xref: /freebsd/sys/kern/subr_smp.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*-
2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * This module holds the global variables and machine independent functions
29  * used for the kernel SMP support.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/proc.h>
40 #include <sys/bus.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/pcpu.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/sysctl.h>
48 
49 #include <machine/cpu.h>
50 #include <machine/smp.h>
51 
52 #include "opt_sched.h"
53 
54 #ifdef SMP
55 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
56 
57 volatile cpuset_t stopped_cpus;
58 volatile cpuset_t started_cpus;
59 volatile cpuset_t suspended_cpus;
60 cpuset_t hlt_cpus_mask;
61 cpuset_t logical_cpus_mask;
62 
63 void (*cpustop_restartfunc)(void);
64 #endif
65 
66 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
67 
68 /* This is used in modules that need to work in both SMP and UP. */
69 cpuset_t all_cpus;
70 
71 int mp_ncpus;
72 /* export this for libkvm consumers. */
73 int mp_maxcpus = MAXCPU;
74 
75 volatile int smp_started;
76 u_int mp_maxid;
77 
78 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
79     "Kernel SMP");
80 
81 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
82     "Max CPU ID.");
83 
84 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
85     0, "Max number of CPUs that the system was compiled for.");
86 
87 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD | CTLTYPE_INT, NULL, 0,
88     sysctl_kern_smp_active, "I", "Indicates system is running in SMP mode");
89 
90 int smp_disabled = 0;	/* has smp been disabled? */
91 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
92     &smp_disabled, 0, "SMP has been disabled from the loader");
93 
94 int smp_cpus = 1;	/* how many cpu's running */
95 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
96     "Number of CPUs online");
97 
98 int smp_topology = 0;	/* Which topology we're using. */
99 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
100     "Topology override setting; 0 is default provided by hardware.");
101 
102 #ifdef SMP
103 /* Enable forwarding of a signal to a process running on a different CPU */
104 static int forward_signal_enabled = 1;
105 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
106 	   &forward_signal_enabled, 0,
107 	   "Forwarding of a signal to a process on a different CPU");
108 
109 /* Variables needed for SMP rendezvous. */
110 static volatile int smp_rv_ncpus;
111 static void (*volatile smp_rv_setup_func)(void *arg);
112 static void (*volatile smp_rv_action_func)(void *arg);
113 static void (*volatile smp_rv_teardown_func)(void *arg);
114 static void *volatile smp_rv_func_arg;
115 static volatile int smp_rv_waiters[4];
116 
117 /*
118  * Shared mutex to restrict busywaits between smp_rendezvous() and
119  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
120  * functions trigger at once and cause multiple CPUs to busywait with
121  * interrupts disabled.
122  */
123 struct mtx smp_ipi_mtx;
124 
125 /*
126  * Let the MD SMP code initialize mp_maxid very early if it can.
127  */
128 static void
129 mp_setmaxid(void *dummy)
130 {
131 
132 	cpu_mp_setmaxid();
133 
134 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
135 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
136 	    ("%s: one CPU but mp_maxid is not zero", __func__));
137 	KASSERT(mp_maxid >= mp_ncpus - 1,
138 	    ("%s: counters out of sync: max %d, count %d", __func__,
139 		mp_maxid, mp_ncpus));
140 }
141 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
142 
143 /*
144  * Call the MD SMP initialization code.
145  */
146 static void
147 mp_start(void *dummy)
148 {
149 
150 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
151 
152 	/* Probe for MP hardware. */
153 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
154 		mp_ncpus = 1;
155 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
156 		return;
157 	}
158 
159 	cpu_mp_start();
160 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
161 	    mp_ncpus);
162 	cpu_mp_announce();
163 }
164 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
165 
166 void
167 forward_signal(struct thread *td)
168 {
169 	int id;
170 
171 	/*
172 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
173 	 * this thread, so all we need to do is poke it if it is currently
174 	 * executing so that it executes ast().
175 	 */
176 	THREAD_LOCK_ASSERT(td, MA_OWNED);
177 	KASSERT(TD_IS_RUNNING(td),
178 	    ("forward_signal: thread is not TDS_RUNNING"));
179 
180 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
181 
182 	if (!smp_started || cold || panicstr)
183 		return;
184 	if (!forward_signal_enabled)
185 		return;
186 
187 	/* No need to IPI ourself. */
188 	if (td == curthread)
189 		return;
190 
191 	id = td->td_oncpu;
192 	if (id == NOCPU)
193 		return;
194 	ipi_cpu(id, IPI_AST);
195 }
196 
197 /*
198  * When called the executing CPU will send an IPI to all other CPUs
199  *  requesting that they halt execution.
200  *
201  * Usually (but not necessarily) called with 'other_cpus' as its arg.
202  *
203  *  - Signals all CPUs in map to stop.
204  *  - Waits for each to stop.
205  *
206  * Returns:
207  *  -1: error
208  *   0: NA
209  *   1: ok
210  *
211  */
212 static int
213 generic_stop_cpus(cpuset_t map, u_int type)
214 {
215 #ifdef KTR
216 	char cpusetbuf[CPUSETBUFSIZ];
217 #endif
218 	static volatile u_int stopping_cpu = NOCPU;
219 	int i;
220 	volatile cpuset_t *cpus;
221 
222 	KASSERT(
223 #if defined(__amd64__) || defined(__i386__)
224 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
225 #else
226 	    type == IPI_STOP || type == IPI_STOP_HARD,
227 #endif
228 	    ("%s: invalid stop type", __func__));
229 
230 	if (!smp_started)
231 		return (0);
232 
233 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
234 	    cpusetobj_strprint(cpusetbuf, &map), type);
235 
236 #if defined(__amd64__) || defined(__i386__)
237 	/*
238 	 * When suspending, ensure there are are no IPIs in progress.
239 	 * IPIs that have been issued, but not yet delivered (e.g.
240 	 * not pending on a vCPU when running under virtualization)
241 	 * will be lost, violating FreeBSD's assumption of reliable
242 	 * IPI delivery.
243 	 */
244 	if (type == IPI_SUSPEND)
245 		mtx_lock_spin(&smp_ipi_mtx);
246 #endif
247 
248 	if (stopping_cpu != PCPU_GET(cpuid))
249 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
250 		    PCPU_GET(cpuid)) == 0)
251 			while (stopping_cpu != NOCPU)
252 				cpu_spinwait(); /* spin */
253 
254 	/* send the stop IPI to all CPUs in map */
255 	ipi_selected(map, type);
256 
257 #if defined(__amd64__) || defined(__i386__)
258 	if (type == IPI_SUSPEND)
259 		cpus = &suspended_cpus;
260 	else
261 #endif
262 		cpus = &stopped_cpus;
263 
264 	i = 0;
265 	while (!CPU_SUBSET(cpus, &map)) {
266 		/* spin */
267 		cpu_spinwait();
268 		i++;
269 		if (i == 100000000) {
270 			printf("timeout stopping cpus\n");
271 			break;
272 		}
273 	}
274 
275 #if defined(__amd64__) || defined(__i386__)
276 	if (type == IPI_SUSPEND)
277 		mtx_unlock_spin(&smp_ipi_mtx);
278 #endif
279 
280 	stopping_cpu = NOCPU;
281 	return (1);
282 }
283 
284 int
285 stop_cpus(cpuset_t map)
286 {
287 
288 	return (generic_stop_cpus(map, IPI_STOP));
289 }
290 
291 int
292 stop_cpus_hard(cpuset_t map)
293 {
294 
295 	return (generic_stop_cpus(map, IPI_STOP_HARD));
296 }
297 
298 #if defined(__amd64__) || defined(__i386__)
299 int
300 suspend_cpus(cpuset_t map)
301 {
302 
303 	return (generic_stop_cpus(map, IPI_SUSPEND));
304 }
305 #endif
306 
307 /*
308  * Called by a CPU to restart stopped CPUs.
309  *
310  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
311  *
312  *  - Signals all CPUs in map to restart.
313  *  - Waits for each to restart.
314  *
315  * Returns:
316  *  -1: error
317  *   0: NA
318  *   1: ok
319  */
320 static int
321 generic_restart_cpus(cpuset_t map, u_int type)
322 {
323 #ifdef KTR
324 	char cpusetbuf[CPUSETBUFSIZ];
325 #endif
326 	volatile cpuset_t *cpus;
327 
328 	KASSERT(
329 #if defined(__amd64__) || defined(__i386__)
330 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
331 #else
332 	    type == IPI_STOP || type == IPI_STOP_HARD,
333 #endif
334 	    ("%s: invalid stop type", __func__));
335 
336 	if (!smp_started)
337 		return 0;
338 
339 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
340 
341 #if defined(__amd64__) || defined(__i386__)
342 	if (type == IPI_SUSPEND)
343 		cpus = &suspended_cpus;
344 	else
345 #endif
346 		cpus = &stopped_cpus;
347 
348 	/* signal other cpus to restart */
349 	CPU_COPY_STORE_REL(&map, &started_cpus);
350 
351 	/* wait for each to clear its bit */
352 	while (CPU_OVERLAP(cpus, &map))
353 		cpu_spinwait();
354 
355 	return 1;
356 }
357 
358 int
359 restart_cpus(cpuset_t map)
360 {
361 
362 	return (generic_restart_cpus(map, IPI_STOP));
363 }
364 
365 #if defined(__amd64__) || defined(__i386__)
366 int
367 resume_cpus(cpuset_t map)
368 {
369 
370 	return (generic_restart_cpus(map, IPI_SUSPEND));
371 }
372 #endif
373 
374 /*
375  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
376  * (if specified), rendezvous, execute the action function (if specified),
377  * rendezvous again, execute the teardown function (if specified), and then
378  * resume.
379  *
380  * Note that the supplied external functions _must_ be reentrant and aware
381  * that they are running in parallel and in an unknown lock context.
382  */
383 void
384 smp_rendezvous_action(void)
385 {
386 	struct thread *td;
387 	void *local_func_arg;
388 	void (*local_setup_func)(void*);
389 	void (*local_action_func)(void*);
390 	void (*local_teardown_func)(void*);
391 #ifdef INVARIANTS
392 	int owepreempt;
393 #endif
394 
395 	/* Ensure we have up-to-date values. */
396 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
397 	while (smp_rv_waiters[0] < smp_rv_ncpus)
398 		cpu_spinwait();
399 
400 	/* Fetch rendezvous parameters after acquire barrier. */
401 	local_func_arg = smp_rv_func_arg;
402 	local_setup_func = smp_rv_setup_func;
403 	local_action_func = smp_rv_action_func;
404 	local_teardown_func = smp_rv_teardown_func;
405 
406 	/*
407 	 * Use a nested critical section to prevent any preemptions
408 	 * from occurring during a rendezvous action routine.
409 	 * Specifically, if a rendezvous handler is invoked via an IPI
410 	 * and the interrupted thread was in the critical_exit()
411 	 * function after setting td_critnest to 0 but before
412 	 * performing a deferred preemption, this routine can be
413 	 * invoked with td_critnest set to 0 and td_owepreempt true.
414 	 * In that case, a critical_exit() during the rendezvous
415 	 * action would trigger a preemption which is not permitted in
416 	 * a rendezvous action.  To fix this, wrap all of the
417 	 * rendezvous action handlers in a critical section.  We
418 	 * cannot use a regular critical section however as having
419 	 * critical_exit() preempt from this routine would also be
420 	 * problematic (the preemption must not occur before the IPI
421 	 * has been acknowledged via an EOI).  Instead, we
422 	 * intentionally ignore td_owepreempt when leaving the
423 	 * critical section.  This should be harmless because we do
424 	 * not permit rendezvous action routines to schedule threads,
425 	 * and thus td_owepreempt should never transition from 0 to 1
426 	 * during this routine.
427 	 */
428 	td = curthread;
429 	td->td_critnest++;
430 #ifdef INVARIANTS
431 	owepreempt = td->td_owepreempt;
432 #endif
433 
434 	/*
435 	 * If requested, run a setup function before the main action
436 	 * function.  Ensure all CPUs have completed the setup
437 	 * function before moving on to the action function.
438 	 */
439 	if (local_setup_func != smp_no_rendevous_barrier) {
440 		if (smp_rv_setup_func != NULL)
441 			smp_rv_setup_func(smp_rv_func_arg);
442 		atomic_add_int(&smp_rv_waiters[1], 1);
443 		while (smp_rv_waiters[1] < smp_rv_ncpus)
444                 	cpu_spinwait();
445 	}
446 
447 	if (local_action_func != NULL)
448 		local_action_func(local_func_arg);
449 
450 	if (local_teardown_func != smp_no_rendevous_barrier) {
451 		/*
452 		 * Signal that the main action has been completed.  If a
453 		 * full exit rendezvous is requested, then all CPUs will
454 		 * wait here until all CPUs have finished the main action.
455 		 */
456 		atomic_add_int(&smp_rv_waiters[2], 1);
457 		while (smp_rv_waiters[2] < smp_rv_ncpus)
458 			cpu_spinwait();
459 
460 		if (local_teardown_func != NULL)
461 			local_teardown_func(local_func_arg);
462 	}
463 
464 	/*
465 	 * Signal that the rendezvous is fully completed by this CPU.
466 	 * This means that no member of smp_rv_* pseudo-structure will be
467 	 * accessed by this target CPU after this point; in particular,
468 	 * memory pointed by smp_rv_func_arg.
469 	 *
470 	 * The release semantic ensures that all accesses performed by
471 	 * the current CPU are visible when smp_rendezvous_cpus()
472 	 * returns, by synchronizing with the
473 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
474 	 */
475 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
476 
477 	td->td_critnest--;
478 	KASSERT(owepreempt == td->td_owepreempt,
479 	    ("rendezvous action changed td_owepreempt"));
480 }
481 
482 void
483 smp_rendezvous_cpus(cpuset_t map,
484 	void (* setup_func)(void *),
485 	void (* action_func)(void *),
486 	void (* teardown_func)(void *),
487 	void *arg)
488 {
489 	int curcpumap, i, ncpus = 0;
490 
491 	/* Look comments in the !SMP case. */
492 	if (!smp_started) {
493 		spinlock_enter();
494 		if (setup_func != NULL)
495 			setup_func(arg);
496 		if (action_func != NULL)
497 			action_func(arg);
498 		if (teardown_func != NULL)
499 			teardown_func(arg);
500 		spinlock_exit();
501 		return;
502 	}
503 
504 	CPU_FOREACH(i) {
505 		if (CPU_ISSET(i, &map))
506 			ncpus++;
507 	}
508 	if (ncpus == 0)
509 		panic("ncpus is 0 with non-zero map");
510 
511 	mtx_lock_spin(&smp_ipi_mtx);
512 
513 	/* Pass rendezvous parameters via global variables. */
514 	smp_rv_ncpus = ncpus;
515 	smp_rv_setup_func = setup_func;
516 	smp_rv_action_func = action_func;
517 	smp_rv_teardown_func = teardown_func;
518 	smp_rv_func_arg = arg;
519 	smp_rv_waiters[1] = 0;
520 	smp_rv_waiters[2] = 0;
521 	smp_rv_waiters[3] = 0;
522 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
523 
524 	/*
525 	 * Signal other processors, which will enter the IPI with
526 	 * interrupts off.
527 	 */
528 	curcpumap = CPU_ISSET(curcpu, &map);
529 	CPU_CLR(curcpu, &map);
530 	ipi_selected(map, IPI_RENDEZVOUS);
531 
532 	/* Check if the current CPU is in the map */
533 	if (curcpumap != 0)
534 		smp_rendezvous_action();
535 
536 	/*
537 	 * Ensure that the master CPU waits for all the other
538 	 * CPUs to finish the rendezvous, so that smp_rv_*
539 	 * pseudo-structure and the arg are guaranteed to not
540 	 * be in use.
541 	 *
542 	 * Load acquire synchronizes with the release add in
543 	 * smp_rendezvous_action(), which ensures that our caller sees
544 	 * all memory actions done by the called functions on other
545 	 * CPUs.
546 	 */
547 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
548 		cpu_spinwait();
549 
550 	mtx_unlock_spin(&smp_ipi_mtx);
551 }
552 
553 void
554 smp_rendezvous(void (* setup_func)(void *),
555 	       void (* action_func)(void *),
556 	       void (* teardown_func)(void *),
557 	       void *arg)
558 {
559 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
560 }
561 
562 static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1];
563 
564 struct cpu_group *
565 smp_topo(void)
566 {
567 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
568 	struct cpu_group *top;
569 
570 	/*
571 	 * Check for a fake topology request for debugging purposes.
572 	 */
573 	switch (smp_topology) {
574 	case 1:
575 		/* Dual core with no sharing.  */
576 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
577 		break;
578 	case 2:
579 		/* No topology, all cpus are equal. */
580 		top = smp_topo_none();
581 		break;
582 	case 3:
583 		/* Dual core with shared L2.  */
584 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
585 		break;
586 	case 4:
587 		/* quad core, shared l3 among each package, private l2.  */
588 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
589 		break;
590 	case 5:
591 		/* quad core,  2 dualcore parts on each package share l2.  */
592 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
593 		break;
594 	case 6:
595 		/* Single-core 2xHTT */
596 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
597 		break;
598 	case 7:
599 		/* quad core with a shared l3, 8 threads sharing L2.  */
600 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
601 		    CG_FLAG_SMT);
602 		break;
603 	default:
604 		/* Default, ask the system what it wants. */
605 		top = cpu_topo();
606 		break;
607 	}
608 	/*
609 	 * Verify the returned topology.
610 	 */
611 	if (top->cg_count != mp_ncpus)
612 		panic("Built bad topology at %p.  CPU count %d != %d",
613 		    top, top->cg_count, mp_ncpus);
614 	if (CPU_CMP(&top->cg_mask, &all_cpus))
615 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
616 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
617 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
618 	return (top);
619 }
620 
621 struct cpu_group *
622 smp_topo_alloc(u_int count)
623 {
624 	static u_int index;
625 	u_int curr;
626 
627 	curr = index;
628 	index += count;
629 	return (&group[curr]);
630 }
631 
632 struct cpu_group *
633 smp_topo_none(void)
634 {
635 	struct cpu_group *top;
636 
637 	top = &group[0];
638 	top->cg_parent = NULL;
639 	top->cg_child = NULL;
640 	top->cg_mask = all_cpus;
641 	top->cg_count = mp_ncpus;
642 	top->cg_children = 0;
643 	top->cg_level = CG_SHARE_NONE;
644 	top->cg_flags = 0;
645 
646 	return (top);
647 }
648 
649 static int
650 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
651     int count, int flags, int start)
652 {
653 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
654 	cpuset_t mask;
655 	int i;
656 
657 	CPU_ZERO(&mask);
658 	for (i = 0; i < count; i++, start++)
659 		CPU_SET(start, &mask);
660 	child->cg_parent = parent;
661 	child->cg_child = NULL;
662 	child->cg_children = 0;
663 	child->cg_level = share;
664 	child->cg_count = count;
665 	child->cg_flags = flags;
666 	child->cg_mask = mask;
667 	parent->cg_children++;
668 	for (; parent != NULL; parent = parent->cg_parent) {
669 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
670 			panic("Duplicate children in %p.  mask (%s) child (%s)",
671 			    parent,
672 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
673 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
674 		CPU_OR(&parent->cg_mask, &child->cg_mask);
675 		parent->cg_count += child->cg_count;
676 	}
677 
678 	return (start);
679 }
680 
681 struct cpu_group *
682 smp_topo_1level(int share, int count, int flags)
683 {
684 	struct cpu_group *child;
685 	struct cpu_group *top;
686 	int packages;
687 	int cpu;
688 	int i;
689 
690 	cpu = 0;
691 	top = &group[0];
692 	packages = mp_ncpus / count;
693 	top->cg_child = child = &group[1];
694 	top->cg_level = CG_SHARE_NONE;
695 	for (i = 0; i < packages; i++, child++)
696 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
697 	return (top);
698 }
699 
700 struct cpu_group *
701 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
702     int l1flags)
703 {
704 	struct cpu_group *top;
705 	struct cpu_group *l1g;
706 	struct cpu_group *l2g;
707 	int cpu;
708 	int i;
709 	int j;
710 
711 	cpu = 0;
712 	top = &group[0];
713 	l2g = &group[1];
714 	top->cg_child = l2g;
715 	top->cg_level = CG_SHARE_NONE;
716 	top->cg_children = mp_ncpus / (l2count * l1count);
717 	l1g = l2g + top->cg_children;
718 	for (i = 0; i < top->cg_children; i++, l2g++) {
719 		l2g->cg_parent = top;
720 		l2g->cg_child = l1g;
721 		l2g->cg_level = l2share;
722 		for (j = 0; j < l2count; j++, l1g++)
723 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
724 			    l1flags, cpu);
725 	}
726 	return (top);
727 }
728 
729 
730 struct cpu_group *
731 smp_topo_find(struct cpu_group *top, int cpu)
732 {
733 	struct cpu_group *cg;
734 	cpuset_t mask;
735 	int children;
736 	int i;
737 
738 	CPU_SETOF(cpu, &mask);
739 	cg = top;
740 	for (;;) {
741 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
742 			return (NULL);
743 		if (cg->cg_children == 0)
744 			return (cg);
745 		children = cg->cg_children;
746 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
747 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
748 				break;
749 	}
750 	return (NULL);
751 }
752 #else /* !SMP */
753 
754 void
755 smp_rendezvous_cpus(cpuset_t map,
756 	void (*setup_func)(void *),
757 	void (*action_func)(void *),
758 	void (*teardown_func)(void *),
759 	void *arg)
760 {
761 	/*
762 	 * In the !SMP case we just need to ensure the same initial conditions
763 	 * as the SMP case.
764 	 */
765 	spinlock_enter();
766 	if (setup_func != NULL)
767 		setup_func(arg);
768 	if (action_func != NULL)
769 		action_func(arg);
770 	if (teardown_func != NULL)
771 		teardown_func(arg);
772 	spinlock_exit();
773 }
774 
775 void
776 smp_rendezvous(void (*setup_func)(void *),
777 	       void (*action_func)(void *),
778 	       void (*teardown_func)(void *),
779 	       void *arg)
780 {
781 
782 	/* Look comments in the smp_rendezvous_cpus() case. */
783 	spinlock_enter();
784 	if (setup_func != NULL)
785 		setup_func(arg);
786 	if (action_func != NULL)
787 		action_func(arg);
788 	if (teardown_func != NULL)
789 		teardown_func(arg);
790 	spinlock_exit();
791 }
792 
793 /*
794  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
795  * APIs will still work using this dummy support.
796  */
797 static void
798 mp_setvariables_for_up(void *dummy)
799 {
800 	mp_ncpus = 1;
801 	mp_maxid = PCPU_GET(cpuid);
802 	CPU_SETOF(mp_maxid, &all_cpus);
803 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
804 }
805 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
806     mp_setvariables_for_up, NULL);
807 #endif /* SMP */
808 
809 void
810 smp_no_rendevous_barrier(void *dummy)
811 {
812 #ifdef SMP
813 	KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
814 #endif
815 }
816 
817 /*
818  * Wait specified idle threads to switch once.  This ensures that even
819  * preempted threads have cycled through the switch function once,
820  * exiting their codepaths.  This allows us to change global pointers
821  * with no other synchronization.
822  */
823 int
824 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
825 {
826 	struct pcpu *pcpu;
827 	u_int gen[MAXCPU];
828 	int error;
829 	int cpu;
830 
831 	error = 0;
832 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
833 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
834 			continue;
835 		pcpu = pcpu_find(cpu);
836 		gen[cpu] = pcpu->pc_idlethread->td_generation;
837 	}
838 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
839 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
840 			continue;
841 		pcpu = pcpu_find(cpu);
842 		thread_lock(curthread);
843 		sched_bind(curthread, cpu);
844 		thread_unlock(curthread);
845 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
846 			error = tsleep(quiesce_cpus, prio, wmesg, 1);
847 			if (error != EWOULDBLOCK)
848 				goto out;
849 			error = 0;
850 		}
851 	}
852 out:
853 	thread_lock(curthread);
854 	sched_unbind(curthread);
855 	thread_unlock(curthread);
856 
857 	return (error);
858 }
859 
860 int
861 quiesce_all_cpus(const char *wmesg, int prio)
862 {
863 
864 	return quiesce_cpus(all_cpus, wmesg, prio);
865 }
866 
867 /* Extra care is taken with this sysctl because the data type is volatile */
868 static int
869 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
870 {
871 	int error, active;
872 
873 	active = smp_started;
874 	error = SYSCTL_OUT(req, &active, sizeof(active));
875 	return (error);
876 }
877 
878 
879 #ifdef SMP
880 void
881 topo_init_node(struct topo_node *node)
882 {
883 
884 	bzero(node, sizeof(*node));
885 	TAILQ_INIT(&node->children);
886 }
887 
888 void
889 topo_init_root(struct topo_node *root)
890 {
891 
892 	topo_init_node(root);
893 	root->type = TOPO_TYPE_SYSTEM;
894 }
895 
896 /*
897  * Add a child node with the given ID under the given parent.
898  * Do nothing if there is already a child with that ID.
899  */
900 struct topo_node *
901 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
902     topo_node_type type, uintptr_t subtype)
903 {
904 	struct topo_node *node;
905 
906 	TAILQ_FOREACH_REVERSE(node, &parent->children,
907 	    topo_children, siblings) {
908 		if (node->hwid == hwid
909 		    && node->type == type && node->subtype == subtype) {
910 			return (node);
911 		}
912 	}
913 
914 	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
915 	topo_init_node(node);
916 	node->parent = parent;
917 	node->hwid = hwid;
918 	node->type = type;
919 	node->subtype = subtype;
920 	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
921 	parent->nchildren++;
922 
923 	return (node);
924 }
925 
926 /*
927  * Find a child node with the given ID under the given parent.
928  */
929 struct topo_node *
930 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
931     topo_node_type type, uintptr_t subtype)
932 {
933 
934 	struct topo_node *node;
935 
936 	TAILQ_FOREACH(node, &parent->children, siblings) {
937 		if (node->hwid == hwid
938 		    && node->type == type && node->subtype == subtype) {
939 			return (node);
940 		}
941 	}
942 
943 	return (NULL);
944 }
945 
946 /*
947  * Given a node change the order of its parent's child nodes such
948  * that the node becomes the firt child while preserving the cyclic
949  * order of the children.  In other words, the given node is promoted
950  * by rotation.
951  */
952 void
953 topo_promote_child(struct topo_node *child)
954 {
955 	struct topo_node *next;
956 	struct topo_node *node;
957 	struct topo_node *parent;
958 
959 	parent = child->parent;
960 	next = TAILQ_NEXT(child, siblings);
961 	TAILQ_REMOVE(&parent->children, child, siblings);
962 	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
963 
964 	while (next != NULL) {
965 		node = next;
966 		next = TAILQ_NEXT(node, siblings);
967 		TAILQ_REMOVE(&parent->children, node, siblings);
968 		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
969 		child = node;
970 	}
971 }
972 
973 /*
974  * Iterate to the next node in the depth-first search (traversal) of
975  * the topology tree.
976  */
977 struct topo_node *
978 topo_next_node(struct topo_node *top, struct topo_node *node)
979 {
980 	struct topo_node *next;
981 
982 	if ((next = TAILQ_FIRST(&node->children)) != NULL)
983 		return (next);
984 
985 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
986 		return (next);
987 
988 	while ((node = node->parent) != top)
989 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
990 			return (next);
991 
992 	return (NULL);
993 }
994 
995 /*
996  * Iterate to the next node in the depth-first search of the topology tree,
997  * but without descending below the current node.
998  */
999 struct topo_node *
1000 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1001 {
1002 	struct topo_node *next;
1003 
1004 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1005 		return (next);
1006 
1007 	while ((node = node->parent) != top)
1008 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1009 			return (next);
1010 
1011 	return (NULL);
1012 }
1013 
1014 /*
1015  * Assign the given ID to the given topology node that represents a logical
1016  * processor.
1017  */
1018 void
1019 topo_set_pu_id(struct topo_node *node, cpuid_t id)
1020 {
1021 
1022 	KASSERT(node->type == TOPO_TYPE_PU,
1023 	    ("topo_set_pu_id: wrong node type: %u", node->type));
1024 	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1025 	    ("topo_set_pu_id: cpuset already not empty"));
1026 	node->id = id;
1027 	CPU_SET(id, &node->cpuset);
1028 	node->cpu_count = 1;
1029 	node->subtype = 1;
1030 
1031 	while ((node = node->parent) != NULL) {
1032 		KASSERT(!CPU_ISSET(id, &node->cpuset),
1033 		    ("logical ID %u is already set in node %p", id, node));
1034 		CPU_SET(id, &node->cpuset);
1035 		node->cpu_count++;
1036 	}
1037 }
1038 
1039 /*
1040  * Check if the topology is uniform, that is, each package has the same number
1041  * of cores in it and each core has the same number of threads (logical
1042  * processors) in it.  If so, calculate the number of package, the number of
1043  * cores per package and the number of logical processors per core.
1044  * 'all' parameter tells whether to include administratively disabled logical
1045  * processors into the analysis.
1046  */
1047 int
1048 topo_analyze(struct topo_node *topo_root, int all,
1049     int *pkg_count, int *cores_per_pkg, int *thrs_per_core)
1050 {
1051 	struct topo_node *pkg_node;
1052 	struct topo_node *core_node;
1053 	struct topo_node *pu_node;
1054 	int thrs_per_pkg;
1055 	int cpp_counter;
1056 	int tpc_counter;
1057 	int tpp_counter;
1058 
1059 	*pkg_count = 0;
1060 	*cores_per_pkg = -1;
1061 	*thrs_per_core = -1;
1062 	thrs_per_pkg = -1;
1063 	pkg_node = topo_root;
1064 	while (pkg_node != NULL) {
1065 		if (pkg_node->type != TOPO_TYPE_PKG) {
1066 			pkg_node = topo_next_node(topo_root, pkg_node);
1067 			continue;
1068 		}
1069 		if (!all && CPU_EMPTY(&pkg_node->cpuset)) {
1070 			pkg_node = topo_next_nonchild_node(topo_root, pkg_node);
1071 			continue;
1072 		}
1073 
1074 		(*pkg_count)++;
1075 
1076 		cpp_counter = 0;
1077 		tpp_counter = 0;
1078 		core_node = pkg_node;
1079 		while (core_node != NULL) {
1080 			if (core_node->type == TOPO_TYPE_CORE) {
1081 				if (!all && CPU_EMPTY(&core_node->cpuset)) {
1082 					core_node =
1083 					    topo_next_nonchild_node(pkg_node,
1084 					        core_node);
1085 					continue;
1086 				}
1087 
1088 				cpp_counter++;
1089 
1090 				tpc_counter = 0;
1091 				pu_node = core_node;
1092 				while (pu_node != NULL) {
1093 					if (pu_node->type == TOPO_TYPE_PU &&
1094 					    (all || !CPU_EMPTY(&pu_node->cpuset)))
1095 						tpc_counter++;
1096 					pu_node = topo_next_node(core_node,
1097 					    pu_node);
1098 				}
1099 
1100 				if (*thrs_per_core == -1)
1101 					*thrs_per_core = tpc_counter;
1102 				else if (*thrs_per_core != tpc_counter)
1103 					return (0);
1104 
1105 				core_node = topo_next_nonchild_node(pkg_node,
1106 				    core_node);
1107 			} else {
1108 				/* PU node directly under PKG. */
1109 				if (core_node->type == TOPO_TYPE_PU &&
1110 			           (all || !CPU_EMPTY(&core_node->cpuset)))
1111 					tpp_counter++;
1112 				core_node = topo_next_node(pkg_node,
1113 				    core_node);
1114 			}
1115 		}
1116 
1117 		if (*cores_per_pkg == -1)
1118 			*cores_per_pkg = cpp_counter;
1119 		else if (*cores_per_pkg != cpp_counter)
1120 			return (0);
1121 		if (thrs_per_pkg == -1)
1122 			thrs_per_pkg = tpp_counter;
1123 		else if (thrs_per_pkg != tpp_counter)
1124 			return (0);
1125 
1126 		pkg_node = topo_next_nonchild_node(topo_root, pkg_node);
1127 	}
1128 
1129 	KASSERT(*pkg_count > 0,
1130 		("bug in topology or analysis"));
1131 	if (*cores_per_pkg == 0) {
1132 		KASSERT(*thrs_per_core == -1 && thrs_per_pkg > 0,
1133 			("bug in topology or analysis"));
1134 		*thrs_per_core = thrs_per_pkg;
1135 	}
1136 
1137 	return (1);
1138 }
1139 #endif /* SMP */
1140 
1141