1 /*- 2 * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * This module holds the global variables and machine independent functions 32 * used for the kernel SMP support. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/ktr.h> 42 #include <sys/proc.h> 43 #include <sys/bus.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/pcpu.h> 47 #include <sys/smp.h> 48 #include <sys/sysctl.h> 49 50 #include <machine/cpu.h> 51 #include <machine/smp.h> 52 53 #include "opt_sched.h" 54 55 #ifdef SMP 56 volatile cpumask_t stopped_cpus; 57 volatile cpumask_t started_cpus; 58 cpumask_t hlt_cpus_mask; 59 cpumask_t logical_cpus_mask; 60 61 void (*cpustop_restartfunc)(void); 62 #endif 63 /* This is used in modules that need to work in both SMP and UP. */ 64 cpumask_t all_cpus; 65 66 int mp_ncpus; 67 /* export this for libkvm consumers. */ 68 int mp_maxcpus = MAXCPU; 69 70 volatile int smp_started; 71 u_int mp_maxid; 72 73 SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP"); 74 75 SYSCTL_UINT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0, 76 "Max CPU ID."); 77 78 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0, 79 "Max number of CPUs that the system was compiled for."); 80 81 int smp_active = 0; /* are the APs allowed to run? */ 82 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0, 83 "Number of Auxillary Processors (APs) that were successfully started"); 84 85 int smp_disabled = 0; /* has smp been disabled? */ 86 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0, 87 "SMP has been disabled from the loader"); 88 TUNABLE_INT("kern.smp.disabled", &smp_disabled); 89 90 int smp_cpus = 1; /* how many cpu's running */ 91 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0, 92 "Number of CPUs online"); 93 94 int smp_topology = 0; /* Which topology we're using. */ 95 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0, 96 "Topology override setting; 0 is default provided by hardware."); 97 TUNABLE_INT("kern.smp.topology", &smp_topology); 98 99 #ifdef SMP 100 /* Enable forwarding of a signal to a process running on a different CPU */ 101 static int forward_signal_enabled = 1; 102 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW, 103 &forward_signal_enabled, 0, 104 "Forwarding of a signal to a process on a different CPU"); 105 106 /* Variables needed for SMP rendezvous. */ 107 static volatile int smp_rv_ncpus; 108 static void (*volatile smp_rv_setup_func)(void *arg); 109 static void (*volatile smp_rv_action_func)(void *arg); 110 static void (*volatile smp_rv_teardown_func)(void *arg); 111 static void *volatile smp_rv_func_arg; 112 static volatile int smp_rv_waiters[3]; 113 static volatile int smp_rv_generation; 114 115 /* 116 * Shared mutex to restrict busywaits between smp_rendezvous() and 117 * smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these 118 * functions trigger at once and cause multiple CPUs to busywait with 119 * interrupts disabled. 120 */ 121 struct mtx smp_ipi_mtx; 122 123 /* 124 * Let the MD SMP code initialize mp_maxid very early if it can. 125 */ 126 static void 127 mp_setmaxid(void *dummy) 128 { 129 cpu_mp_setmaxid(); 130 } 131 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL); 132 133 /* 134 * Call the MD SMP initialization code. 135 */ 136 static void 137 mp_start(void *dummy) 138 { 139 140 mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN); 141 142 /* Probe for MP hardware. */ 143 if (smp_disabled != 0 || cpu_mp_probe() == 0) { 144 mp_ncpus = 1; 145 all_cpus = PCPU_GET(cpumask); 146 return; 147 } 148 149 cpu_mp_start(); 150 printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n", 151 mp_ncpus); 152 cpu_mp_announce(); 153 } 154 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL); 155 156 void 157 forward_signal(struct thread *td) 158 { 159 int id; 160 161 /* 162 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on 163 * this thread, so all we need to do is poke it if it is currently 164 * executing so that it executes ast(). 165 */ 166 THREAD_LOCK_ASSERT(td, MA_OWNED); 167 KASSERT(TD_IS_RUNNING(td), 168 ("forward_signal: thread is not TDS_RUNNING")); 169 170 CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc); 171 172 if (!smp_started || cold || panicstr) 173 return; 174 if (!forward_signal_enabled) 175 return; 176 177 /* No need to IPI ourself. */ 178 if (td == curthread) 179 return; 180 181 id = td->td_oncpu; 182 if (id == NOCPU) 183 return; 184 ipi_cpu(id, IPI_AST); 185 } 186 187 /* 188 * When called the executing CPU will send an IPI to all other CPUs 189 * requesting that they halt execution. 190 * 191 * Usually (but not necessarily) called with 'other_cpus' as its arg. 192 * 193 * - Signals all CPUs in map to stop. 194 * - Waits for each to stop. 195 * 196 * Returns: 197 * -1: error 198 * 0: NA 199 * 1: ok 200 * 201 */ 202 static int 203 generic_stop_cpus(cpumask_t map, u_int type) 204 { 205 static volatile u_int stopping_cpu = NOCPU; 206 int i; 207 208 KASSERT( 209 #if defined(__amd64__) 210 type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND, 211 #else 212 type == IPI_STOP || type == IPI_STOP_HARD, 213 #endif 214 ("%s: invalid stop type", __func__)); 215 216 if (!smp_started) 217 return (0); 218 219 CTR2(KTR_SMP, "stop_cpus(%x) with %u type", map, type); 220 221 if (stopping_cpu != PCPU_GET(cpuid)) 222 while (atomic_cmpset_int(&stopping_cpu, NOCPU, 223 PCPU_GET(cpuid)) == 0) 224 while (stopping_cpu != NOCPU) 225 cpu_spinwait(); /* spin */ 226 227 /* send the stop IPI to all CPUs in map */ 228 ipi_selected(map, type); 229 230 i = 0; 231 while ((stopped_cpus & map) != map) { 232 /* spin */ 233 cpu_spinwait(); 234 i++; 235 #ifdef DIAGNOSTIC 236 if (i == 100000) { 237 printf("timeout stopping cpus\n"); 238 break; 239 } 240 #endif 241 } 242 243 stopping_cpu = NOCPU; 244 return (1); 245 } 246 247 int 248 stop_cpus(cpumask_t map) 249 { 250 251 return (generic_stop_cpus(map, IPI_STOP)); 252 } 253 254 int 255 stop_cpus_hard(cpumask_t map) 256 { 257 258 return (generic_stop_cpus(map, IPI_STOP_HARD)); 259 } 260 261 #if defined(__amd64__) 262 int 263 suspend_cpus(cpumask_t map) 264 { 265 266 return (generic_stop_cpus(map, IPI_SUSPEND)); 267 } 268 #endif 269 270 /* 271 * Called by a CPU to restart stopped CPUs. 272 * 273 * Usually (but not necessarily) called with 'stopped_cpus' as its arg. 274 * 275 * - Signals all CPUs in map to restart. 276 * - Waits for each to restart. 277 * 278 * Returns: 279 * -1: error 280 * 0: NA 281 * 1: ok 282 */ 283 int 284 restart_cpus(cpumask_t map) 285 { 286 287 if (!smp_started) 288 return 0; 289 290 CTR1(KTR_SMP, "restart_cpus(%x)", map); 291 292 /* signal other cpus to restart */ 293 atomic_store_rel_int(&started_cpus, map); 294 295 /* wait for each to clear its bit */ 296 while ((stopped_cpus & map) != 0) 297 cpu_spinwait(); 298 299 return 1; 300 } 301 302 /* 303 * All-CPU rendezvous. CPUs are signalled, all execute the setup function 304 * (if specified), rendezvous, execute the action function (if specified), 305 * rendezvous again, execute the teardown function (if specified), and then 306 * resume. 307 * 308 * Note that the supplied external functions _must_ be reentrant and aware 309 * that they are running in parallel and in an unknown lock context. 310 */ 311 void 312 smp_rendezvous_action(void) 313 { 314 struct thread *td; 315 void *local_func_arg; 316 void (*local_setup_func)(void*); 317 void (*local_action_func)(void*); 318 void (*local_teardown_func)(void*); 319 int generation; 320 #ifdef INVARIANTS 321 int owepreempt; 322 #endif 323 324 /* Ensure we have up-to-date values. */ 325 atomic_add_acq_int(&smp_rv_waiters[0], 1); 326 while (smp_rv_waiters[0] < smp_rv_ncpus) 327 cpu_spinwait(); 328 329 /* Fetch rendezvous parameters after acquire barrier. */ 330 local_func_arg = smp_rv_func_arg; 331 local_setup_func = smp_rv_setup_func; 332 local_action_func = smp_rv_action_func; 333 local_teardown_func = smp_rv_teardown_func; 334 generation = smp_rv_generation; 335 336 /* 337 * Use a nested critical section to prevent any preemptions 338 * from occurring during a rendezvous action routine. 339 * Specifically, if a rendezvous handler is invoked via an IPI 340 * and the interrupted thread was in the critical_exit() 341 * function after setting td_critnest to 0 but before 342 * performing a deferred preemption, this routine can be 343 * invoked with td_critnest set to 0 and td_owepreempt true. 344 * In that case, a critical_exit() during the rendezvous 345 * action would trigger a preemption which is not permitted in 346 * a rendezvous action. To fix this, wrap all of the 347 * rendezvous action handlers in a critical section. We 348 * cannot use a regular critical section however as having 349 * critical_exit() preempt from this routine would also be 350 * problematic (the preemption must not occur before the IPI 351 * has been acknowledged via an EOI). Instead, we 352 * intentionally ignore td_owepreempt when leaving the 353 * critical section. This should be harmless because we do 354 * not permit rendezvous action routines to schedule threads, 355 * and thus td_owepreempt should never transition from 0 to 1 356 * during this routine. 357 */ 358 td = curthread; 359 td->td_critnest++; 360 #ifdef INVARIANTS 361 owepreempt = td->td_owepreempt; 362 #endif 363 364 /* 365 * If requested, run a setup function before the main action 366 * function. Ensure all CPUs have completed the setup 367 * function before moving on to the action function. 368 */ 369 if (local_setup_func != smp_no_rendevous_barrier) { 370 if (smp_rv_setup_func != NULL) 371 smp_rv_setup_func(smp_rv_func_arg); 372 atomic_add_int(&smp_rv_waiters[1], 1); 373 while (smp_rv_waiters[1] < smp_rv_ncpus) 374 cpu_spinwait(); 375 } 376 377 if (local_action_func != NULL) 378 local_action_func(local_func_arg); 379 380 /* 381 * Signal that the main action has been completed. If a 382 * full exit rendezvous is requested, then all CPUs will 383 * wait here until all CPUs have finished the main action. 384 * 385 * Note that the write by the last CPU to finish the action 386 * may become visible to different CPUs at different times. 387 * As a result, the CPU that initiated the rendezvous may 388 * exit the rendezvous and drop the lock allowing another 389 * rendezvous to be initiated on the same CPU or a different 390 * CPU. In that case the exit sentinel may be cleared before 391 * all CPUs have noticed causing those CPUs to hang forever. 392 * Workaround this by using a generation count to notice when 393 * this race occurs and to exit the rendezvous in that case. 394 */ 395 MPASS(generation == smp_rv_generation); 396 atomic_add_int(&smp_rv_waiters[2], 1); 397 if (local_teardown_func != smp_no_rendevous_barrier) { 398 while (smp_rv_waiters[2] < smp_rv_ncpus && 399 generation == smp_rv_generation) 400 cpu_spinwait(); 401 402 if (local_teardown_func != NULL) 403 local_teardown_func(local_func_arg); 404 } 405 406 td->td_critnest--; 407 KASSERT(owepreempt == td->td_owepreempt, 408 ("rendezvous action changed td_owepreempt")); 409 } 410 411 void 412 smp_rendezvous_cpus(cpumask_t map, 413 void (* setup_func)(void *), 414 void (* action_func)(void *), 415 void (* teardown_func)(void *), 416 void *arg) 417 { 418 int i, ncpus = 0; 419 420 if (!smp_started) { 421 if (setup_func != NULL) 422 setup_func(arg); 423 if (action_func != NULL) 424 action_func(arg); 425 if (teardown_func != NULL) 426 teardown_func(arg); 427 return; 428 } 429 430 CPU_FOREACH(i) { 431 if (((1 << i) & map) != 0) 432 ncpus++; 433 } 434 if (ncpus == 0) 435 panic("ncpus is 0 with map=0x%x", map); 436 437 mtx_lock_spin(&smp_ipi_mtx); 438 439 atomic_add_acq_int(&smp_rv_generation, 1); 440 441 /* Pass rendezvous parameters via global variables. */ 442 smp_rv_ncpus = ncpus; 443 smp_rv_setup_func = setup_func; 444 smp_rv_action_func = action_func; 445 smp_rv_teardown_func = teardown_func; 446 smp_rv_func_arg = arg; 447 smp_rv_waiters[1] = 0; 448 smp_rv_waiters[2] = 0; 449 atomic_store_rel_int(&smp_rv_waiters[0], 0); 450 451 /* 452 * Signal other processors, which will enter the IPI with 453 * interrupts off. 454 */ 455 ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS); 456 457 /* Check if the current CPU is in the map */ 458 if ((map & (1 << curcpu)) != 0) 459 smp_rendezvous_action(); 460 461 /* 462 * If the caller did not request an exit barrier to be enforced 463 * on each CPU, ensure that this CPU waits for all the other 464 * CPUs to finish the rendezvous. 465 */ 466 if (teardown_func == smp_no_rendevous_barrier) 467 while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus) 468 cpu_spinwait(); 469 470 mtx_unlock_spin(&smp_ipi_mtx); 471 } 472 473 void 474 smp_rendezvous(void (* setup_func)(void *), 475 void (* action_func)(void *), 476 void (* teardown_func)(void *), 477 void *arg) 478 { 479 smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg); 480 } 481 482 static struct cpu_group group[MAXCPU]; 483 484 struct cpu_group * 485 smp_topo(void) 486 { 487 struct cpu_group *top; 488 489 /* 490 * Check for a fake topology request for debugging purposes. 491 */ 492 switch (smp_topology) { 493 case 1: 494 /* Dual core with no sharing. */ 495 top = smp_topo_1level(CG_SHARE_NONE, 2, 0); 496 break; 497 case 2: 498 /* No topology, all cpus are equal. */ 499 top = smp_topo_none(); 500 break; 501 case 3: 502 /* Dual core with shared L2. */ 503 top = smp_topo_1level(CG_SHARE_L2, 2, 0); 504 break; 505 case 4: 506 /* quad core, shared l3 among each package, private l2. */ 507 top = smp_topo_1level(CG_SHARE_L3, 4, 0); 508 break; 509 case 5: 510 /* quad core, 2 dualcore parts on each package share l2. */ 511 top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0); 512 break; 513 case 6: 514 /* Single-core 2xHTT */ 515 top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT); 516 break; 517 case 7: 518 /* quad core with a shared l3, 8 threads sharing L2. */ 519 top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8, 520 CG_FLAG_SMT); 521 break; 522 default: 523 /* Default, ask the system what it wants. */ 524 top = cpu_topo(); 525 break; 526 } 527 /* 528 * Verify the returned topology. 529 */ 530 if (top->cg_count != mp_ncpus) 531 panic("Built bad topology at %p. CPU count %d != %d", 532 top, top->cg_count, mp_ncpus); 533 if (top->cg_mask != all_cpus) 534 panic("Built bad topology at %p. CPU mask 0x%X != 0x%X", 535 top, top->cg_mask, all_cpus); 536 return (top); 537 } 538 539 struct cpu_group * 540 smp_topo_none(void) 541 { 542 struct cpu_group *top; 543 544 top = &group[0]; 545 top->cg_parent = NULL; 546 top->cg_child = NULL; 547 top->cg_mask = all_cpus; 548 top->cg_count = mp_ncpus; 549 top->cg_children = 0; 550 top->cg_level = CG_SHARE_NONE; 551 top->cg_flags = 0; 552 553 return (top); 554 } 555 556 static int 557 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share, 558 int count, int flags, int start) 559 { 560 cpumask_t mask; 561 int i; 562 563 for (mask = 0, i = 0; i < count; i++, start++) 564 mask |= (1 << start); 565 child->cg_parent = parent; 566 child->cg_child = NULL; 567 child->cg_children = 0; 568 child->cg_level = share; 569 child->cg_count = count; 570 child->cg_flags = flags; 571 child->cg_mask = mask; 572 parent->cg_children++; 573 for (; parent != NULL; parent = parent->cg_parent) { 574 if ((parent->cg_mask & child->cg_mask) != 0) 575 panic("Duplicate children in %p. mask 0x%X child 0x%X", 576 parent, parent->cg_mask, child->cg_mask); 577 parent->cg_mask |= child->cg_mask; 578 parent->cg_count += child->cg_count; 579 } 580 581 return (start); 582 } 583 584 struct cpu_group * 585 smp_topo_1level(int share, int count, int flags) 586 { 587 struct cpu_group *child; 588 struct cpu_group *top; 589 int packages; 590 int cpu; 591 int i; 592 593 cpu = 0; 594 top = &group[0]; 595 packages = mp_ncpus / count; 596 top->cg_child = child = &group[1]; 597 top->cg_level = CG_SHARE_NONE; 598 for (i = 0; i < packages; i++, child++) 599 cpu = smp_topo_addleaf(top, child, share, count, flags, cpu); 600 return (top); 601 } 602 603 struct cpu_group * 604 smp_topo_2level(int l2share, int l2count, int l1share, int l1count, 605 int l1flags) 606 { 607 struct cpu_group *top; 608 struct cpu_group *l1g; 609 struct cpu_group *l2g; 610 int cpu; 611 int i; 612 int j; 613 614 cpu = 0; 615 top = &group[0]; 616 l2g = &group[1]; 617 top->cg_child = l2g; 618 top->cg_level = CG_SHARE_NONE; 619 top->cg_children = mp_ncpus / (l2count * l1count); 620 l1g = l2g + top->cg_children; 621 for (i = 0; i < top->cg_children; i++, l2g++) { 622 l2g->cg_parent = top; 623 l2g->cg_child = l1g; 624 l2g->cg_level = l2share; 625 for (j = 0; j < l2count; j++, l1g++) 626 cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count, 627 l1flags, cpu); 628 } 629 return (top); 630 } 631 632 633 struct cpu_group * 634 smp_topo_find(struct cpu_group *top, int cpu) 635 { 636 struct cpu_group *cg; 637 cpumask_t mask; 638 int children; 639 int i; 640 641 mask = (1 << cpu); 642 cg = top; 643 for (;;) { 644 if ((cg->cg_mask & mask) == 0) 645 return (NULL); 646 if (cg->cg_children == 0) 647 return (cg); 648 children = cg->cg_children; 649 for (i = 0, cg = cg->cg_child; i < children; cg++, i++) 650 if ((cg->cg_mask & mask) != 0) 651 break; 652 } 653 return (NULL); 654 } 655 #else /* !SMP */ 656 657 void 658 smp_rendezvous_cpus(cpumask_t map, 659 void (*setup_func)(void *), 660 void (*action_func)(void *), 661 void (*teardown_func)(void *), 662 void *arg) 663 { 664 if (setup_func != NULL) 665 setup_func(arg); 666 if (action_func != NULL) 667 action_func(arg); 668 if (teardown_func != NULL) 669 teardown_func(arg); 670 } 671 672 void 673 smp_rendezvous(void (*setup_func)(void *), 674 void (*action_func)(void *), 675 void (*teardown_func)(void *), 676 void *arg) 677 { 678 679 if (setup_func != NULL) 680 setup_func(arg); 681 if (action_func != NULL) 682 action_func(arg); 683 if (teardown_func != NULL) 684 teardown_func(arg); 685 } 686 687 /* 688 * Provide dummy SMP support for UP kernels. Modules that need to use SMP 689 * APIs will still work using this dummy support. 690 */ 691 static void 692 mp_setvariables_for_up(void *dummy) 693 { 694 mp_ncpus = 1; 695 mp_maxid = PCPU_GET(cpuid); 696 all_cpus = PCPU_GET(cpumask); 697 KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero")); 698 } 699 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST, 700 mp_setvariables_for_up, NULL); 701 #endif /* SMP */ 702 703 void 704 smp_no_rendevous_barrier(void *dummy) 705 { 706 #ifdef SMP 707 KASSERT((!smp_started),("smp_no_rendevous called and smp is started")); 708 #endif 709 } 710