE_PU,
1048 	    ("topo_set_pu_id: wrong node type: %u", node->type));
1049 	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1050 	    ("topo_set_pu_id: cpuset already not empty"));
1051 	node->id = id;
1052 	CPU_SET(id, &node->cpuset);
1053 	node->cpu_count = 1;
1054 	node->subtype = 1;
1055 
1056 	while ((node = node->parent) != NULL) {
1057 		KASSERT(!CPU_ISSET(id, &node->cpuset),
1058 		    ("logical ID %u is already set in node %p", id, node));
1059 		CPU_SET(id, &node->cpuset);
1060 		node->cpu_count++;
1061 	}
1062 }
1063 
1064 static struct topology_spec {
1065 	topo_node_type	type;
1066 	bool		match_subtype;
1067 	uintptr_t	subtype;
1068 } topology_level_table[TOPO_LEVEL_COUNT] = {
1069 	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1070 	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1071 	[TOPO_LEVEL_CACHEGROUP] = {
1072 		.type = TOPO_TYPE_CACHE,
1073 		.match_subtype = true,
1074 		.subtype = CG_SHARE_L3,
1075 	},
1076 	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1077 	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1078 };
1079 
1080 static bool
1081 topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1082     struct topo_analysis *results)
1083 {
1084 	struct topology_spec *spec;
1085 	struct topo_node *node;
1086 	int count;
1087 
1088 	if (level >= TOPO_LEVEL_COUNT)
1089 		return (true);
1090 
1091 	spec = &topology_level_table[level];
1092 	count = 0;
1093 	node = topo_next_node(root, root);
1094 
1095 	while (node != NULL) {
1096 		if (node->type != spec->type ||
1097 		    (spec->match_subtype && node->subtype != spec->subtype)) {
1098 			node = topo_next_node(root, node);
1099 			continue;
1100 		}
1101 		if (!all && CPU_EMPTY(&node->cpuset)) {
1102 			node = topo_next_nonchild_node(root, node);
1103 			continue;
1104 		}
1105 
1106 		count++;
1107 
1108 		if (!topo_analyze_table(node, all, level + 1, results))
1109 			return (false);
1110 
1111 		node = topo_next_nonchild_node(root, node);
1112 	}
1113 
1114 	/* No explicit subgroups is essentially one subgroup. */
1115 	if (count == 0) {
1116 		count = 1;
1117 
1118 		if (!topo_analyze_table(root, all, level + 1, results))
1119 			return (false);
1120 	}
1121 
1122 	if (results->entities[level] == -1)
1123 		results->entities[level] = count;
1124 	else if (results->entities[level] != count)
1125 		return (false);
1126 
1127 	return (true);
1128 }
1129 
1130 /*
1131  * Check if the topology is uniform, that is, each package has the same number
1132  * of cores in it and each core has the same number of threads (logical
1133  * processors) in it.  If so, calculate the number of packages, the number of
1134  * groups per package, the number of cachegroups per group, and the number of
1135  * logical processors per cachegroup.  'all' parameter tells whether to include
1136  * administratively disabled logical processors into the analysis.
1137  */
1138 int
1139 topo_analyze(struct topo_node *topo_root, int all,
1140     struct topo_analysis *results)
1141 {
1142 
1143 	results->entities[TOPO_LEVEL_PKG] = -1;
1144 	results->entities[TOPO_LEVEL_CORE] = -1;
1145 	results->entities[TOPO_LEVEL_THREAD] = -1;
1146 	results->entities[TOPO_LEVEL_GROUP] = -1;
1147 	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1148 
1149 	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1150 		return (0);
1151 
1152 	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1153 		("bug in topology or analysis"));
1154 
1155 	return (1);
1156 }
1157 
1158 #endif /* SMP */
1159 
1160