xref: /freebsd/sys/kern/subr_smp.c (revision a0ee8cc636cd5c2374ec44ca71226564ea0bca95)
1 /*-
2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * This module holds the global variables and machine independent functions
29  * used for the kernel SMP support.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/proc.h>
40 #include <sys/bus.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/sysctl.h>
47 
48 #include <machine/cpu.h>
49 #include <machine/smp.h>
50 
51 #include "opt_sched.h"
52 
53 #ifdef SMP
54 volatile cpuset_t stopped_cpus;
55 volatile cpuset_t started_cpus;
56 volatile cpuset_t suspended_cpus;
57 cpuset_t hlt_cpus_mask;
58 cpuset_t logical_cpus_mask;
59 
60 void (*cpustop_restartfunc)(void);
61 #endif
62 
63 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
64 
65 /* This is used in modules that need to work in both SMP and UP. */
66 cpuset_t all_cpus;
67 
68 int mp_ncpus;
69 /* export this for libkvm consumers. */
70 int mp_maxcpus = MAXCPU;
71 
72 volatile int smp_started;
73 u_int mp_maxid;
74 
75 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
76     "Kernel SMP");
77 
78 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
79     "Max CPU ID.");
80 
81 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
82     0, "Max number of CPUs that the system was compiled for.");
83 
84 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD | CTLTYPE_INT, NULL, 0,
85     sysctl_kern_smp_active, "I", "Indicates system is running in SMP mode");
86 
87 int smp_disabled = 0;	/* has smp been disabled? */
88 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
89     &smp_disabled, 0, "SMP has been disabled from the loader");
90 
91 int smp_cpus = 1;	/* how many cpu's running */
92 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
93     "Number of CPUs online");
94 
95 int smp_topology = 0;	/* Which topology we're using. */
96 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
97     "Topology override setting; 0 is default provided by hardware.");
98 
99 #ifdef SMP
100 /* Enable forwarding of a signal to a process running on a different CPU */
101 static int forward_signal_enabled = 1;
102 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
103 	   &forward_signal_enabled, 0,
104 	   "Forwarding of a signal to a process on a different CPU");
105 
106 /* Variables needed for SMP rendezvous. */
107 static volatile int smp_rv_ncpus;
108 static void (*volatile smp_rv_setup_func)(void *arg);
109 static void (*volatile smp_rv_action_func)(void *arg);
110 static void (*volatile smp_rv_teardown_func)(void *arg);
111 static void *volatile smp_rv_func_arg;
112 static volatile int smp_rv_waiters[4];
113 
114 /*
115  * Shared mutex to restrict busywaits between smp_rendezvous() and
116  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
117  * functions trigger at once and cause multiple CPUs to busywait with
118  * interrupts disabled.
119  */
120 struct mtx smp_ipi_mtx;
121 
122 /*
123  * Let the MD SMP code initialize mp_maxid very early if it can.
124  */
125 static void
126 mp_setmaxid(void *dummy)
127 {
128 
129 	cpu_mp_setmaxid();
130 
131 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
132 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
133 	    ("%s: one CPU but mp_maxid is not zero", __func__));
134 	KASSERT(mp_maxid >= mp_ncpus - 1,
135 	    ("%s: counters out of sync: max %d, count %d", __func__,
136 		mp_maxid, mp_ncpus));
137 }
138 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
139 
140 /*
141  * Call the MD SMP initialization code.
142  */
143 static void
144 mp_start(void *dummy)
145 {
146 
147 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
148 
149 	/* Probe for MP hardware. */
150 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
151 		mp_ncpus = 1;
152 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
153 		return;
154 	}
155 
156 	cpu_mp_start();
157 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
158 	    mp_ncpus);
159 	cpu_mp_announce();
160 }
161 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
162 
163 void
164 forward_signal(struct thread *td)
165 {
166 	int id;
167 
168 	/*
169 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
170 	 * this thread, so all we need to do is poke it if it is currently
171 	 * executing so that it executes ast().
172 	 */
173 	THREAD_LOCK_ASSERT(td, MA_OWNED);
174 	KASSERT(TD_IS_RUNNING(td),
175 	    ("forward_signal: thread is not TDS_RUNNING"));
176 
177 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
178 
179 	if (!smp_started || cold || panicstr)
180 		return;
181 	if (!forward_signal_enabled)
182 		return;
183 
184 	/* No need to IPI ourself. */
185 	if (td == curthread)
186 		return;
187 
188 	id = td->td_oncpu;
189 	if (id == NOCPU)
190 		return;
191 	ipi_cpu(id, IPI_AST);
192 }
193 
194 /*
195  * When called the executing CPU will send an IPI to all other CPUs
196  *  requesting that they halt execution.
197  *
198  * Usually (but not necessarily) called with 'other_cpus' as its arg.
199  *
200  *  - Signals all CPUs in map to stop.
201  *  - Waits for each to stop.
202  *
203  * Returns:
204  *  -1: error
205  *   0: NA
206  *   1: ok
207  *
208  */
209 static int
210 generic_stop_cpus(cpuset_t map, u_int type)
211 {
212 #ifdef KTR
213 	char cpusetbuf[CPUSETBUFSIZ];
214 #endif
215 	static volatile u_int stopping_cpu = NOCPU;
216 	int i;
217 	volatile cpuset_t *cpus;
218 
219 	KASSERT(
220 #if defined(__amd64__) || defined(__i386__)
221 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
222 #else
223 	    type == IPI_STOP || type == IPI_STOP_HARD,
224 #endif
225 	    ("%s: invalid stop type", __func__));
226 
227 	if (!smp_started)
228 		return (0);
229 
230 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
231 	    cpusetobj_strprint(cpusetbuf, &map), type);
232 
233 #if defined(__amd64__) || defined(__i386__)
234 	/*
235 	 * When suspending, ensure there are are no IPIs in progress.
236 	 * IPIs that have been issued, but not yet delivered (e.g.
237 	 * not pending on a vCPU when running under virtualization)
238 	 * will be lost, violating FreeBSD's assumption of reliable
239 	 * IPI delivery.
240 	 */
241 	if (type == IPI_SUSPEND)
242 		mtx_lock_spin(&smp_ipi_mtx);
243 #endif
244 
245 	if (stopping_cpu != PCPU_GET(cpuid))
246 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
247 		    PCPU_GET(cpuid)) == 0)
248 			while (stopping_cpu != NOCPU)
249 				cpu_spinwait(); /* spin */
250 
251 	/* send the stop IPI to all CPUs in map */
252 	ipi_selected(map, type);
253 
254 #if defined(__amd64__) || defined(__i386__)
255 	if (type == IPI_SUSPEND)
256 		cpus = &suspended_cpus;
257 	else
258 #endif
259 		cpus = &stopped_cpus;
260 
261 	i = 0;
262 	while (!CPU_SUBSET(cpus, &map)) {
263 		/* spin */
264 		cpu_spinwait();
265 		i++;
266 		if (i == 100000000) {
267 			printf("timeout stopping cpus\n");
268 			break;
269 		}
270 	}
271 
272 #if defined(__amd64__) || defined(__i386__)
273 	if (type == IPI_SUSPEND)
274 		mtx_unlock_spin(&smp_ipi_mtx);
275 #endif
276 
277 	stopping_cpu = NOCPU;
278 	return (1);
279 }
280 
281 int
282 stop_cpus(cpuset_t map)
283 {
284 
285 	return (generic_stop_cpus(map, IPI_STOP));
286 }
287 
288 int
289 stop_cpus_hard(cpuset_t map)
290 {
291 
292 	return (generic_stop_cpus(map, IPI_STOP_HARD));
293 }
294 
295 #if defined(__amd64__) || defined(__i386__)
296 int
297 suspend_cpus(cpuset_t map)
298 {
299 
300 	return (generic_stop_cpus(map, IPI_SUSPEND));
301 }
302 #endif
303 
304 /*
305  * Called by a CPU to restart stopped CPUs.
306  *
307  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
308  *
309  *  - Signals all CPUs in map to restart.
310  *  - Waits for each to restart.
311  *
312  * Returns:
313  *  -1: error
314  *   0: NA
315  *   1: ok
316  */
317 static int
318 generic_restart_cpus(cpuset_t map, u_int type)
319 {
320 #ifdef KTR
321 	char cpusetbuf[CPUSETBUFSIZ];
322 #endif
323 	volatile cpuset_t *cpus;
324 
325 	KASSERT(
326 #if defined(__amd64__) || defined(__i386__)
327 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
328 #else
329 	    type == IPI_STOP || type == IPI_STOP_HARD,
330 #endif
331 	    ("%s: invalid stop type", __func__));
332 
333 	if (!smp_started)
334 		return 0;
335 
336 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
337 
338 #if defined(__amd64__) || defined(__i386__)
339 	if (type == IPI_SUSPEND)
340 		cpus = &suspended_cpus;
341 	else
342 #endif
343 		cpus = &stopped_cpus;
344 
345 	/* signal other cpus to restart */
346 	CPU_COPY_STORE_REL(&map, &started_cpus);
347 
348 	/* wait for each to clear its bit */
349 	while (CPU_OVERLAP(cpus, &map))
350 		cpu_spinwait();
351 
352 	return 1;
353 }
354 
355 int
356 restart_cpus(cpuset_t map)
357 {
358 
359 	return (generic_restart_cpus(map, IPI_STOP));
360 }
361 
362 #if defined(__amd64__) || defined(__i386__)
363 int
364 resume_cpus(cpuset_t map)
365 {
366 
367 	return (generic_restart_cpus(map, IPI_SUSPEND));
368 }
369 #endif
370 
371 /*
372  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
373  * (if specified), rendezvous, execute the action function (if specified),
374  * rendezvous again, execute the teardown function (if specified), and then
375  * resume.
376  *
377  * Note that the supplied external functions _must_ be reentrant and aware
378  * that they are running in parallel and in an unknown lock context.
379  */
380 void
381 smp_rendezvous_action(void)
382 {
383 	struct thread *td;
384 	void *local_func_arg;
385 	void (*local_setup_func)(void*);
386 	void (*local_action_func)(void*);
387 	void (*local_teardown_func)(void*);
388 #ifdef INVARIANTS
389 	int owepreempt;
390 #endif
391 
392 	/* Ensure we have up-to-date values. */
393 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
394 	while (smp_rv_waiters[0] < smp_rv_ncpus)
395 		cpu_spinwait();
396 
397 	/* Fetch rendezvous parameters after acquire barrier. */
398 	local_func_arg = smp_rv_func_arg;
399 	local_setup_func = smp_rv_setup_func;
400 	local_action_func = smp_rv_action_func;
401 	local_teardown_func = smp_rv_teardown_func;
402 
403 	/*
404 	 * Use a nested critical section to prevent any preemptions
405 	 * from occurring during a rendezvous action routine.
406 	 * Specifically, if a rendezvous handler is invoked via an IPI
407 	 * and the interrupted thread was in the critical_exit()
408 	 * function after setting td_critnest to 0 but before
409 	 * performing a deferred preemption, this routine can be
410 	 * invoked with td_critnest set to 0 and td_owepreempt true.
411 	 * In that case, a critical_exit() during the rendezvous
412 	 * action would trigger a preemption which is not permitted in
413 	 * a rendezvous action.  To fix this, wrap all of the
414 	 * rendezvous action handlers in a critical section.  We
415 	 * cannot use a regular critical section however as having
416 	 * critical_exit() preempt from this routine would also be
417 	 * problematic (the preemption must not occur before the IPI
418 	 * has been acknowledged via an EOI).  Instead, we
419 	 * intentionally ignore td_owepreempt when leaving the
420 	 * critical section.  This should be harmless because we do
421 	 * not permit rendezvous action routines to schedule threads,
422 	 * and thus td_owepreempt should never transition from 0 to 1
423 	 * during this routine.
424 	 */
425 	td = curthread;
426 	td->td_critnest++;
427 #ifdef INVARIANTS
428 	owepreempt = td->td_owepreempt;
429 #endif
430 
431 	/*
432 	 * If requested, run a setup function before the main action
433 	 * function.  Ensure all CPUs have completed the setup
434 	 * function before moving on to the action function.
435 	 */
436 	if (local_setup_func != smp_no_rendevous_barrier) {
437 		if (smp_rv_setup_func != NULL)
438 			smp_rv_setup_func(smp_rv_func_arg);
439 		atomic_add_int(&smp_rv_waiters[1], 1);
440 		while (smp_rv_waiters[1] < smp_rv_ncpus)
441                 	cpu_spinwait();
442 	}
443 
444 	if (local_action_func != NULL)
445 		local_action_func(local_func_arg);
446 
447 	if (local_teardown_func != smp_no_rendevous_barrier) {
448 		/*
449 		 * Signal that the main action has been completed.  If a
450 		 * full exit rendezvous is requested, then all CPUs will
451 		 * wait here until all CPUs have finished the main action.
452 		 */
453 		atomic_add_int(&smp_rv_waiters[2], 1);
454 		while (smp_rv_waiters[2] < smp_rv_ncpus)
455 			cpu_spinwait();
456 
457 		if (local_teardown_func != NULL)
458 			local_teardown_func(local_func_arg);
459 	}
460 
461 	/*
462 	 * Signal that the rendezvous is fully completed by this CPU.
463 	 * This means that no member of smp_rv_* pseudo-structure will be
464 	 * accessed by this target CPU after this point; in particular,
465 	 * memory pointed by smp_rv_func_arg.
466 	 *
467 	 * The release semantic ensures that all accesses performed by
468 	 * the current CPU are visible when smp_rendezvous_cpus()
469 	 * returns, by synchronizing with the
470 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
471 	 */
472 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
473 
474 	td->td_critnest--;
475 	KASSERT(owepreempt == td->td_owepreempt,
476 	    ("rendezvous action changed td_owepreempt"));
477 }
478 
479 void
480 smp_rendezvous_cpus(cpuset_t map,
481 	void (* setup_func)(void *),
482 	void (* action_func)(void *),
483 	void (* teardown_func)(void *),
484 	void *arg)
485 {
486 	int curcpumap, i, ncpus = 0;
487 
488 	/* Look comments in the !SMP case. */
489 	if (!smp_started) {
490 		spinlock_enter();
491 		if (setup_func != NULL)
492 			setup_func(arg);
493 		if (action_func != NULL)
494 			action_func(arg);
495 		if (teardown_func != NULL)
496 			teardown_func(arg);
497 		spinlock_exit();
498 		return;
499 	}
500 
501 	CPU_FOREACH(i) {
502 		if (CPU_ISSET(i, &map))
503 			ncpus++;
504 	}
505 	if (ncpus == 0)
506 		panic("ncpus is 0 with non-zero map");
507 
508 	mtx_lock_spin(&smp_ipi_mtx);
509 
510 	/* Pass rendezvous parameters via global variables. */
511 	smp_rv_ncpus = ncpus;
512 	smp_rv_setup_func = setup_func;
513 	smp_rv_action_func = action_func;
514 	smp_rv_teardown_func = teardown_func;
515 	smp_rv_func_arg = arg;
516 	smp_rv_waiters[1] = 0;
517 	smp_rv_waiters[2] = 0;
518 	smp_rv_waiters[3] = 0;
519 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
520 
521 	/*
522 	 * Signal other processors, which will enter the IPI with
523 	 * interrupts off.
524 	 */
525 	curcpumap = CPU_ISSET(curcpu, &map);
526 	CPU_CLR(curcpu, &map);
527 	ipi_selected(map, IPI_RENDEZVOUS);
528 
529 	/* Check if the current CPU is in the map */
530 	if (curcpumap != 0)
531 		smp_rendezvous_action();
532 
533 	/*
534 	 * Ensure that the master CPU waits for all the other
535 	 * CPUs to finish the rendezvous, so that smp_rv_*
536 	 * pseudo-structure and the arg are guaranteed to not
537 	 * be in use.
538 	 *
539 	 * Load acquire synchronizes with the release add in
540 	 * smp_rendezvous_action(), which ensures that our caller sees
541 	 * all memory actions done by the called functions on other
542 	 * CPUs.
543 	 */
544 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
545 		cpu_spinwait();
546 
547 	mtx_unlock_spin(&smp_ipi_mtx);
548 }
549 
550 void
551 smp_rendezvous(void (* setup_func)(void *),
552 	       void (* action_func)(void *),
553 	       void (* teardown_func)(void *),
554 	       void *arg)
555 {
556 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
557 }
558 
559 static struct cpu_group group[MAXCPU];
560 
561 struct cpu_group *
562 smp_topo(void)
563 {
564 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
565 	struct cpu_group *top;
566 
567 	/*
568 	 * Check for a fake topology request for debugging purposes.
569 	 */
570 	switch (smp_topology) {
571 	case 1:
572 		/* Dual core with no sharing.  */
573 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
574 		break;
575 	case 2:
576 		/* No topology, all cpus are equal. */
577 		top = smp_topo_none();
578 		break;
579 	case 3:
580 		/* Dual core with shared L2.  */
581 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
582 		break;
583 	case 4:
584 		/* quad core, shared l3 among each package, private l2.  */
585 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
586 		break;
587 	case 5:
588 		/* quad core,  2 dualcore parts on each package share l2.  */
589 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
590 		break;
591 	case 6:
592 		/* Single-core 2xHTT */
593 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
594 		break;
595 	case 7:
596 		/* quad core with a shared l3, 8 threads sharing L2.  */
597 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
598 		    CG_FLAG_SMT);
599 		break;
600 	default:
601 		/* Default, ask the system what it wants. */
602 		top = cpu_topo();
603 		break;
604 	}
605 	/*
606 	 * Verify the returned topology.
607 	 */
608 	if (top->cg_count != mp_ncpus)
609 		panic("Built bad topology at %p.  CPU count %d != %d",
610 		    top, top->cg_count, mp_ncpus);
611 	if (CPU_CMP(&top->cg_mask, &all_cpus))
612 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
613 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
614 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
615 	return (top);
616 }
617 
618 struct cpu_group *
619 smp_topo_none(void)
620 {
621 	struct cpu_group *top;
622 
623 	top = &group[0];
624 	top->cg_parent = NULL;
625 	top->cg_child = NULL;
626 	top->cg_mask = all_cpus;
627 	top->cg_count = mp_ncpus;
628 	top->cg_children = 0;
629 	top->cg_level = CG_SHARE_NONE;
630 	top->cg_flags = 0;
631 
632 	return (top);
633 }
634 
635 static int
636 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
637     int count, int flags, int start)
638 {
639 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
640 	cpuset_t mask;
641 	int i;
642 
643 	CPU_ZERO(&mask);
644 	for (i = 0; i < count; i++, start++)
645 		CPU_SET(start, &mask);
646 	child->cg_parent = parent;
647 	child->cg_child = NULL;
648 	child->cg_children = 0;
649 	child->cg_level = share;
650 	child->cg_count = count;
651 	child->cg_flags = flags;
652 	child->cg_mask = mask;
653 	parent->cg_children++;
654 	for (; parent != NULL; parent = parent->cg_parent) {
655 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
656 			panic("Duplicate children in %p.  mask (%s) child (%s)",
657 			    parent,
658 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
659 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
660 		CPU_OR(&parent->cg_mask, &child->cg_mask);
661 		parent->cg_count += child->cg_count;
662 	}
663 
664 	return (start);
665 }
666 
667 struct cpu_group *
668 smp_topo_1level(int share, int count, int flags)
669 {
670 	struct cpu_group *child;
671 	struct cpu_group *top;
672 	int packages;
673 	int cpu;
674 	int i;
675 
676 	cpu = 0;
677 	top = &group[0];
678 	packages = mp_ncpus / count;
679 	top->cg_child = child = &group[1];
680 	top->cg_level = CG_SHARE_NONE;
681 	for (i = 0; i < packages; i++, child++)
682 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
683 	return (top);
684 }
685 
686 struct cpu_group *
687 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
688     int l1flags)
689 {
690 	struct cpu_group *top;
691 	struct cpu_group *l1g;
692 	struct cpu_group *l2g;
693 	int cpu;
694 	int i;
695 	int j;
696 
697 	cpu = 0;
698 	top = &group[0];
699 	l2g = &group[1];
700 	top->cg_child = l2g;
701 	top->cg_level = CG_SHARE_NONE;
702 	top->cg_children = mp_ncpus / (l2count * l1count);
703 	l1g = l2g + top->cg_children;
704 	for (i = 0; i < top->cg_children; i++, l2g++) {
705 		l2g->cg_parent = top;
706 		l2g->cg_child = l1g;
707 		l2g->cg_level = l2share;
708 		for (j = 0; j < l2count; j++, l1g++)
709 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
710 			    l1flags, cpu);
711 	}
712 	return (top);
713 }
714 
715 
716 struct cpu_group *
717 smp_topo_find(struct cpu_group *top, int cpu)
718 {
719 	struct cpu_group *cg;
720 	cpuset_t mask;
721 	int children;
722 	int i;
723 
724 	CPU_SETOF(cpu, &mask);
725 	cg = top;
726 	for (;;) {
727 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
728 			return (NULL);
729 		if (cg->cg_children == 0)
730 			return (cg);
731 		children = cg->cg_children;
732 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
733 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
734 				break;
735 	}
736 	return (NULL);
737 }
738 #else /* !SMP */
739 
740 void
741 smp_rendezvous_cpus(cpuset_t map,
742 	void (*setup_func)(void *),
743 	void (*action_func)(void *),
744 	void (*teardown_func)(void *),
745 	void *arg)
746 {
747 	/*
748 	 * In the !SMP case we just need to ensure the same initial conditions
749 	 * as the SMP case.
750 	 */
751 	spinlock_enter();
752 	if (setup_func != NULL)
753 		setup_func(arg);
754 	if (action_func != NULL)
755 		action_func(arg);
756 	if (teardown_func != NULL)
757 		teardown_func(arg);
758 	spinlock_exit();
759 }
760 
761 void
762 smp_rendezvous(void (*setup_func)(void *),
763 	       void (*action_func)(void *),
764 	       void (*teardown_func)(void *),
765 	       void *arg)
766 {
767 
768 	/* Look comments in the smp_rendezvous_cpus() case. */
769 	spinlock_enter();
770 	if (setup_func != NULL)
771 		setup_func(arg);
772 	if (action_func != NULL)
773 		action_func(arg);
774 	if (teardown_func != NULL)
775 		teardown_func(arg);
776 	spinlock_exit();
777 }
778 
779 /*
780  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
781  * APIs will still work using this dummy support.
782  */
783 static void
784 mp_setvariables_for_up(void *dummy)
785 {
786 	mp_ncpus = 1;
787 	mp_maxid = PCPU_GET(cpuid);
788 	CPU_SETOF(mp_maxid, &all_cpus);
789 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
790 }
791 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
792     mp_setvariables_for_up, NULL);
793 #endif /* SMP */
794 
795 void
796 smp_no_rendevous_barrier(void *dummy)
797 {
798 #ifdef SMP
799 	KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
800 #endif
801 }
802 
803 /*
804  * Wait specified idle threads to switch once.  This ensures that even
805  * preempted threads have cycled through the switch function once,
806  * exiting their codepaths.  This allows us to change global pointers
807  * with no other synchronization.
808  */
809 int
810 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
811 {
812 	struct pcpu *pcpu;
813 	u_int gen[MAXCPU];
814 	int error;
815 	int cpu;
816 
817 	error = 0;
818 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
819 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
820 			continue;
821 		pcpu = pcpu_find(cpu);
822 		gen[cpu] = pcpu->pc_idlethread->td_generation;
823 	}
824 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
825 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
826 			continue;
827 		pcpu = pcpu_find(cpu);
828 		thread_lock(curthread);
829 		sched_bind(curthread, cpu);
830 		thread_unlock(curthread);
831 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
832 			error = tsleep(quiesce_cpus, prio, wmesg, 1);
833 			if (error != EWOULDBLOCK)
834 				goto out;
835 			error = 0;
836 		}
837 	}
838 out:
839 	thread_lock(curthread);
840 	sched_unbind(curthread);
841 	thread_unlock(curthread);
842 
843 	return (error);
844 }
845 
846 int
847 quiesce_all_cpus(const char *wmesg, int prio)
848 {
849 
850 	return quiesce_cpus(all_cpus, wmesg, prio);
851 }
852 
853 /* Extra care is taken with this sysctl because the data type is volatile */
854 static int
855 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
856 {
857 	int error, active;
858 
859 	active = smp_started;
860 	error = SYSCTL_OUT(req, &active, sizeof(active));
861 	return (error);
862 }
863 
864