xref: /freebsd/sys/kern/subr_smp.c (revision a8445737e740901f5f2c8d24c12ef7fc8b00134e)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  *	$Id: mp_machdep.c,v 1.79 1998/08/24 02:28:15 bde Exp $
26  */
27 
28 #include "opt_smp.h"
29 #include "opt_vm86.h"
30 #include "opt_cpu.h"
31 #include "opt_user_ldt.h"
32 
33 #ifdef SMP
34 #include <machine/smptests.h>
35 #else
36 #error
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/sysctl.h>
44 #ifdef BETTER_CLOCK
45 #include <sys/dkstat.h>
46 #endif
47 
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_extern.h>
53 #ifdef BETTER_CLOCK
54 #include <sys/lock.h>
55 #include <vm/vm_map.h>
56 #include <sys/user.h>
57 #ifdef GPROF
58 #include <sys/gmon.h>
59 #endif
60 #endif
61 
62 #include <machine/smp.h>
63 #include <machine/apic.h>
64 #include <machine/mpapic.h>
65 #include <machine/segments.h>
66 #include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
67 #include <machine/tss.h>
68 #include <machine/specialreg.h>
69 #include <machine/cputypes.h>
70 #include <machine/globaldata.h>
71 
72 #include <i386/i386/cons.h>	/* cngetc() */
73 
74 #if defined(APIC_IO)
75 #include <machine/md_var.h>		/* setidt() */
76 #include <i386/isa/icu.h>		/* IPIs */
77 #include <i386/isa/intr_machdep.h>	/* IPIs */
78 #endif	/* APIC_IO */
79 
80 #if defined(TEST_DEFAULT_CONFIG)
81 #define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
82 #else
83 #define MPFPS_MPFB1	mpfps->mpfb1
84 #endif  /* TEST_DEFAULT_CONFIG */
85 
86 #define WARMBOOT_TARGET		0
87 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
88 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
89 
90 #define BIOS_BASE		(0xf0000)
91 #define BIOS_SIZE		(0x10000)
92 #define BIOS_COUNT		(BIOS_SIZE/4)
93 
94 #define CMOS_REG		(0x70)
95 #define CMOS_DATA		(0x71)
96 #define BIOS_RESET		(0x0f)
97 #define BIOS_WARM		(0x0a)
98 
99 #define PROCENTRY_FLAG_EN	0x01
100 #define PROCENTRY_FLAG_BP	0x02
101 #define IOAPICENTRY_FLAG_EN	0x01
102 
103 
104 /* MP Floating Pointer Structure */
105 typedef struct MPFPS {
106 	char    signature[4];
107 	void   *pap;
108 	u_char  length;
109 	u_char  spec_rev;
110 	u_char  checksum;
111 	u_char  mpfb1;
112 	u_char  mpfb2;
113 	u_char  mpfb3;
114 	u_char  mpfb4;
115 	u_char  mpfb5;
116 }      *mpfps_t;
117 
118 /* MP Configuration Table Header */
119 typedef struct MPCTH {
120 	char    signature[4];
121 	u_short base_table_length;
122 	u_char  spec_rev;
123 	u_char  checksum;
124 	u_char  oem_id[8];
125 	u_char  product_id[12];
126 	void   *oem_table_pointer;
127 	u_short oem_table_size;
128 	u_short entry_count;
129 	void   *apic_address;
130 	u_short extended_table_length;
131 	u_char  extended_table_checksum;
132 	u_char  reserved;
133 }      *mpcth_t;
134 
135 
136 typedef struct PROCENTRY {
137 	u_char  type;
138 	u_char  apic_id;
139 	u_char  apic_version;
140 	u_char  cpu_flags;
141 	u_long  cpu_signature;
142 	u_long  feature_flags;
143 	u_long  reserved1;
144 	u_long  reserved2;
145 }      *proc_entry_ptr;
146 
147 typedef struct BUSENTRY {
148 	u_char  type;
149 	u_char  bus_id;
150 	char    bus_type[6];
151 }      *bus_entry_ptr;
152 
153 typedef struct IOAPICENTRY {
154 	u_char  type;
155 	u_char  apic_id;
156 	u_char  apic_version;
157 	u_char  apic_flags;
158 	void   *apic_address;
159 }      *io_apic_entry_ptr;
160 
161 typedef struct INTENTRY {
162 	u_char  type;
163 	u_char  int_type;
164 	u_short int_flags;
165 	u_char  src_bus_id;
166 	u_char  src_bus_irq;
167 	u_char  dst_apic_id;
168 	u_char  dst_apic_int;
169 }      *int_entry_ptr;
170 
171 /* descriptions of MP basetable entries */
172 typedef struct BASETABLE_ENTRY {
173 	u_char  type;
174 	u_char  length;
175 	char    name[16];
176 }       basetable_entry;
177 
178 /*
179  * this code MUST be enabled here and in mpboot.s.
180  * it follows the very early stages of AP boot by placing values in CMOS ram.
181  * it NORMALLY will never be needed and thus the primitive method for enabling.
182  *
183 #define CHECK_POINTS
184  */
185 
186 #if defined(CHECK_POINTS)
187 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
188 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
189 
190 #define CHECK_INIT(D);				\
191 	CHECK_WRITE(0x34, (D));			\
192 	CHECK_WRITE(0x35, (D));			\
193 	CHECK_WRITE(0x36, (D));			\
194 	CHECK_WRITE(0x37, (D));			\
195 	CHECK_WRITE(0x38, (D));			\
196 	CHECK_WRITE(0x39, (D));
197 
198 #define CHECK_PRINT(S);				\
199 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
200 	   (S),					\
201 	   CHECK_READ(0x34),			\
202 	   CHECK_READ(0x35),			\
203 	   CHECK_READ(0x36),			\
204 	   CHECK_READ(0x37),			\
205 	   CHECK_READ(0x38),			\
206 	   CHECK_READ(0x39));
207 
208 #else				/* CHECK_POINTS */
209 
210 #define CHECK_INIT(D)
211 #define CHECK_PRINT(S)
212 
213 #endif				/* CHECK_POINTS */
214 
215 /*
216  * Values to send to the POST hardware.
217  */
218 #define MP_BOOTADDRESS_POST	0x10
219 #define MP_PROBE_POST		0x11
220 #define MPTABLE_PASS1_POST	0x12
221 
222 #define MP_START_POST		0x13
223 #define MP_ENABLE_POST		0x14
224 #define MPTABLE_PASS2_POST	0x15
225 
226 #define START_ALL_APS_POST	0x16
227 #define INSTALL_AP_TRAMP_POST	0x17
228 #define START_AP_POST		0x18
229 
230 #define MP_ANNOUNCE_POST	0x19
231 
232 
233 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
234 int	current_postcode;
235 
236 /** XXX FIXME: what system files declare these??? */
237 extern struct region_descriptor r_gdt, r_idt;
238 
239 int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
240 int	mp_ncpus;		/* # of CPUs, including BSP */
241 int	mp_naps;		/* # of Applications processors */
242 int	mp_nbusses;		/* # of busses */
243 int	mp_napics;		/* # of IO APICs */
244 int	boot_cpu_id;		/* designated BSP */
245 vm_offset_t cpu_apic_address;
246 vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
247 extern	int nkpt;
248 
249 u_int32_t cpu_apic_versions[NCPU];
250 u_int32_t io_apic_versions[NAPIC];
251 
252 #ifdef APIC_INTR_DIAGNOSTIC
253 int apic_itrace_enter[32];
254 int apic_itrace_tryisrlock[32];
255 int apic_itrace_gotisrlock[32];
256 int apic_itrace_active[32];
257 int apic_itrace_masked[32];
258 int apic_itrace_noisrlock[32];
259 int apic_itrace_masked2[32];
260 int apic_itrace_unmask[32];
261 int apic_itrace_noforward[32];
262 int apic_itrace_leave[32];
263 int apic_itrace_enter2[32];
264 int apic_itrace_doreti[32];
265 int apic_itrace_splz[32];
266 int apic_itrace_eoi[32];
267 #ifdef APIC_INTR_DIAGNOSTIC_IRQ
268 unsigned short apic_itrace_debugbuffer[32768];
269 int apic_itrace_debugbuffer_idx;
270 struct simplelock apic_itrace_debuglock;
271 #endif
272 #endif
273 
274 #ifdef APIC_INTR_REORDER
275 struct {
276 	volatile int *location;
277 	int bit;
278 } apic_isrbit_location[32];
279 #endif
280 
281 struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
282 
283 /*
284  * APIC ID logical/physical mapping structures.
285  * We oversize these to simplify boot-time config.
286  */
287 int     cpu_num_to_apic_id[NAPICID];
288 int     io_num_to_apic_id[NAPICID];
289 int     apic_id_to_logical[NAPICID];
290 
291 
292 /* Bitmap of all available CPUs */
293 u_int	all_cpus;
294 
295 /* AP uses this PTD during bootstrap.  Do not staticize.  */
296 pd_entry_t *bootPTD;
297 
298 /* Hotwire a 0->4MB V==P mapping */
299 extern pt_entry_t *KPTphys;
300 
301 /* Virtual address of per-cpu common_tss */
302 extern struct i386tss common_tss;
303 #ifdef VM86
304 extern struct segment_descriptor common_tssd;
305 extern u_int private_tss;		/* flag indicating private tss */
306 extern u_int my_tr;
307 #endif /* VM86 */
308 
309 /* IdlePTD per cpu */
310 pd_entry_t *IdlePTDS[NCPU];
311 
312 /* "my" private page table page, for BSP init */
313 extern pt_entry_t SMP_prvpt[];
314 
315 /* Private page pointer to curcpu's PTD, used during BSP init */
316 extern pd_entry_t *my_idlePTD;
317 
318 struct pcb stoppcbs[NCPU];
319 
320 int smp_started;		/* has the system started? */
321 
322 /*
323  * Local data and functions.
324  */
325 
326 static int	mp_capable;
327 static u_int	boot_address;
328 static u_int	base_memory;
329 
330 static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
331 static mpfps_t	mpfps;
332 static int	search_for_sig(u_int32_t target, int count);
333 static void	mp_enable(u_int boot_addr);
334 
335 static int	mptable_pass1(void);
336 static int	mptable_pass2(void);
337 static void	default_mp_table(int type);
338 static void	fix_mp_table(void);
339 static void	setup_apic_irq_mapping(void);
340 static void	init_locks(void);
341 static int	start_all_aps(u_int boot_addr);
342 static void	install_ap_tramp(u_int boot_addr);
343 static int	start_ap(int logicalCpu, u_int boot_addr);
344 
345 /*
346  * Calculate usable address in base memory for AP trampoline code.
347  */
348 u_int
349 mp_bootaddress(u_int basemem)
350 {
351 	POSTCODE(MP_BOOTADDRESS_POST);
352 
353 	base_memory = basemem * 1024;	/* convert to bytes */
354 
355 	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
356 	if ((base_memory - boot_address) < bootMP_size)
357 		boot_address -= 4096;	/* not enough, lower by 4k */
358 
359 	return boot_address;
360 }
361 
362 
363 /*
364  * Look for an Intel MP spec table (ie, SMP capable hardware).
365  */
366 int
367 mp_probe(void)
368 {
369 	int     x;
370 	u_long  segment;
371 	u_int32_t target;
372 
373 	POSTCODE(MP_PROBE_POST);
374 
375 	/* see if EBDA exists */
376 	if (segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) {
377 		/* search first 1K of EBDA */
378 		target = (u_int32_t) (segment << 4);
379 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
380 			goto found;
381 	} else {
382 		/* last 1K of base memory, effective 'top of base' passed in */
383 		target = (u_int32_t) (base_memory - 0x400);
384 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
385 			goto found;
386 	}
387 
388 	/* search the BIOS */
389 	target = (u_int32_t) BIOS_BASE;
390 	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
391 		goto found;
392 
393 	/* nothing found */
394 	mpfps = (mpfps_t)0;
395 	mp_capable = 0;
396 	return 0;
397 
398 found:
399 	/* calculate needed resources */
400 	mpfps = (mpfps_t)x;
401 	if (mptable_pass1())
402 		panic("you must reconfigure your kernel");
403 
404 	/* flag fact that we are running multiple processors */
405 	mp_capable = 1;
406 	return 1;
407 }
408 
409 
410 /*
411  * Startup the SMP processors.
412  */
413 void
414 mp_start(void)
415 {
416 	POSTCODE(MP_START_POST);
417 
418 	/* look for MP capable motherboard */
419 	if (mp_capable)
420 		mp_enable(boot_address);
421 	else
422 		panic("MP hardware not found!");
423 }
424 
425 
426 /*
427  * Print various information about the SMP system hardware and setup.
428  */
429 void
430 mp_announce(void)
431 {
432 	int     x;
433 
434 	POSTCODE(MP_ANNOUNCE_POST);
435 
436 	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
437 	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
438 	printf(", version: 0x%08x", cpu_apic_versions[0]);
439 	printf(", at 0x%08x\n", cpu_apic_address);
440 	for (x = 1; x <= mp_naps; ++x) {
441 		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
442 		printf(", version: 0x%08x", cpu_apic_versions[x]);
443 		printf(", at 0x%08x\n", cpu_apic_address);
444 	}
445 
446 #if defined(APIC_IO)
447 	for (x = 0; x < mp_napics; ++x) {
448 		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
449 		printf(", version: 0x%08x", io_apic_versions[x]);
450 		printf(", at 0x%08x\n", io_apic_address[x]);
451 	}
452 #else
453 	printf(" Warning: APIC I/O disabled\n");
454 #endif	/* APIC_IO */
455 }
456 
457 /*
458  * AP cpu's call this to sync up protected mode.
459  */
460 void
461 init_secondary(void)
462 {
463 	int	gsel_tss;
464 #ifndef VM86
465 	u_int	my_tr;
466 #endif
467 
468 	r_gdt.rd_limit = sizeof(gdt[0]) * (NGDT + NCPU) - 1;
469 	r_gdt.rd_base = (int) gdt;
470 	lgdt(&r_gdt);			/* does magic intra-segment return */
471 	lidt(&r_idt);
472 	lldt(_default_ldt);
473 #ifdef USER_LDT
474 	currentldt = _default_ldt;
475 #endif
476 
477 	my_tr = NGDT + cpuid;
478 	gsel_tss = GSEL(my_tr, SEL_KPL);
479 	gdt[my_tr].sd.sd_type = SDT_SYS386TSS;
480 	common_tss.tss_esp0 = 0;	/* not used until after switch */
481 	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
482 	common_tss.tss_ioopt = (sizeof common_tss) << 16;
483 #ifdef VM86
484 	common_tssd = gdt[my_tr].sd;
485 	private_tss = 0;
486 #endif /* VM86 */
487 	ltr(gsel_tss);
488 
489 	load_cr0(0x8005003b);		/* XXX! */
490 
491 	PTD[0] = 0;
492 	pmap_set_opt((unsigned *)PTD);
493 
494 	putmtrr();
495 	pmap_setvidram();
496 
497 	invltlb();
498 }
499 
500 
501 #if defined(APIC_IO)
502 /*
503  * Final configuration of the BSP's local APIC:
504  *  - disable 'pic mode'.
505  *  - disable 'virtual wire mode'.
506  *  - enable NMI.
507  */
508 void
509 bsp_apic_configure(void)
510 {
511 	u_char		byte;
512 	u_int32_t	temp;
513 
514 	/* leave 'pic mode' if necessary */
515 	if (picmode) {
516 		outb(0x22, 0x70);	/* select IMCR */
517 		byte = inb(0x23);	/* current contents */
518 		byte |= 0x01;		/* mask external INTR */
519 		outb(0x23, byte);	/* disconnect 8259s/NMI */
520 	}
521 
522 	/* mask lint0 (the 8259 'virtual wire' connection) */
523 	temp = lapic.lvt_lint0;
524 	temp |= APIC_LVT_M;		/* set the mask */
525 	lapic.lvt_lint0 = temp;
526 
527         /* setup lint1 to handle NMI */
528         temp = lapic.lvt_lint1;
529         temp &= ~APIC_LVT_M;		/* clear the mask */
530         lapic.lvt_lint1 = temp;
531 
532 	if (bootverbose)
533 		apic_dump("bsp_apic_configure()");
534 }
535 #endif  /* APIC_IO */
536 
537 
538 /*******************************************************************
539  * local functions and data
540  */
541 
542 /*
543  * start the SMP system
544  */
545 static void
546 mp_enable(u_int boot_addr)
547 {
548 	int     x;
549 #if defined(APIC_IO)
550 	int     apic;
551 	u_int   ux;
552 #endif	/* APIC_IO */
553 
554 	getmtrr();
555 	pmap_setvidram();
556 
557 	POSTCODE(MP_ENABLE_POST);
558 
559 	/* turn on 4MB of V == P addressing so we can get to MP table */
560 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
561 	invltlb();
562 
563 	/* examine the MP table for needed info, uses physical addresses */
564 	x = mptable_pass2();
565 
566 	*(int *)PTD = 0;
567 	invltlb();
568 
569 	/* can't process default configs till the CPU APIC is pmapped */
570 	if (x)
571 		default_mp_table(x);
572 
573 	/* post scan cleanup */
574 	fix_mp_table();
575 	setup_apic_irq_mapping();
576 
577 #if defined(APIC_IO)
578 
579 	/* fill the LOGICAL io_apic_versions table */
580 	for (apic = 0; apic < mp_napics; ++apic) {
581 		ux = io_apic_read(apic, IOAPIC_VER);
582 		io_apic_versions[apic] = ux;
583 	}
584 
585 	/* program each IO APIC in the system */
586 	for (apic = 0; apic < mp_napics; ++apic)
587 		if (io_apic_setup(apic) < 0)
588 			panic("IO APIC setup failure");
589 
590 	/* install a 'Spurious INTerrupt' vector */
591 	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
592 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
593 
594 	/* install an inter-CPU IPI for TLB invalidation */
595 	setidt(XINVLTLB_OFFSET, Xinvltlb,
596 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
597 
598 #ifdef BETTER_CLOCK
599 	/* install an inter-CPU IPI for reading processor state */
600 	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
601 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
602 #endif
603 
604 	/* install an inter-CPU IPI for forcing an additional software trap */
605 	setidt(XCPUAST_OFFSET, Xcpuast,
606 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
607 
608 	/* install an inter-CPU IPI for interrupt forwarding */
609 	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
610 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
611 
612 	/* install an inter-CPU IPI for CPU stop/restart */
613 	setidt(XCPUSTOP_OFFSET, Xcpustop,
614 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
615 
616 #if defined(TEST_TEST1)
617 	/* install a "fake hardware INTerrupt" vector */
618 	setidt(XTEST1_OFFSET, Xtest1,
619 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
620 #endif  /** TEST_TEST1 */
621 
622 #endif	/* APIC_IO */
623 
624 	/* initialize all SMP locks */
625 	init_locks();
626 
627 	/* start each Application Processor */
628 	start_all_aps(boot_addr);
629 
630 	/*
631 	 * The init process might be started on a different CPU now,
632 	 * and the boot CPU might not call prepare_usermode to get
633 	 * cr0 correctly configured. Thus we initialize cr0 here.
634 	 */
635 	load_cr0(rcr0() | CR0_WP | CR0_AM);
636 }
637 
638 
639 /*
640  * look for the MP spec signature
641  */
642 
643 /* string defined by the Intel MP Spec as identifying the MP table */
644 #define MP_SIG		0x5f504d5f	/* _MP_ */
645 #define NEXT(X)		((X) += 4)
646 static int
647 search_for_sig(u_int32_t target, int count)
648 {
649 	int     x;
650 	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
651 
652 	for (x = 0; x < count; NEXT(x))
653 		if (addr[x] == MP_SIG)
654 			/* make array index a byte index */
655 			return (target + (x * sizeof(u_int32_t)));
656 
657 	return -1;
658 }
659 
660 
661 static basetable_entry basetable_entry_types[] =
662 {
663 	{0, 20, "Processor"},
664 	{1, 8, "Bus"},
665 	{2, 8, "I/O APIC"},
666 	{3, 8, "I/O INT"},
667 	{4, 8, "Local INT"}
668 };
669 
670 typedef struct BUSDATA {
671 	u_char  bus_id;
672 	enum busTypes bus_type;
673 }       bus_datum;
674 
675 typedef struct INTDATA {
676 	u_char  int_type;
677 	u_short int_flags;
678 	u_char  src_bus_id;
679 	u_char  src_bus_irq;
680 	u_char  dst_apic_id;
681 	u_char  dst_apic_int;
682 	u_char	int_vector;
683 }       io_int, local_int;
684 
685 typedef struct BUSTYPENAME {
686 	u_char  type;
687 	char    name[7];
688 }       bus_type_name;
689 
690 static bus_type_name bus_type_table[] =
691 {
692 	{CBUS, "CBUS"},
693 	{CBUSII, "CBUSII"},
694 	{EISA, "EISA"},
695 	{UNKNOWN_BUSTYPE, "---"},
696 	{UNKNOWN_BUSTYPE, "---"},
697 	{ISA, "ISA"},
698 	{UNKNOWN_BUSTYPE, "---"},
699 	{UNKNOWN_BUSTYPE, "---"},
700 	{UNKNOWN_BUSTYPE, "---"},
701 	{UNKNOWN_BUSTYPE, "---"},
702 	{UNKNOWN_BUSTYPE, "---"},
703 	{UNKNOWN_BUSTYPE, "---"},
704 	{PCI, "PCI"},
705 	{UNKNOWN_BUSTYPE, "---"},
706 	{UNKNOWN_BUSTYPE, "---"},
707 	{UNKNOWN_BUSTYPE, "---"},
708 	{UNKNOWN_BUSTYPE, "---"},
709 	{XPRESS, "XPRESS"},
710 	{UNKNOWN_BUSTYPE, "---"}
711 };
712 /* from MP spec v1.4, table 5-1 */
713 static int default_data[7][5] =
714 {
715 /*   nbus, id0, type0, id1, type1 */
716 	{1, 0, ISA, 255, 255},
717 	{1, 0, EISA, 255, 255},
718 	{1, 0, EISA, 255, 255},
719 	{0, 255, 255, 255, 255},/* MCA not supported */
720 	{2, 0, ISA, 1, PCI},
721 	{2, 0, EISA, 1, PCI},
722 	{0, 255, 255, 255, 255}	/* MCA not supported */
723 };
724 
725 
726 /* the bus data */
727 static bus_datum bus_data[NBUS];
728 
729 /* the IO INT data, one entry per possible APIC INTerrupt */
730 static io_int  io_apic_ints[NINTR];
731 
732 static int nintrs;
733 
734 static int processor_entry	__P((proc_entry_ptr entry, int cpu));
735 static int bus_entry		__P((bus_entry_ptr entry, int bus));
736 static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
737 static int int_entry		__P((int_entry_ptr entry, int intr));
738 static int lookup_bus_type	__P((char *name));
739 
740 
741 /*
742  * 1st pass on motherboard's Intel MP specification table.
743  *
744  * initializes:
745  *	mp_ncpus = 1
746  *
747  * determines:
748  *	cpu_apic_address (common to all CPUs)
749  *	io_apic_address[N]
750  *	mp_naps
751  *	mp_nbusses
752  *	mp_napics
753  *	nintrs
754  */
755 static int
756 mptable_pass1(void)
757 {
758 	int	x;
759 	mpcth_t	cth;
760 	int	totalSize;
761 	void*	position;
762 	int	count;
763 	int	type;
764 	int	mustpanic;
765 
766 	POSTCODE(MPTABLE_PASS1_POST);
767 
768 	mustpanic = 0;
769 
770 	/* clear various tables */
771 	for (x = 0; x < NAPICID; ++x) {
772 		io_apic_address[x] = ~0;	/* IO APIC address table */
773 	}
774 
775 	/* init everything to empty */
776 	mp_naps = 0;
777 	mp_nbusses = 0;
778 	mp_napics = 0;
779 	nintrs = 0;
780 
781 	/* check for use of 'default' configuration */
782 	if (MPFPS_MPFB1 != 0) {
783 		/* use default addresses */
784 		cpu_apic_address = DEFAULT_APIC_BASE;
785 		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
786 
787 		/* fill in with defaults */
788 		mp_naps = 2;		/* includes BSP */
789 		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
790 #if defined(APIC_IO)
791 		mp_napics = 1;
792 		nintrs = 16;
793 #endif	/* APIC_IO */
794 	}
795 	else {
796 		if ((cth = mpfps->pap) == 0)
797 			panic("MP Configuration Table Header MISSING!");
798 
799 		cpu_apic_address = (vm_offset_t) cth->apic_address;
800 
801 		/* walk the table, recording info of interest */
802 		totalSize = cth->base_table_length - sizeof(struct MPCTH);
803 		position = (u_char *) cth + sizeof(struct MPCTH);
804 		count = cth->entry_count;
805 
806 		while (count--) {
807 			switch (type = *(u_char *) position) {
808 			case 0: /* processor_entry */
809 				if (((proc_entry_ptr)position)->cpu_flags
810 					& PROCENTRY_FLAG_EN)
811 					++mp_naps;
812 				break;
813 			case 1: /* bus_entry */
814 				++mp_nbusses;
815 				break;
816 			case 2: /* io_apic_entry */
817 				if (((io_apic_entry_ptr)position)->apic_flags
818 					& IOAPICENTRY_FLAG_EN)
819 					io_apic_address[mp_napics++] =
820 					    (vm_offset_t)((io_apic_entry_ptr)
821 						position)->apic_address;
822 				break;
823 			case 3: /* int_entry */
824 				++nintrs;
825 				break;
826 			case 4:	/* int_entry */
827 				break;
828 			default:
829 				panic("mpfps Base Table HOSED!");
830 				/* NOTREACHED */
831 			}
832 
833 			totalSize -= basetable_entry_types[type].length;
834 			(u_char*)position += basetable_entry_types[type].length;
835 		}
836 	}
837 
838 	/* qualify the numbers */
839 	if (mp_naps > NCPU)
840 #if 0 /* XXX FIXME: kern/4255 */
841 		printf("Warning: only using %d of %d available CPUs!\n",
842 			NCPU, mp_naps);
843 #else
844 	{
845 		printf("NCPU cannot be different than actual CPU count.\n");
846 		printf(" add 'options NCPU=%d' to your kernel config file,\n",
847 			mp_naps);
848 		printf(" then rerun config & rebuild your SMP kernel\n");
849 		mustpanic = 1;
850 	}
851 #endif /* XXX FIXME: kern/4255 */
852 	if (mp_nbusses > NBUS) {
853 		printf("found %d busses, increase NBUS\n", mp_nbusses);
854 		mustpanic = 1;
855 	}
856 	if (mp_napics > NAPIC) {
857 		printf("found %d apics, increase NAPIC\n", mp_napics);
858 		mustpanic = 1;
859 	}
860 	if (nintrs > NINTR) {
861 		printf("found %d intrs, increase NINTR\n", nintrs);
862 		mustpanic = 1;
863 	}
864 
865 	/*
866 	 * Count the BSP.
867 	 * This is also used as a counter while starting the APs.
868 	 */
869 	mp_ncpus = 1;
870 
871 	--mp_naps;	/* subtract the BSP */
872 
873 	return mustpanic;
874 }
875 
876 
877 /*
878  * 2nd pass on motherboard's Intel MP specification table.
879  *
880  * sets:
881  *	boot_cpu_id
882  *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
883  *	CPU_TO_ID(N), logical CPU to APIC ID table
884  *	IO_TO_ID(N), logical IO to APIC ID table
885  *	bus_data[N]
886  *	io_apic_ints[N]
887  */
888 static int
889 mptable_pass2(void)
890 {
891 	int     x;
892 	mpcth_t cth;
893 	int     totalSize;
894 	void*   position;
895 	int     count;
896 	int     type;
897 	int     apic, bus, cpu, intr;
898 
899 	POSTCODE(MPTABLE_PASS2_POST);
900 
901 	/* clear various tables */
902 	for (x = 0; x < NAPICID; ++x) {
903 		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
904 		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
905 		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
906 	}
907 
908 	/* clear bus data table */
909 	for (x = 0; x < NBUS; ++x)
910 		bus_data[x].bus_id = 0xff;
911 
912 	/* clear IO APIC INT table */
913 	for (x = 0; x < NINTR; ++x) {
914 		io_apic_ints[x].int_type = 0xff;
915 		io_apic_ints[x].int_vector = 0xff;
916 	}
917 
918 	/* setup the cpu/apic mapping arrays */
919 	boot_cpu_id = -1;
920 
921 	/* record whether PIC or virtual-wire mode */
922 	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
923 
924 	/* check for use of 'default' configuration */
925 	if (MPFPS_MPFB1 != 0)
926 		return MPFPS_MPFB1;	/* return default configuration type */
927 
928 	if ((cth = mpfps->pap) == 0)
929 		panic("MP Configuration Table Header MISSING!");
930 
931 	/* walk the table, recording info of interest */
932 	totalSize = cth->base_table_length - sizeof(struct MPCTH);
933 	position = (u_char *) cth + sizeof(struct MPCTH);
934 	count = cth->entry_count;
935 	apic = bus = intr = 0;
936 	cpu = 1;				/* pre-count the BSP */
937 
938 	while (count--) {
939 		switch (type = *(u_char *) position) {
940 		case 0:
941 			if (processor_entry(position, cpu))
942 				++cpu;
943 			break;
944 		case 1:
945 			if (bus_entry(position, bus))
946 				++bus;
947 			break;
948 		case 2:
949 			if (io_apic_entry(position, apic))
950 				++apic;
951 			break;
952 		case 3:
953 			if (int_entry(position, intr))
954 				++intr;
955 			break;
956 		case 4:
957 			/* int_entry(position); */
958 			break;
959 		default:
960 			panic("mpfps Base Table HOSED!");
961 			/* NOTREACHED */
962 		}
963 
964 		totalSize -= basetable_entry_types[type].length;
965 		(u_char *) position += basetable_entry_types[type].length;
966 	}
967 
968 	if (boot_cpu_id == -1)
969 		panic("NO BSP found!");
970 
971 	/* report fact that its NOT a default configuration */
972 	return 0;
973 }
974 
975 
976 static void
977 assign_apic_irq(int apic, int intpin, int irq)
978 {
979 	int x;
980 
981 	if (int_to_apicintpin[irq].ioapic != -1)
982 		panic("assign_apic_irq: inconsistent table");
983 
984 	int_to_apicintpin[irq].ioapic = apic;
985 	int_to_apicintpin[irq].int_pin = intpin;
986 	int_to_apicintpin[irq].apic_address = ioapic[apic];
987 	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
988 
989 	for (x = 0; x < nintrs; x++) {
990 		if ((io_apic_ints[x].int_type == 0 ||
991 		     io_apic_ints[x].int_type == 3) &&
992 		    io_apic_ints[x].int_vector == 0xff &&
993 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
994 		    io_apic_ints[x].dst_apic_int == intpin)
995 			io_apic_ints[x].int_vector = irq;
996 	}
997 }
998 
999 /*
1000  * parse an Intel MP specification table
1001  */
1002 static void
1003 fix_mp_table(void)
1004 {
1005 	int	x;
1006 	int	id;
1007 	int	bus_0;
1008 	int	bus_pci;
1009 	int	num_pci_bus;
1010 
1011 	/*
1012 	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1013 	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1014 	 * exists the BIOS must begin with bus entries for the PCI bus and use
1015 	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1016 	 * exists the BIOS can choose to ignore this ordering, and indeed many
1017 	 * MP motherboards do ignore it.  This causes a problem when the PCI
1018 	 * sub-system makes requests of the MP sub-system based on PCI bus
1019 	 * numbers.	So here we look for the situation and renumber the
1020 	 * busses and associated INTs in an effort to "make it right".
1021 	 */
1022 
1023 	/* find bus 0, PCI bus, count the number of PCI busses */
1024 	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1025 		if (bus_data[x].bus_id == 0) {
1026 			bus_0 = x;
1027 		}
1028 		if (bus_data[x].bus_type == PCI) {
1029 			++num_pci_bus;
1030 			bus_pci = x;
1031 		}
1032 	}
1033 	/*
1034 	 * bus_0 == slot of bus with ID of 0
1035 	 * bus_pci == slot of last PCI bus encountered
1036 	 */
1037 
1038 	/* check the 1 PCI bus case for sanity */
1039 	if (num_pci_bus == 1) {
1040 
1041 		/* if it is number 0 all is well */
1042 		if (bus_data[bus_pci].bus_id == 0)
1043 			return;
1044 
1045 		/* mis-numbered, swap with whichever bus uses slot 0 */
1046 
1047 		/* swap the bus entry types */
1048 		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1049 		bus_data[bus_0].bus_type = PCI;
1050 
1051 		/* swap each relavant INTerrupt entry */
1052 		id = bus_data[bus_pci].bus_id;
1053 		for (x = 0; x < nintrs; ++x) {
1054 			if (io_apic_ints[x].src_bus_id == id) {
1055 				io_apic_ints[x].src_bus_id = 0;
1056 			}
1057 			else if (io_apic_ints[x].src_bus_id == 0) {
1058 				io_apic_ints[x].src_bus_id = id;
1059 			}
1060 		}
1061 	}
1062 	/* sanity check if more than 1 PCI bus */
1063 	else if (num_pci_bus > 1) {
1064 		for (x = 0; x < mp_nbusses; ++x) {
1065 			if (bus_data[x].bus_type != PCI)
1066 				continue;
1067 			if (bus_data[x].bus_id >= num_pci_bus)
1068 				panic("bad PCI bus numbering");
1069 		}
1070 	}
1071 }
1072 
1073 
1074 static void
1075 setup_apic_irq_mapping(void)
1076 {
1077 	int	x;
1078 	int	int_vector;
1079 
1080 	/* Assign low level interrupt handlers */
1081 	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1082 		int_to_apicintpin[x].ioapic = -1;
1083 		int_to_apicintpin[x].int_pin = 0;
1084 		int_to_apicintpin[x].apic_address = NULL;
1085 		int_to_apicintpin[x].redirindex = 0;
1086 	}
1087 	for (x = 0; x < nintrs; x++) {
1088 		if (io_apic_ints[x].dst_apic_int <= APIC_INTMAPSIZE &&
1089 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1090 		    io_apic_ints[x].int_vector == 0xff &&
1091 		    (io_apic_ints[x].int_type == 0 ||
1092 		     io_apic_ints[x].int_type == 3)) {
1093 			assign_apic_irq(0,
1094 					io_apic_ints[x].dst_apic_int,
1095 					io_apic_ints[x].dst_apic_int);
1096 		}
1097 	}
1098 	int_vector = 0;
1099 	while (int_vector < APIC_INTMAPSIZE &&
1100 	       int_to_apicintpin[int_vector].ioapic != -1)
1101 		int_vector++;
1102 	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1103 		if ((io_apic_ints[x].int_type == 0 ||
1104 		     io_apic_ints[x].int_type == 3) &&
1105 		    io_apic_ints[x].int_vector == 0xff) {
1106 			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1107 					io_apic_ints[x].dst_apic_int,
1108 					int_vector);
1109 			int_vector++;
1110 			while (int_vector < APIC_INTMAPSIZE &&
1111 			       int_to_apicintpin[int_vector].ioapic != -1)
1112 				int_vector++;
1113 		}
1114 	}
1115 }
1116 
1117 
1118 static int
1119 processor_entry(proc_entry_ptr entry, int cpu)
1120 {
1121 	/* check for usability */
1122 	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
1123 		return 0;
1124 
1125 	/* check for BSP flag */
1126 	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1127 		boot_cpu_id = entry->apic_id;
1128 		CPU_TO_ID(0) = entry->apic_id;
1129 		ID_TO_CPU(entry->apic_id) = 0;
1130 		return 0;	/* its already been counted */
1131 	}
1132 
1133 	/* add another AP to list, if less than max number of CPUs */
1134 	else {
1135 		CPU_TO_ID(cpu) = entry->apic_id;
1136 		ID_TO_CPU(entry->apic_id) = cpu;
1137 		return 1;
1138 	}
1139 }
1140 
1141 
1142 static int
1143 bus_entry(bus_entry_ptr entry, int bus)
1144 {
1145 	int     x;
1146 	char    c, name[8];
1147 
1148 	/* encode the name into an index */
1149 	for (x = 0; x < 6; ++x) {
1150 		if ((c = entry->bus_type[x]) == ' ')
1151 			break;
1152 		name[x] = c;
1153 	}
1154 	name[x] = '\0';
1155 
1156 	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1157 		panic("unknown bus type: '%s'", name);
1158 
1159 	bus_data[bus].bus_id = entry->bus_id;
1160 	bus_data[bus].bus_type = x;
1161 
1162 	return 1;
1163 }
1164 
1165 
1166 static int
1167 io_apic_entry(io_apic_entry_ptr entry, int apic)
1168 {
1169 	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1170 		return 0;
1171 
1172 	IO_TO_ID(apic) = entry->apic_id;
1173 	ID_TO_IO(entry->apic_id) = apic;
1174 
1175 	return 1;
1176 }
1177 
1178 
1179 static int
1180 lookup_bus_type(char *name)
1181 {
1182 	int     x;
1183 
1184 	for (x = 0; x < MAX_BUSTYPE; ++x)
1185 		if (strcmp(bus_type_table[x].name, name) == 0)
1186 			return bus_type_table[x].type;
1187 
1188 	return UNKNOWN_BUSTYPE;
1189 }
1190 
1191 
1192 static int
1193 int_entry(int_entry_ptr entry, int intr)
1194 {
1195 	io_apic_ints[intr].int_type = entry->int_type;
1196 	io_apic_ints[intr].int_flags = entry->int_flags;
1197 	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1198 	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1199 	io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1200 	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1201 
1202 	return 1;
1203 }
1204 
1205 
1206 static int
1207 apic_int_is_bus_type(int intr, int bus_type)
1208 {
1209 	int     bus;
1210 
1211 	for (bus = 0; bus < mp_nbusses; ++bus)
1212 		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1213 		    && ((int) bus_data[bus].bus_type == bus_type))
1214 			return 1;
1215 
1216 	return 0;
1217 }
1218 
1219 
1220 /*
1221  * Given a traditional ISA INT mask, return an APIC mask.
1222  */
1223 u_int
1224 isa_apic_mask(u_int isa_mask)
1225 {
1226 	int isa_irq;
1227 	int apic_pin;
1228 
1229 #if defined(SKIP_IRQ15_REDIRECT)
1230 	if (isa_mask == (1 << 15)) {
1231 		printf("skipping ISA IRQ15 redirect\n");
1232 		return isa_mask;
1233 	}
1234 #endif  /* SKIP_IRQ15_REDIRECT */
1235 
1236 	isa_irq = ffs(isa_mask);		/* find its bit position */
1237 	if (isa_irq == 0)			/* doesn't exist */
1238 		return 0;
1239 	--isa_irq;				/* make it zero based */
1240 
1241 	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1242 	if (apic_pin == -1)
1243 		return 0;
1244 
1245 	return (1 << apic_pin);			/* convert pin# to a mask */
1246 }
1247 
1248 
1249 /*
1250  * Determine which APIC pin an ISA/EISA INT is attached to.
1251  */
1252 #define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1253 #define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1254 #define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1255 #define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1256 
1257 #define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1258 int
1259 isa_apic_irq(int isa_irq)
1260 {
1261 	int     intr;
1262 
1263 	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1264 		if (INTTYPE(intr) == 0) {		/* standard INT */
1265 			if (SRCBUSIRQ(intr) == isa_irq) {
1266 				if (apic_int_is_bus_type(intr, ISA) ||
1267 			            apic_int_is_bus_type(intr, EISA))
1268 					return INTIRQ(intr);	/* found */
1269 			}
1270 		}
1271 	}
1272 	return -1;					/* NOT found */
1273 }
1274 
1275 
1276 /*
1277  * Determine which APIC pin a PCI INT is attached to.
1278  */
1279 #define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1280 #define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1281 #define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1282 int
1283 pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1284 {
1285 	int     intr;
1286 
1287 	--pciInt;					/* zero based */
1288 
1289 	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1290 		if ((INTTYPE(intr) == 0)		/* standard INT */
1291 		    && (SRCBUSID(intr) == pciBus)
1292 		    && (SRCBUSDEVICE(intr) == pciDevice)
1293 		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1294 			if (apic_int_is_bus_type(intr, PCI))
1295 				return INTIRQ(intr);	/* exact match */
1296 
1297 	return -1;					/* NOT found */
1298 }
1299 
1300 int
1301 next_apic_irq(int irq)
1302 {
1303 	int intr, ointr;
1304 	int bus, bustype;
1305 
1306 	bus = 0;
1307 	bustype = 0;
1308 	for (intr = 0; intr < nintrs; intr++) {
1309 		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1310 			continue;
1311 		bus = SRCBUSID(intr);
1312 		bustype = apic_bus_type(bus);
1313 		if (bustype != ISA &&
1314 		    bustype != EISA &&
1315 		    bustype != PCI)
1316 			continue;
1317 		break;
1318 	}
1319 	if (intr >= nintrs) {
1320 		return -1;
1321 	}
1322 	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1323 		if (INTTYPE(ointr) != 0)
1324 			continue;
1325 		if (bus != SRCBUSID(ointr))
1326 			continue;
1327 		if (bustype == PCI) {
1328 			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1329 				continue;
1330 			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1331 				continue;
1332 		}
1333 		if (bustype == ISA || bustype == EISA) {
1334 			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1335 				continue;
1336 		}
1337 		if (INTPIN(intr) == INTPIN(ointr))
1338 			continue;
1339 		break;
1340 	}
1341 	if (ointr >= nintrs) {
1342 		return -1;
1343 	}
1344 	return INTIRQ(ointr);
1345 }
1346 #undef SRCBUSLINE
1347 #undef SRCBUSDEVICE
1348 #undef SRCBUSID
1349 #undef SRCBUSIRQ
1350 
1351 #undef INTPIN
1352 #undef INTIRQ
1353 #undef INTAPIC
1354 #undef INTTYPE
1355 
1356 
1357 /*
1358  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1359  *
1360  * XXX FIXME:
1361  *  Exactly what this means is unclear at this point.  It is a solution
1362  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1363  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1364  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1365  *  option.
1366  */
1367 int
1368 undirect_isa_irq(int rirq)
1369 {
1370 #if defined(READY)
1371 	printf("Freeing redirected ISA irq %d.\n", rirq);
1372 	/** FIXME: tickle the MB redirector chip */
1373 	return ???;
1374 #else
1375 	printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1376 	return 0;
1377 #endif  /* READY */
1378 }
1379 
1380 
1381 /*
1382  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1383  */
1384 int
1385 undirect_pci_irq(int rirq)
1386 {
1387 #if defined(READY)
1388 	if (bootverbose)
1389 		printf("Freeing redirected PCI irq %d.\n", rirq);
1390 
1391 	/** FIXME: tickle the MB redirector chip */
1392 	return ???;
1393 #else
1394 	if (bootverbose)
1395 		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1396 		       rirq);
1397 	return 0;
1398 #endif  /* READY */
1399 }
1400 
1401 
1402 /*
1403  * given a bus ID, return:
1404  *  the bus type if found
1405  *  -1 if NOT found
1406  */
1407 int
1408 apic_bus_type(int id)
1409 {
1410 	int     x;
1411 
1412 	for (x = 0; x < mp_nbusses; ++x)
1413 		if (bus_data[x].bus_id == id)
1414 			return bus_data[x].bus_type;
1415 
1416 	return -1;
1417 }
1418 
1419 
1420 /*
1421  * given a LOGICAL APIC# and pin#, return:
1422  *  the associated src bus ID if found
1423  *  -1 if NOT found
1424  */
1425 int
1426 apic_src_bus_id(int apic, int pin)
1427 {
1428 	int     x;
1429 
1430 	/* search each of the possible INTerrupt sources */
1431 	for (x = 0; x < nintrs; ++x)
1432 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1433 		    (pin == io_apic_ints[x].dst_apic_int))
1434 			return (io_apic_ints[x].src_bus_id);
1435 
1436 	return -1;		/* NOT found */
1437 }
1438 
1439 
1440 /*
1441  * given a LOGICAL APIC# and pin#, return:
1442  *  the associated src bus IRQ if found
1443  *  -1 if NOT found
1444  */
1445 int
1446 apic_src_bus_irq(int apic, int pin)
1447 {
1448 	int     x;
1449 
1450 	for (x = 0; x < nintrs; x++)
1451 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1452 		    (pin == io_apic_ints[x].dst_apic_int))
1453 			return (io_apic_ints[x].src_bus_irq);
1454 
1455 	return -1;		/* NOT found */
1456 }
1457 
1458 
1459 /*
1460  * given a LOGICAL APIC# and pin#, return:
1461  *  the associated INTerrupt type if found
1462  *  -1 if NOT found
1463  */
1464 int
1465 apic_int_type(int apic, int pin)
1466 {
1467 	int     x;
1468 
1469 	/* search each of the possible INTerrupt sources */
1470 	for (x = 0; x < nintrs; ++x)
1471 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1472 		    (pin == io_apic_ints[x].dst_apic_int))
1473 			return (io_apic_ints[x].int_type);
1474 
1475 	return -1;		/* NOT found */
1476 }
1477 
1478 int
1479 apic_irq(int apic, int pin)
1480 {
1481 	int x;
1482 	int res;
1483 
1484 	for (x = 0; x < nintrs; ++x)
1485 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1486 		    (pin == io_apic_ints[x].dst_apic_int)) {
1487 			res = io_apic_ints[x].int_vector;
1488 			if (res == 0xff)
1489 				return -1;
1490 			if (apic != int_to_apicintpin[res].ioapic)
1491 				panic("apic_irq: inconsistent table");
1492 			if (pin != int_to_apicintpin[res].int_pin)
1493 				panic("apic_irq inconsistent table (2)");
1494 			return res;
1495 		}
1496 	return -1;
1497 }
1498 
1499 
1500 /*
1501  * given a LOGICAL APIC# and pin#, return:
1502  *  the associated trigger mode if found
1503  *  -1 if NOT found
1504  */
1505 int
1506 apic_trigger(int apic, int pin)
1507 {
1508 	int     x;
1509 
1510 	/* search each of the possible INTerrupt sources */
1511 	for (x = 0; x < nintrs; ++x)
1512 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1513 		    (pin == io_apic_ints[x].dst_apic_int))
1514 			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1515 
1516 	return -1;		/* NOT found */
1517 }
1518 
1519 
1520 /*
1521  * given a LOGICAL APIC# and pin#, return:
1522  *  the associated 'active' level if found
1523  *  -1 if NOT found
1524  */
1525 int
1526 apic_polarity(int apic, int pin)
1527 {
1528 	int     x;
1529 
1530 	/* search each of the possible INTerrupt sources */
1531 	for (x = 0; x < nintrs; ++x)
1532 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1533 		    (pin == io_apic_ints[x].dst_apic_int))
1534 			return (io_apic_ints[x].int_flags & 0x03);
1535 
1536 	return -1;		/* NOT found */
1537 }
1538 
1539 
1540 /*
1541  * set data according to MP defaults
1542  * FIXME: probably not complete yet...
1543  */
1544 static void
1545 default_mp_table(int type)
1546 {
1547 	int     ap_cpu_id;
1548 #if defined(APIC_IO)
1549 	u_int32_t ux;
1550 	int     io_apic_id;
1551 	int     pin;
1552 #endif	/* APIC_IO */
1553 
1554 #if 0
1555 	printf("  MP default config type: %d\n", type);
1556 	switch (type) {
1557 	case 1:
1558 		printf("   bus: ISA, APIC: 82489DX\n");
1559 		break;
1560 	case 2:
1561 		printf("   bus: EISA, APIC: 82489DX\n");
1562 		break;
1563 	case 3:
1564 		printf("   bus: EISA, APIC: 82489DX\n");
1565 		break;
1566 	case 4:
1567 		printf("   bus: MCA, APIC: 82489DX\n");
1568 		break;
1569 	case 5:
1570 		printf("   bus: ISA+PCI, APIC: Integrated\n");
1571 		break;
1572 	case 6:
1573 		printf("   bus: EISA+PCI, APIC: Integrated\n");
1574 		break;
1575 	case 7:
1576 		printf("   bus: MCA+PCI, APIC: Integrated\n");
1577 		break;
1578 	default:
1579 		printf("   future type\n");
1580 		break;
1581 		/* NOTREACHED */
1582 	}
1583 #endif	/* 0 */
1584 
1585 	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1586 	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1587 
1588 	/* BSP */
1589 	CPU_TO_ID(0) = boot_cpu_id;
1590 	ID_TO_CPU(boot_cpu_id) = 0;
1591 
1592 	/* one and only AP */
1593 	CPU_TO_ID(1) = ap_cpu_id;
1594 	ID_TO_CPU(ap_cpu_id) = 1;
1595 
1596 #if defined(APIC_IO)
1597 	/* one and only IO APIC */
1598 	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1599 
1600 	/*
1601 	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1602 	 * necessary as some hardware isn't properly setting up the IO APIC
1603 	 */
1604 #if defined(REALLY_ANAL_IOAPICID_VALUE)
1605 	if (io_apic_id != 2) {
1606 #else
1607 	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1608 #endif	/* REALLY_ANAL_IOAPICID_VALUE */
1609 		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1610 		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1611 		ux |= 0x02000000;	/* set it to '2' */
1612 		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1613 		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1614 		if ((ux & APIC_ID_MASK) != 0x02000000)
1615 			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1616 		io_apic_id = 2;
1617 	}
1618 	IO_TO_ID(0) = io_apic_id;
1619 	ID_TO_IO(io_apic_id) = 0;
1620 #endif	/* APIC_IO */
1621 
1622 	/* fill out bus entries */
1623 	switch (type) {
1624 	case 1:
1625 	case 2:
1626 	case 3:
1627 	case 5:
1628 	case 6:
1629 		bus_data[0].bus_id = default_data[type - 1][1];
1630 		bus_data[0].bus_type = default_data[type - 1][2];
1631 		bus_data[1].bus_id = default_data[type - 1][3];
1632 		bus_data[1].bus_type = default_data[type - 1][4];
1633 		break;
1634 
1635 	/* case 4: case 7:		   MCA NOT supported */
1636 	default:		/* illegal/reserved */
1637 		panic("BAD default MP config: %d", type);
1638 		/* NOTREACHED */
1639 	}
1640 
1641 #if defined(APIC_IO)
1642 	/* general cases from MP v1.4, table 5-2 */
1643 	for (pin = 0; pin < 16; ++pin) {
1644 		io_apic_ints[pin].int_type = 0;
1645 		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1646 		io_apic_ints[pin].src_bus_id = 0;
1647 		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1648 		io_apic_ints[pin].dst_apic_id = io_apic_id;
1649 		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1650 	}
1651 
1652 	/* special cases from MP v1.4, table 5-2 */
1653 	if (type == 2) {
1654 		io_apic_ints[2].int_type = 0xff;	/* N/C */
1655 		io_apic_ints[13].int_type = 0xff;	/* N/C */
1656 #if !defined(APIC_MIXED_MODE)
1657 		/** FIXME: ??? */
1658 		panic("sorry, can't support type 2 default yet");
1659 #endif	/* APIC_MIXED_MODE */
1660 	}
1661 	else
1662 		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1663 
1664 	if (type == 7)
1665 		io_apic_ints[0].int_type = 0xff;	/* N/C */
1666 	else
1667 		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1668 #endif	/* APIC_IO */
1669 }
1670 
1671 
1672 /*
1673  * initialize all the SMP locks
1674  */
1675 
1676 /* critical region around IO APIC, apic_imen */
1677 struct simplelock	imen_lock;
1678 
1679 /* critical region around splxx(), cpl, cml, cil, ipending */
1680 struct simplelock	cpl_lock;
1681 
1682 /* Make FAST_INTR() routines sequential */
1683 struct simplelock	fast_intr_lock;
1684 
1685 /* critical region around INTR() routines */
1686 struct simplelock	intr_lock;
1687 
1688 /* lock regions protected in UP kernel via cli/sti */
1689 struct simplelock	mpintr_lock;
1690 
1691 /* lock region used by kernel profiling */
1692 struct simplelock	mcount_lock;
1693 
1694 #ifdef USE_COMLOCK
1695 /* locks com (tty) data/hardware accesses: a FASTINTR() */
1696 struct simplelock	com_lock;
1697 #endif /* USE_COMLOCK */
1698 
1699 #ifdef USE_CLOCKLOCK
1700 /* lock regions around the clock hardware */
1701 struct simplelock	clock_lock;
1702 #endif /* USE_CLOCKLOCK */
1703 
1704 static void
1705 init_locks(void)
1706 {
1707 	/*
1708 	 * Get the initial mp_lock with a count of 1 for the BSP.
1709 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1710 	 */
1711 	mp_lock = 0x00000001;
1712 
1713 	/* ISR uses its own "giant lock" */
1714 	isr_lock = FREE_LOCK;
1715 
1716 #if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1717 	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1718 #endif
1719 
1720 	s_lock_init((struct simplelock*)&mpintr_lock);
1721 
1722 	s_lock_init((struct simplelock*)&mcount_lock);
1723 
1724 	s_lock_init((struct simplelock*)&fast_intr_lock);
1725 	s_lock_init((struct simplelock*)&intr_lock);
1726 	s_lock_init((struct simplelock*)&imen_lock);
1727 	s_lock_init((struct simplelock*)&cpl_lock);
1728 
1729 #ifdef USE_COMLOCK
1730 	s_lock_init((struct simplelock*)&com_lock);
1731 #endif /* USE_COMLOCK */
1732 #ifdef USE_CLOCKLOCK
1733 	s_lock_init((struct simplelock*)&clock_lock);
1734 #endif /* USE_CLOCKLOCK */
1735 }
1736 
1737 
1738 /*
1739  * start each AP in our list
1740  */
1741 static int
1742 start_all_aps(u_int boot_addr)
1743 {
1744 	int     x, i;
1745 	u_char  mpbiosreason;
1746 	u_long  mpbioswarmvec;
1747 	pd_entry_t *newptd;
1748 	pt_entry_t *newpt;
1749 	struct globaldata *gd;
1750 	char *stack;
1751 	pd_entry_t	*myPTD;
1752 
1753 	POSTCODE(START_ALL_APS_POST);
1754 
1755 	/* initialize BSP's local APIC */
1756 	apic_initialize();
1757 	bsp_apic_ready = 1;
1758 
1759 	/* install the AP 1st level boot code */
1760 	install_ap_tramp(boot_addr);
1761 
1762 
1763 	/* save the current value of the warm-start vector */
1764 	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1765 	outb(CMOS_REG, BIOS_RESET);
1766 	mpbiosreason = inb(CMOS_DATA);
1767 
1768 	/* record BSP in CPU map */
1769 	all_cpus = 1;
1770 
1771 	/* start each AP */
1772 	for (x = 1; x <= mp_naps; ++x) {
1773 
1774 		/* This is a bit verbose, it will go away soon.  */
1775 
1776 		/* alloc new page table directory */
1777 		newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1778 
1779 		/* Store the virtual PTD address for this CPU */
1780 		IdlePTDS[x] = newptd;
1781 
1782 		/* clone currently active one (ie: IdlePTD) */
1783 		bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1784 
1785 		/* set up 0 -> 4MB P==V mapping for AP boot */
1786 		newptd[0] = (void *)(uintptr_t)(PG_V | PG_RW |
1787 		    ((uintptr_t)(void *)KPTphys & PG_FRAME));
1788 
1789 		/* store PTD for this AP's boot sequence */
1790 		myPTD = (pd_entry_t *)vtophys(newptd);
1791 
1792 		/* alloc new page table page */
1793 		newpt = (pt_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1794 
1795 		/* set the new PTD's private page to point there */
1796 		newptd[MPPTDI] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1797 
1798 		/* install self referential entry */
1799 		newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1800 
1801 		/* allocate a new private data page */
1802 		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1803 
1804 		/* wire it into the private page table page */
1805 		newpt[0] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1806 
1807 		/* wire the ptp into itself for access */
1808 		newpt[1] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1809 
1810 		/* copy in the pointer to the local apic */
1811 		newpt[2] = SMP_prvpt[2];
1812 
1813 		/* and the IO apic mapping[s] */
1814 		for (i = 16; i < 32; i++)
1815 			newpt[i] = SMP_prvpt[i];
1816 
1817 		/* allocate and set up an idle stack data page */
1818 		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1819 		for (i = 0; i < UPAGES; i++)
1820 			newpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1821 
1822 		newpt[3 + UPAGES] = 0;		/* *prv_CMAP1 */
1823 		newpt[4 + UPAGES] = 0;		/* *prv_CMAP2 */
1824 		newpt[5 + UPAGES] = 0;		/* *prv_CMAP3 */
1825 		newpt[6 + UPAGES] = 0;		/* *prv_PMAP1 */
1826 
1827 		/* prime data page for it to use */
1828 		gd->cpuid = x;
1829 		gd->cpu_lockid = x << 24;
1830 		gd->my_idlePTD = myPTD;
1831 		gd->prv_CMAP1 = &newpt[3 + UPAGES];
1832 		gd->prv_CMAP2 = &newpt[4 + UPAGES];
1833 		gd->prv_CMAP3 = &newpt[5 + UPAGES];
1834 		gd->prv_PMAP1 = &newpt[6 + UPAGES];
1835 
1836 		/* setup a vector to our boot code */
1837 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1838 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1839 		outb(CMOS_REG, BIOS_RESET);
1840 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1841 
1842 		bootPTD = myPTD;
1843 		/* attempt to start the Application Processor */
1844 		CHECK_INIT(99);	/* setup checkpoints */
1845 		if (!start_ap(x, boot_addr)) {
1846 			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1847 			CHECK_PRINT("trace");	/* show checkpoints */
1848 			/* better panic as the AP may be running loose */
1849 			printf("panic y/n? [y] ");
1850 			if (cngetc() != 'n')
1851 				panic("bye-bye");
1852 		}
1853 		CHECK_PRINT("trace");		/* show checkpoints */
1854 
1855 		/* record its version info */
1856 		cpu_apic_versions[x] = cpu_apic_versions[0];
1857 
1858 		all_cpus |= (1 << x);		/* record AP in CPU map */
1859 	}
1860 
1861 	/* build our map of 'other' CPUs */
1862 	other_cpus = all_cpus & ~(1 << cpuid);
1863 
1864 	/* fill in our (BSP) APIC version */
1865 	cpu_apic_versions[0] = lapic.version;
1866 
1867 	/* restore the warmstart vector */
1868 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1869 	outb(CMOS_REG, BIOS_RESET);
1870 	outb(CMOS_DATA, mpbiosreason);
1871 
1872 	/*
1873 	 * Set up the idle context for the BSP.  Similar to above except
1874 	 * that some was done by locore, some by pmap.c and some is implicit
1875 	 * because the BSP is cpu#0 and the page is initially zero, and also
1876 	 * because we can refer to variables by name on the BSP..
1877 	 */
1878 	newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1879 
1880 	bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1881 	IdlePTDS[0] = newptd;
1882 
1883 	/* Point PTD[] to this page instead of IdlePTD's physical page */
1884 	newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1885 
1886 	my_idlePTD = (pd_entry_t *)vtophys(newptd);
1887 
1888 	/* Allocate and setup BSP idle stack */
1889 	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1890 	for (i = 0; i < UPAGES; i++)
1891 		SMP_prvpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1892 
1893 	pmap_set_opt_bsp();
1894 
1895 	for (i = 0; i < mp_ncpus; i++) {
1896 		bcopy( (int *) PTD + KPTDI, (int *) IdlePTDS[i] + KPTDI, NKPDE * sizeof (int));
1897 	}
1898 
1899 	/* number of APs actually started */
1900 	return mp_ncpus - 1;
1901 }
1902 
1903 
1904 /*
1905  * load the 1st level AP boot code into base memory.
1906  */
1907 
1908 /* targets for relocation */
1909 extern void bigJump(void);
1910 extern void bootCodeSeg(void);
1911 extern void bootDataSeg(void);
1912 extern void MPentry(void);
1913 extern u_int MP_GDT;
1914 extern u_int mp_gdtbase;
1915 
1916 static void
1917 install_ap_tramp(u_int boot_addr)
1918 {
1919 	int     x;
1920 	int     size = *(int *) ((u_long) & bootMP_size);
1921 	u_char *src = (u_char *) ((u_long) bootMP);
1922 	u_char *dst = (u_char *) boot_addr + KERNBASE;
1923 	u_int   boot_base = (u_int) bootMP;
1924 	u_int8_t *dst8;
1925 	u_int16_t *dst16;
1926 	u_int32_t *dst32;
1927 
1928 	POSTCODE(INSTALL_AP_TRAMP_POST);
1929 
1930 	for (x = 0; x < size; ++x)
1931 		*dst++ = *src++;
1932 
1933 	/*
1934 	 * modify addresses in code we just moved to basemem. unfortunately we
1935 	 * need fairly detailed info about mpboot.s for this to work.  changes
1936 	 * to mpboot.s might require changes here.
1937 	 */
1938 
1939 	/* boot code is located in KERNEL space */
1940 	dst = (u_char *) boot_addr + KERNBASE;
1941 
1942 	/* modify the lgdt arg */
1943 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1944 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1945 
1946 	/* modify the ljmp target for MPentry() */
1947 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1948 	*dst32 = ((u_int) MPentry - KERNBASE);
1949 
1950 	/* modify the target for boot code segment */
1951 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1952 	dst8 = (u_int8_t *) (dst16 + 1);
1953 	*dst16 = (u_int) boot_addr & 0xffff;
1954 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1955 
1956 	/* modify the target for boot data segment */
1957 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1958 	dst8 = (u_int8_t *) (dst16 + 1);
1959 	*dst16 = (u_int) boot_addr & 0xffff;
1960 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1961 }
1962 
1963 
1964 /*
1965  * this function starts the AP (application processor) identified
1966  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1967  * to accomplish this.  This is necessary because of the nuances
1968  * of the different hardware we might encounter.  It ain't pretty,
1969  * but it seems to work.
1970  */
1971 static int
1972 start_ap(int logical_cpu, u_int boot_addr)
1973 {
1974 	int     physical_cpu;
1975 	int     vector;
1976 	int     cpus;
1977 	u_long  icr_lo, icr_hi;
1978 
1979 	POSTCODE(START_AP_POST);
1980 
1981 	/* get the PHYSICAL APIC ID# */
1982 	physical_cpu = CPU_TO_ID(logical_cpu);
1983 
1984 	/* calculate the vector */
1985 	vector = (boot_addr >> 12) & 0xff;
1986 
1987 	/* used as a watchpoint to signal AP startup */
1988 	cpus = mp_ncpus;
1989 
1990 	/*
1991 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1992 	 * and running the target CPU. OR this INIT IPI might be latched (P5
1993 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1994 	 * ignored.
1995 	 */
1996 
1997 	/* setup the address for the target AP */
1998 	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
1999 	icr_hi |= (physical_cpu << 24);
2000 	lapic.icr_hi = icr_hi;
2001 
2002 	/* do an INIT IPI: assert RESET */
2003 	icr_lo = lapic.icr_lo & 0xfff00000;
2004 	lapic.icr_lo = icr_lo | 0x0000c500;
2005 
2006 	/* wait for pending status end */
2007 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2008 		 /* spin */ ;
2009 
2010 	/* do an INIT IPI: deassert RESET */
2011 	lapic.icr_lo = icr_lo | 0x00008500;
2012 
2013 	/* wait for pending status end */
2014 	u_sleep(10000);		/* wait ~10mS */
2015 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2016 		 /* spin */ ;
2017 
2018 	/*
2019 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2020 	 * latched, (P5 bug) this 1st STARTUP would then terminate
2021 	 * immediately, and the previously started INIT IPI would continue. OR
2022 	 * the previous INIT IPI has already run. and this STARTUP IPI will
2023 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2024 	 * will run.
2025 	 */
2026 
2027 	/* do a STARTUP IPI */
2028 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2029 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2030 		 /* spin */ ;
2031 	u_sleep(200);		/* wait ~200uS */
2032 
2033 	/*
2034 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2035 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2036 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2037 	 * recognized after hardware RESET or INIT IPI.
2038 	 */
2039 
2040 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2041 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2042 		 /* spin */ ;
2043 	u_sleep(200);		/* wait ~200uS */
2044 
2045 	/* wait for it to start */
2046 	set_apic_timer(5000000);/* == 5 seconds */
2047 	while (read_apic_timer())
2048 		if (mp_ncpus > cpus)
2049 			return 1;	/* return SUCCESS */
2050 
2051 	return 0;		/* return FAILURE */
2052 }
2053 
2054 
2055 /*
2056  * Flush the TLB on all other CPU's
2057  *
2058  * XXX: Needs to handshake and wait for completion before proceding.
2059  */
2060 void
2061 smp_invltlb(void)
2062 {
2063 #if defined(APIC_IO)
2064 	if (smp_started && invltlb_ok)
2065 		all_but_self_ipi(XINVLTLB_OFFSET);
2066 #endif  /* APIC_IO */
2067 }
2068 
2069 void
2070 invlpg(u_int addr)
2071 {
2072 	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2073 
2074 	/* send a message to the other CPUs */
2075 	smp_invltlb();
2076 }
2077 
2078 void
2079 invltlb(void)
2080 {
2081 	u_long  temp;
2082 
2083 	/*
2084 	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2085 	 * inlined.
2086 	 */
2087 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2088 
2089 	/* send a message to the other CPUs */
2090 	smp_invltlb();
2091 }
2092 
2093 
2094 /*
2095  * When called the executing CPU will send an IPI to all other CPUs
2096  *  requesting that they halt execution.
2097  *
2098  * Usually (but not necessarily) called with 'other_cpus' as its arg.
2099  *
2100  *  - Signals all CPUs in map to stop.
2101  *  - Waits for each to stop.
2102  *
2103  * Returns:
2104  *  -1: error
2105  *   0: NA
2106  *   1: ok
2107  *
2108  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2109  *            from executing at same time.
2110  */
2111 int
2112 stop_cpus(u_int map)
2113 {
2114 	if (!smp_started)
2115 		return 0;
2116 
2117 	/* send the Xcpustop IPI to all CPUs in map */
2118 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2119 
2120 	while ((stopped_cpus & map) != map)
2121 		/* spin */ ;
2122 
2123 	return 1;
2124 }
2125 
2126 
2127 /*
2128  * Called by a CPU to restart stopped CPUs.
2129  *
2130  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2131  *
2132  *  - Signals all CPUs in map to restart.
2133  *  - Waits for each to restart.
2134  *
2135  * Returns:
2136  *  -1: error
2137  *   0: NA
2138  *   1: ok
2139  */
2140 int
2141 restart_cpus(u_int map)
2142 {
2143 	if (!smp_started)
2144 		return 0;
2145 
2146 	started_cpus = map;		/* signal other cpus to restart */
2147 
2148 	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2149 		/* spin */ ;
2150 
2151 	return 1;
2152 }
2153 
2154 int smp_active = 0;	/* are the APs allowed to run? */
2155 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2156 
2157 /* XXX maybe should be hw.ncpu */
2158 static int smp_cpus = 1;	/* how many cpu's running */
2159 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2160 
2161 int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2162 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2163 
2164 /* Warning: Do not staticize.  Used from swtch.s */
2165 int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2166 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2167 	   &do_page_zero_idle, 0, "");
2168 
2169 /* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2170 int forward_irq_enabled = 1;
2171 SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2172 	   &forward_irq_enabled, 0, "");
2173 
2174 /* Enable forwarding of a signal to a process running on a different CPU */
2175 int forward_signal_enabled = 1;
2176 SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2177 	   &forward_signal_enabled, 0, "");
2178 
2179 /* Enable forwarding of roundrobin to all other cpus */
2180 int forward_roundrobin_enabled = 1;
2181 SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2182 	   &forward_roundrobin_enabled, 0, "");
2183 
2184 /*
2185  * This is called once the rest of the system is up and running and we're
2186  * ready to let the AP's out of the pen.
2187  */
2188 void ap_init(void);
2189 
2190 void
2191 ap_init()
2192 {
2193 	u_int   temp;
2194 	u_int	apic_id;
2195 
2196 	smp_cpus++;
2197 
2198 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2199 	lidt(&r_idt);
2200 #endif
2201 
2202 	/* Build our map of 'other' CPUs. */
2203 	other_cpus = all_cpus & ~(1 << cpuid);
2204 
2205 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2206 
2207 	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
2208 	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
2209 
2210 	/* A quick check from sanity claus */
2211 	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2212 	if (cpuid != apic_id) {
2213 		printf("SMP: cpuid = %d\n", cpuid);
2214 		printf("SMP: apic_id = %d\n", apic_id);
2215 		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2216 		panic("cpuid mismatch! boom!!");
2217 	}
2218 
2219 	getmtrr();
2220 
2221 	/* Init local apic for irq's */
2222 	apic_initialize();
2223 
2224 	/*
2225 	 * Activate smp_invltlb, although strictly speaking, this isn't
2226 	 * quite correct yet.  We should have a bitfield for cpus willing
2227 	 * to accept TLB flush IPI's or something and sync them.
2228 	 */
2229 	if (smp_cpus == mp_ncpus) {
2230 		invltlb_ok = 1;
2231 		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2232 		smp_active = 1;	 /* historic */
2233 	}
2234 
2235 	curproc = NULL;		/* make sure */
2236 }
2237 
2238 #ifdef BETTER_CLOCK
2239 
2240 #define CHECKSTATE_USER	0
2241 #define CHECKSTATE_SYS	1
2242 #define CHECKSTATE_INTR	2
2243 
2244 /* Do not staticize.  Used from apic_vector.s */
2245 struct proc*	checkstate_curproc[NCPU];
2246 int		checkstate_cpustate[NCPU];
2247 u_long		checkstate_pc[NCPU];
2248 
2249 extern long	cp_time[CPUSTATES];
2250 
2251 #define PC_TO_INDEX(pc, prof)				\
2252         ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2253             (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2254 
2255 static void
2256 addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2257 {
2258 	int i;
2259 	struct uprof *prof;
2260 	u_long pc;
2261 
2262 	pc = checkstate_pc[id];
2263 	prof = &p->p_stats->p_prof;
2264 	if (pc >= prof->pr_off &&
2265 	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2266 		if ((p->p_flag & P_OWEUPC) == 0) {
2267 			prof->pr_addr = pc;
2268 			prof->pr_ticks = 1;
2269 			p->p_flag |= P_OWEUPC;
2270 		}
2271 		*astmap |= (1 << id);
2272 	}
2273 }
2274 
2275 static void
2276 forwarded_statclock(int id, int pscnt, int *astmap)
2277 {
2278 	struct pstats *pstats;
2279 	long rss;
2280 	struct rusage *ru;
2281 	struct vmspace *vm;
2282 	int cpustate;
2283 	struct proc *p;
2284 #ifdef GPROF
2285 	register struct gmonparam *g;
2286 	int i;
2287 #endif
2288 
2289 	p = checkstate_curproc[id];
2290 	cpustate = checkstate_cpustate[id];
2291 
2292 	switch (cpustate) {
2293 	case CHECKSTATE_USER:
2294 		if (p->p_flag & P_PROFIL)
2295 			addupc_intr_forwarded(p, id, astmap);
2296 		if (pscnt > 1)
2297 			return;
2298 		p->p_uticks++;
2299 		if (p->p_nice > NZERO)
2300 			cp_time[CP_NICE]++;
2301 		else
2302 			cp_time[CP_USER]++;
2303 		break;
2304 	case CHECKSTATE_SYS:
2305 #ifdef GPROF
2306 		/*
2307 		 * Kernel statistics are just like addupc_intr, only easier.
2308 		 */
2309 		g = &_gmonparam;
2310 		if (g->state == GMON_PROF_ON) {
2311 			i = checkstate_pc[id] - g->lowpc;
2312 			if (i < g->textsize) {
2313 				i /= HISTFRACTION * sizeof(*g->kcount);
2314 				g->kcount[i]++;
2315 			}
2316 		}
2317 #endif
2318 		if (pscnt > 1)
2319 			return;
2320 
2321 		if (!p)
2322 			cp_time[CP_IDLE]++;
2323 		else {
2324 			p->p_sticks++;
2325 			cp_time[CP_SYS]++;
2326 		}
2327 		break;
2328 	case CHECKSTATE_INTR:
2329 	default:
2330 #ifdef GPROF
2331 		/*
2332 		 * Kernel statistics are just like addupc_intr, only easier.
2333 		 */
2334 		g = &_gmonparam;
2335 		if (g->state == GMON_PROF_ON) {
2336 			i = checkstate_pc[id] - g->lowpc;
2337 			if (i < g->textsize) {
2338 				i /= HISTFRACTION * sizeof(*g->kcount);
2339 				g->kcount[i]++;
2340 			}
2341 		}
2342 #endif
2343 		if (pscnt > 1)
2344 			return;
2345 		if (p)
2346 			p->p_iticks++;
2347 		cp_time[CP_INTR]++;
2348 	}
2349 	if (p != NULL) {
2350 		p->p_cpticks++;
2351 		if (++p->p_estcpu == 0)
2352 			p->p_estcpu--;
2353 		if ((p->p_estcpu & 3) == 0) {
2354 			resetpriority(p);
2355 			if (p->p_priority >= PUSER)
2356 				p->p_priority = p->p_usrpri;
2357 		}
2358 
2359 		/* Update resource usage integrals and maximums. */
2360 		if ((pstats = p->p_stats) != NULL &&
2361 		    (ru = &pstats->p_ru) != NULL &&
2362 		    (vm = p->p_vmspace) != NULL) {
2363 			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
2364 			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
2365 			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
2366 			rss = vm->vm_pmap.pm_stats.resident_count *
2367 				PAGE_SIZE / 1024;
2368 			if (ru->ru_maxrss < rss)
2369 				ru->ru_maxrss = rss;
2370         	}
2371 	}
2372 }
2373 
2374 void
2375 forward_statclock(int pscnt)
2376 {
2377 	int map;
2378 	int id;
2379 	int i;
2380 
2381 	/* Kludge. We don't yet have separate locks for the interrupts
2382 	 * and the kernel. This means that we cannot let the other processors
2383 	 * handle complex interrupts while inhibiting them from entering
2384 	 * the kernel in a non-interrupt context.
2385 	 *
2386 	 * What we can do, without changing the locking mechanisms yet,
2387 	 * is letting the other processors handle a very simple interrupt
2388 	 * (wich determines the processor states), and do the main
2389 	 * work ourself.
2390 	 */
2391 
2392 	if (!smp_started || !invltlb_ok || cold || panicstr)
2393 		return;
2394 
2395 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2396 
2397 	map = other_cpus & ~stopped_cpus ;
2398 	checkstate_probed_cpus = 0;
2399 	if (map != 0)
2400 		selected_apic_ipi(map,
2401 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2402 
2403 	i = 0;
2404 	while (checkstate_probed_cpus != map) {
2405 		/* spin */
2406 		i++;
2407 		if (i == 100000) {
2408 #ifdef BETTER_CLOCK_DIAGNOSTIC
2409 			printf("forward_statclock: checkstate %x\n",
2410 			       checkstate_probed_cpus);
2411 #endif
2412 			break;
2413 		}
2414 	}
2415 
2416 	/*
2417 	 * Step 2: walk through other processors processes, update ticks and
2418 	 * profiling info.
2419 	 */
2420 
2421 	map = 0;
2422 	for (id = 0; id < mp_ncpus; id++) {
2423 		if (id == cpuid)
2424 			continue;
2425 		if (((1 << id) & checkstate_probed_cpus) == 0)
2426 			continue;
2427 		forwarded_statclock(id, pscnt, &map);
2428 	}
2429 	if (map != 0) {
2430 		checkstate_need_ast |= map;
2431 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2432 		i = 0;
2433 		while ((checkstate_need_ast & map) != 0) {
2434 			/* spin */
2435 			i++;
2436 			if (i > 100000) {
2437 #ifdef BETTER_CLOCK_DIAGNOSTIC
2438 				printf("forward_statclock: dropped ast 0x%x\n",
2439 				       checkstate_need_ast & map);
2440 #endif
2441 				break;
2442 			}
2443 		}
2444 	}
2445 }
2446 
2447 void
2448 forward_hardclock(int pscnt)
2449 {
2450 	int map;
2451 	int id;
2452 	struct proc *p;
2453 	struct pstats *pstats;
2454 	int i;
2455 
2456 	/* Kludge. We don't yet have separate locks for the interrupts
2457 	 * and the kernel. This means that we cannot let the other processors
2458 	 * handle complex interrupts while inhibiting them from entering
2459 	 * the kernel in a non-interrupt context.
2460 	 *
2461 	 * What we can do, without changing the locking mechanisms yet,
2462 	 * is letting the other processors handle a very simple interrupt
2463 	 * (wich determines the processor states), and do the main
2464 	 * work ourself.
2465 	 */
2466 
2467 	if (!smp_started || !invltlb_ok || cold || panicstr)
2468 		return;
2469 
2470 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2471 
2472 	map = other_cpus & ~stopped_cpus ;
2473 	checkstate_probed_cpus = 0;
2474 	if (map != 0)
2475 		selected_apic_ipi(map,
2476 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2477 
2478 	i = 0;
2479 	while (checkstate_probed_cpus != map) {
2480 		/* spin */
2481 		i++;
2482 		if (i == 100000) {
2483 #ifdef BETTER_CLOCK_DIAGNOSTIC
2484 			printf("forward_hardclock: checkstate %x\n",
2485 			       checkstate_probed_cpus);
2486 #endif
2487 			break;
2488 		}
2489 	}
2490 
2491 	/*
2492 	 * Step 2: walk through other processors processes, update virtual
2493 	 * timer and profiling timer. If stathz == 0, also update ticks and
2494 	 * profiling info.
2495 	 */
2496 
2497 	map = 0;
2498 	for (id = 0; id < mp_ncpus; id++) {
2499 		if (id == cpuid)
2500 			continue;
2501 		if (((1 << id) & checkstate_probed_cpus) == 0)
2502 			continue;
2503 		p = checkstate_curproc[id];
2504 		if (p) {
2505 			pstats = p->p_stats;
2506 			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2507 			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2508 			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2509 				psignal(p, SIGVTALRM);
2510 				map |= (1 << id);
2511 			}
2512 			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2513 			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2514 				psignal(p, SIGPROF);
2515 				map |= (1 << id);
2516 			}
2517 		}
2518 		if (stathz == 0) {
2519 			forwarded_statclock( id, pscnt, &map);
2520 		}
2521 	}
2522 	if (map != 0) {
2523 		checkstate_need_ast |= map;
2524 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2525 		i = 0;
2526 		while ((checkstate_need_ast & map) != 0) {
2527 			/* spin */
2528 			i++;
2529 			if (i > 100000) {
2530 #ifdef BETTER_CLOCK_DIAGNOSTIC
2531 				printf("forward_hardclock: dropped ast 0x%x\n",
2532 				       checkstate_need_ast & map);
2533 #endif
2534 				break;
2535 			}
2536 		}
2537 	}
2538 }
2539 
2540 #endif /* BETTER_CLOCK */
2541 
2542 void
2543 forward_signal(struct proc *p)
2544 {
2545 	int map;
2546 	int id;
2547 	int i;
2548 
2549 	/* Kludge. We don't yet have separate locks for the interrupts
2550 	 * and the kernel. This means that we cannot let the other processors
2551 	 * handle complex interrupts while inhibiting them from entering
2552 	 * the kernel in a non-interrupt context.
2553 	 *
2554 	 * What we can do, without changing the locking mechanisms yet,
2555 	 * is letting the other processors handle a very simple interrupt
2556 	 * (wich determines the processor states), and do the main
2557 	 * work ourself.
2558 	 */
2559 
2560 	if (!smp_started || !invltlb_ok || cold || panicstr)
2561 		return;
2562 	if (!forward_signal_enabled)
2563 		return;
2564 	while (1) {
2565 		if (p->p_stat != SRUN)
2566 			return;
2567 		id = (u_char) p->p_oncpu;
2568 		if (id == 0xff)
2569 			return;
2570 		map = (1<<id);
2571 		checkstate_need_ast |= map;
2572 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2573 		i = 0;
2574 		while ((checkstate_need_ast & map) != 0) {
2575 			/* spin */
2576 			i++;
2577 			if (i > 100000) {
2578 #if 0
2579 				printf("forward_signal: dropped ast 0x%x\n",
2580 				       checkstate_need_ast & map);
2581 #endif
2582 				break;
2583 			}
2584 		}
2585 		if (id == (u_char) p->p_oncpu)
2586 			return;
2587 	}
2588 }
2589 
2590 void
2591 forward_roundrobin(void)
2592 {
2593 	u_int map;
2594 	int i;
2595 
2596 	if (!smp_started || !invltlb_ok || cold || panicstr)
2597 		return;
2598 	if (!forward_roundrobin_enabled)
2599 		return;
2600 	resched_cpus |= other_cpus;
2601 	map = other_cpus & ~stopped_cpus ;
2602 #if 1
2603 	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2604 #else
2605 	(void) all_but_self_ipi(XCPUAST_OFFSET);
2606 #endif
2607 	i = 0;
2608 	while ((checkstate_need_ast & map) != 0) {
2609 		/* spin */
2610 		i++;
2611 		if (i > 100000) {
2612 #if 0
2613 			printf("forward_roundrobin: dropped ast 0x%x\n",
2614 			       checkstate_need_ast & map);
2615 #endif
2616 			break;
2617 		}
2618 	}
2619 }
2620 
2621 
2622 #ifdef APIC_INTR_REORDER
2623 /*
2624  *	Maintain mapping from softintr vector to isr bit in local apic.
2625  */
2626 void
2627 set_lapic_isrloc(int intr, int vector)
2628 {
2629 	if (intr < 0 || intr > 32)
2630 		panic("set_apic_isrloc: bad intr argument: %d",intr);
2631 	if (vector < ICU_OFFSET || vector > 255)
2632 		panic("set_apic_isrloc: bad vector argument: %d",vector);
2633 	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2634 	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2635 }
2636 #endif
2637