xref: /freebsd/sys/kern/subr_smp.c (revision 6e8394b8baa7d5d9153ab90de6824bcd19b3b4e1)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  *	$Id: mp_machdep.c,v 1.101 1999/05/12 21:38:43 luoqi Exp $
26  */
27 
28 #include "opt_smp.h"
29 #include "opt_cpu.h"
30 #include "opt_user_ldt.h"
31 
32 #ifdef SMP
33 #include <machine/smptests.h>
34 #else
35 #error
36 #endif
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/sysctl.h>
43 #include <sys/malloc.h>
44 #include <sys/memrange.h>
45 #ifdef BETTER_CLOCK
46 #include <sys/dkstat.h>
47 #endif
48 
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_kern.h>
53 #include <vm/vm_extern.h>
54 #ifdef BETTER_CLOCK
55 #include <sys/lock.h>
56 #include <vm/vm_map.h>
57 #include <sys/user.h>
58 #ifdef GPROF
59 #include <sys/gmon.h>
60 #endif
61 #endif
62 
63 #include <machine/smp.h>
64 #include <machine/apic.h>
65 #include <machine/mpapic.h>
66 #include <machine/segments.h>
67 #include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
68 #include <machine/tss.h>
69 #include <machine/specialreg.h>
70 #include <machine/cputypes.h>
71 #include <machine/globaldata.h>
72 
73 #include <i386/i386/cons.h>	/* cngetc() */
74 
75 #if defined(APIC_IO)
76 #include <machine/md_var.h>		/* setidt() */
77 #include <i386/isa/icu.h>		/* IPIs */
78 #include <i386/isa/intr_machdep.h>	/* IPIs */
79 #endif	/* APIC_IO */
80 
81 #if defined(TEST_DEFAULT_CONFIG)
82 #define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
83 #else
84 #define MPFPS_MPFB1	mpfps->mpfb1
85 #endif  /* TEST_DEFAULT_CONFIG */
86 
87 #define WARMBOOT_TARGET		0
88 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
89 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
90 
91 #ifdef PC98
92 #define BIOS_BASE		(0xe8000)
93 #define BIOS_SIZE		(0x18000)
94 #else
95 #define BIOS_BASE		(0xf0000)
96 #define BIOS_SIZE		(0x10000)
97 #endif
98 #define BIOS_COUNT		(BIOS_SIZE/4)
99 
100 #define CMOS_REG		(0x70)
101 #define CMOS_DATA		(0x71)
102 #define BIOS_RESET		(0x0f)
103 #define BIOS_WARM		(0x0a)
104 
105 #define PROCENTRY_FLAG_EN	0x01
106 #define PROCENTRY_FLAG_BP	0x02
107 #define IOAPICENTRY_FLAG_EN	0x01
108 
109 
110 /* MP Floating Pointer Structure */
111 typedef struct MPFPS {
112 	char    signature[4];
113 	void   *pap;
114 	u_char  length;
115 	u_char  spec_rev;
116 	u_char  checksum;
117 	u_char  mpfb1;
118 	u_char  mpfb2;
119 	u_char  mpfb3;
120 	u_char  mpfb4;
121 	u_char  mpfb5;
122 }      *mpfps_t;
123 
124 /* MP Configuration Table Header */
125 typedef struct MPCTH {
126 	char    signature[4];
127 	u_short base_table_length;
128 	u_char  spec_rev;
129 	u_char  checksum;
130 	u_char  oem_id[8];
131 	u_char  product_id[12];
132 	void   *oem_table_pointer;
133 	u_short oem_table_size;
134 	u_short entry_count;
135 	void   *apic_address;
136 	u_short extended_table_length;
137 	u_char  extended_table_checksum;
138 	u_char  reserved;
139 }      *mpcth_t;
140 
141 
142 typedef struct PROCENTRY {
143 	u_char  type;
144 	u_char  apic_id;
145 	u_char  apic_version;
146 	u_char  cpu_flags;
147 	u_long  cpu_signature;
148 	u_long  feature_flags;
149 	u_long  reserved1;
150 	u_long  reserved2;
151 }      *proc_entry_ptr;
152 
153 typedef struct BUSENTRY {
154 	u_char  type;
155 	u_char  bus_id;
156 	char    bus_type[6];
157 }      *bus_entry_ptr;
158 
159 typedef struct IOAPICENTRY {
160 	u_char  type;
161 	u_char  apic_id;
162 	u_char  apic_version;
163 	u_char  apic_flags;
164 	void   *apic_address;
165 }      *io_apic_entry_ptr;
166 
167 typedef struct INTENTRY {
168 	u_char  type;
169 	u_char  int_type;
170 	u_short int_flags;
171 	u_char  src_bus_id;
172 	u_char  src_bus_irq;
173 	u_char  dst_apic_id;
174 	u_char  dst_apic_int;
175 }      *int_entry_ptr;
176 
177 /* descriptions of MP basetable entries */
178 typedef struct BASETABLE_ENTRY {
179 	u_char  type;
180 	u_char  length;
181 	char    name[16];
182 }       basetable_entry;
183 
184 /*
185  * this code MUST be enabled here and in mpboot.s.
186  * it follows the very early stages of AP boot by placing values in CMOS ram.
187  * it NORMALLY will never be needed and thus the primitive method for enabling.
188  *
189 #define CHECK_POINTS
190  */
191 
192 #if defined(CHECK_POINTS) && !defined(PC98)
193 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
194 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
195 
196 #define CHECK_INIT(D);				\
197 	CHECK_WRITE(0x34, (D));			\
198 	CHECK_WRITE(0x35, (D));			\
199 	CHECK_WRITE(0x36, (D));			\
200 	CHECK_WRITE(0x37, (D));			\
201 	CHECK_WRITE(0x38, (D));			\
202 	CHECK_WRITE(0x39, (D));
203 
204 #define CHECK_PRINT(S);				\
205 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
206 	   (S),					\
207 	   CHECK_READ(0x34),			\
208 	   CHECK_READ(0x35),			\
209 	   CHECK_READ(0x36),			\
210 	   CHECK_READ(0x37),			\
211 	   CHECK_READ(0x38),			\
212 	   CHECK_READ(0x39));
213 
214 #else				/* CHECK_POINTS */
215 
216 #define CHECK_INIT(D)
217 #define CHECK_PRINT(S)
218 
219 #endif				/* CHECK_POINTS */
220 
221 /*
222  * Values to send to the POST hardware.
223  */
224 #define MP_BOOTADDRESS_POST	0x10
225 #define MP_PROBE_POST		0x11
226 #define MPTABLE_PASS1_POST	0x12
227 
228 #define MP_START_POST		0x13
229 #define MP_ENABLE_POST		0x14
230 #define MPTABLE_PASS2_POST	0x15
231 
232 #define START_ALL_APS_POST	0x16
233 #define INSTALL_AP_TRAMP_POST	0x17
234 #define START_AP_POST		0x18
235 
236 #define MP_ANNOUNCE_POST	0x19
237 
238 
239 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
240 int	current_postcode;
241 
242 /** XXX FIXME: what system files declare these??? */
243 extern struct region_descriptor r_gdt, r_idt;
244 
245 int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
246 int	mp_ncpus;		/* # of CPUs, including BSP */
247 int	mp_naps;		/* # of Applications processors */
248 int	mp_nbusses;		/* # of busses */
249 int	mp_napics;		/* # of IO APICs */
250 int	boot_cpu_id;		/* designated BSP */
251 vm_offset_t cpu_apic_address;
252 vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
253 extern	int nkpt;
254 
255 u_int32_t cpu_apic_versions[NCPU];
256 u_int32_t io_apic_versions[NAPIC];
257 
258 #ifdef APIC_INTR_DIAGNOSTIC
259 int apic_itrace_enter[32];
260 int apic_itrace_tryisrlock[32];
261 int apic_itrace_gotisrlock[32];
262 int apic_itrace_active[32];
263 int apic_itrace_masked[32];
264 int apic_itrace_noisrlock[32];
265 int apic_itrace_masked2[32];
266 int apic_itrace_unmask[32];
267 int apic_itrace_noforward[32];
268 int apic_itrace_leave[32];
269 int apic_itrace_enter2[32];
270 int apic_itrace_doreti[32];
271 int apic_itrace_splz[32];
272 int apic_itrace_eoi[32];
273 #ifdef APIC_INTR_DIAGNOSTIC_IRQ
274 unsigned short apic_itrace_debugbuffer[32768];
275 int apic_itrace_debugbuffer_idx;
276 struct simplelock apic_itrace_debuglock;
277 #endif
278 #endif
279 
280 #ifdef APIC_INTR_REORDER
281 struct {
282 	volatile int *location;
283 	int bit;
284 } apic_isrbit_location[32];
285 #endif
286 
287 struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
288 
289 /*
290  * APIC ID logical/physical mapping structures.
291  * We oversize these to simplify boot-time config.
292  */
293 int     cpu_num_to_apic_id[NAPICID];
294 int     io_num_to_apic_id[NAPICID];
295 int     apic_id_to_logical[NAPICID];
296 
297 
298 /* Bitmap of all available CPUs */
299 u_int	all_cpus;
300 
301 /* AP uses this during bootstrap.  Do not staticize.  */
302 char *bootSTK;
303 int boot_cpuid;
304 
305 /* Hotwire a 0->4MB V==P mapping */
306 extern pt_entry_t *KPTphys;
307 
308 /* SMP page table page */
309 extern pt_entry_t *SMPpt;
310 
311 struct pcb stoppcbs[NCPU];
312 
313 int smp_started;		/* has the system started? */
314 
315 /*
316  * Local data and functions.
317  */
318 
319 static int	mp_capable;
320 static u_int	boot_address;
321 static u_int	base_memory;
322 
323 static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
324 static mpfps_t	mpfps;
325 static int	search_for_sig(u_int32_t target, int count);
326 static void	mp_enable(u_int boot_addr);
327 
328 static int	mptable_pass1(void);
329 static int	mptable_pass2(void);
330 static void	default_mp_table(int type);
331 static void	fix_mp_table(void);
332 static void	setup_apic_irq_mapping(void);
333 static void	init_locks(void);
334 static int	start_all_aps(u_int boot_addr);
335 static void	install_ap_tramp(u_int boot_addr);
336 static int	start_ap(int logicalCpu, u_int boot_addr);
337 
338 /*
339  * Calculate usable address in base memory for AP trampoline code.
340  */
341 u_int
342 mp_bootaddress(u_int basemem)
343 {
344 	POSTCODE(MP_BOOTADDRESS_POST);
345 
346 	base_memory = basemem * 1024;	/* convert to bytes */
347 
348 	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
349 	if ((base_memory - boot_address) < bootMP_size)
350 		boot_address -= 4096;	/* not enough, lower by 4k */
351 
352 	return boot_address;
353 }
354 
355 
356 /*
357  * Look for an Intel MP spec table (ie, SMP capable hardware).
358  */
359 int
360 mp_probe(void)
361 {
362 	int     x;
363 	u_long  segment;
364 	u_int32_t target;
365 
366 	POSTCODE(MP_PROBE_POST);
367 
368 	/* see if EBDA exists */
369 	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
370 		/* search first 1K of EBDA */
371 		target = (u_int32_t) (segment << 4);
372 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
373 			goto found;
374 	} else {
375 		/* last 1K of base memory, effective 'top of base' passed in */
376 		target = (u_int32_t) (base_memory - 0x400);
377 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
378 			goto found;
379 	}
380 
381 	/* search the BIOS */
382 	target = (u_int32_t) BIOS_BASE;
383 	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
384 		goto found;
385 
386 	/* nothing found */
387 	mpfps = (mpfps_t)0;
388 	mp_capable = 0;
389 	return 0;
390 
391 found:
392 	/* calculate needed resources */
393 	mpfps = (mpfps_t)x;
394 	if (mptable_pass1())
395 		panic("you must reconfigure your kernel");
396 
397 	/* flag fact that we are running multiple processors */
398 	mp_capable = 1;
399 	return 1;
400 }
401 
402 
403 /*
404  * Startup the SMP processors.
405  */
406 void
407 mp_start(void)
408 {
409 	POSTCODE(MP_START_POST);
410 
411 	/* look for MP capable motherboard */
412 	if (mp_capable)
413 		mp_enable(boot_address);
414 	else
415 		panic("MP hardware not found!");
416 }
417 
418 
419 /*
420  * Print various information about the SMP system hardware and setup.
421  */
422 void
423 mp_announce(void)
424 {
425 	int     x;
426 
427 	POSTCODE(MP_ANNOUNCE_POST);
428 
429 	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
430 	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
431 	printf(", version: 0x%08x", cpu_apic_versions[0]);
432 	printf(", at 0x%08x\n", cpu_apic_address);
433 	for (x = 1; x <= mp_naps; ++x) {
434 		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
435 		printf(", version: 0x%08x", cpu_apic_versions[x]);
436 		printf(", at 0x%08x\n", cpu_apic_address);
437 	}
438 
439 #if defined(APIC_IO)
440 	for (x = 0; x < mp_napics; ++x) {
441 		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
442 		printf(", version: 0x%08x", io_apic_versions[x]);
443 		printf(", at 0x%08x\n", io_apic_address[x]);
444 	}
445 #else
446 	printf(" Warning: APIC I/O disabled\n");
447 #endif	/* APIC_IO */
448 }
449 
450 /*
451  * AP cpu's call this to sync up protected mode.
452  */
453 void
454 init_secondary(void)
455 {
456 	int	gsel_tss;
457 	int	x, myid = boot_cpuid;
458 
459 	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
460 	gdt_segs[GPROC0_SEL].ssd_base =
461 		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
462 	SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid];
463 
464 	for (x = 0; x < NGDT; x++) {
465 		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
466 	}
467 
468 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
469 	r_gdt.rd_base = (int) &gdt[myid * NGDT];
470 	lgdt(&r_gdt);			/* does magic intra-segment return */
471 
472 	lidt(&r_idt);
473 
474 	lldt(_default_ldt);
475 #ifdef USER_LDT
476 	currentldt = _default_ldt;
477 #endif
478 
479 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
480 	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
481 	common_tss.tss_esp0 = 0;	/* not used until after switch */
482 	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
483 	common_tss.tss_ioopt = (sizeof common_tss) << 16;
484 	tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
485 	common_tssd = *tss_gdt;
486 	ltr(gsel_tss);
487 
488 	load_cr0(0x8005003b);		/* XXX! */
489 
490 	pmap_set_opt((unsigned *)PTD);
491 
492 	invltlb();
493 }
494 
495 
496 #if defined(APIC_IO)
497 /*
498  * Final configuration of the BSP's local APIC:
499  *  - disable 'pic mode'.
500  *  - disable 'virtual wire mode'.
501  *  - enable NMI.
502  */
503 void
504 bsp_apic_configure(void)
505 {
506 	u_char		byte;
507 	u_int32_t	temp;
508 
509 	/* leave 'pic mode' if necessary */
510 	if (picmode) {
511 		outb(0x22, 0x70);	/* select IMCR */
512 		byte = inb(0x23);	/* current contents */
513 		byte |= 0x01;		/* mask external INTR */
514 		outb(0x23, byte);	/* disconnect 8259s/NMI */
515 	}
516 
517 	/* mask lint0 (the 8259 'virtual wire' connection) */
518 	temp = lapic.lvt_lint0;
519 	temp |= APIC_LVT_M;		/* set the mask */
520 	lapic.lvt_lint0 = temp;
521 
522         /* setup lint1 to handle NMI */
523         temp = lapic.lvt_lint1;
524         temp &= ~APIC_LVT_M;		/* clear the mask */
525         lapic.lvt_lint1 = temp;
526 
527 	if (bootverbose)
528 		apic_dump("bsp_apic_configure()");
529 }
530 #endif  /* APIC_IO */
531 
532 
533 /*******************************************************************
534  * local functions and data
535  */
536 
537 /*
538  * start the SMP system
539  */
540 static void
541 mp_enable(u_int boot_addr)
542 {
543 	int     x;
544 #if defined(APIC_IO)
545 	int     apic;
546 	u_int   ux;
547 #endif	/* APIC_IO */
548 
549 	POSTCODE(MP_ENABLE_POST);
550 
551 	/* turn on 4MB of V == P addressing so we can get to MP table */
552 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
553 	invltlb();
554 
555 	/* examine the MP table for needed info, uses physical addresses */
556 	x = mptable_pass2();
557 
558 	*(int *)PTD = 0;
559 	invltlb();
560 
561 	/* can't process default configs till the CPU APIC is pmapped */
562 	if (x)
563 		default_mp_table(x);
564 
565 	/* post scan cleanup */
566 	fix_mp_table();
567 	setup_apic_irq_mapping();
568 
569 #if defined(APIC_IO)
570 
571 	/* fill the LOGICAL io_apic_versions table */
572 	for (apic = 0; apic < mp_napics; ++apic) {
573 		ux = io_apic_read(apic, IOAPIC_VER);
574 		io_apic_versions[apic] = ux;
575 	}
576 
577 	/* program each IO APIC in the system */
578 	for (apic = 0; apic < mp_napics; ++apic)
579 		if (io_apic_setup(apic) < 0)
580 			panic("IO APIC setup failure");
581 
582 	/* install a 'Spurious INTerrupt' vector */
583 	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
584 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
585 
586 	/* install an inter-CPU IPI for TLB invalidation */
587 	setidt(XINVLTLB_OFFSET, Xinvltlb,
588 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
589 
590 #ifdef BETTER_CLOCK
591 	/* install an inter-CPU IPI for reading processor state */
592 	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
593 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
594 #endif
595 
596 	/* install an inter-CPU IPI for forcing an additional software trap */
597 	setidt(XCPUAST_OFFSET, Xcpuast,
598 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
599 
600 	/* install an inter-CPU IPI for interrupt forwarding */
601 	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
602 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
603 
604 	/* install an inter-CPU IPI for CPU stop/restart */
605 	setidt(XCPUSTOP_OFFSET, Xcpustop,
606 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
607 
608 #if defined(TEST_TEST1)
609 	/* install a "fake hardware INTerrupt" vector */
610 	setidt(XTEST1_OFFSET, Xtest1,
611 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
612 #endif  /** TEST_TEST1 */
613 
614 #endif	/* APIC_IO */
615 
616 	/* initialize all SMP locks */
617 	init_locks();
618 
619 	/* start each Application Processor */
620 	start_all_aps(boot_addr);
621 
622 	/*
623 	 * The init process might be started on a different CPU now,
624 	 * and the boot CPU might not call prepare_usermode to get
625 	 * cr0 correctly configured. Thus we initialize cr0 here.
626 	 */
627 	load_cr0(rcr0() | CR0_WP | CR0_AM);
628 }
629 
630 
631 /*
632  * look for the MP spec signature
633  */
634 
635 /* string defined by the Intel MP Spec as identifying the MP table */
636 #define MP_SIG		0x5f504d5f	/* _MP_ */
637 #define NEXT(X)		((X) += 4)
638 static int
639 search_for_sig(u_int32_t target, int count)
640 {
641 	int     x;
642 	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
643 
644 	for (x = 0; x < count; NEXT(x))
645 		if (addr[x] == MP_SIG)
646 			/* make array index a byte index */
647 			return (target + (x * sizeof(u_int32_t)));
648 
649 	return -1;
650 }
651 
652 
653 static basetable_entry basetable_entry_types[] =
654 {
655 	{0, 20, "Processor"},
656 	{1, 8, "Bus"},
657 	{2, 8, "I/O APIC"},
658 	{3, 8, "I/O INT"},
659 	{4, 8, "Local INT"}
660 };
661 
662 typedef struct BUSDATA {
663 	u_char  bus_id;
664 	enum busTypes bus_type;
665 }       bus_datum;
666 
667 typedef struct INTDATA {
668 	u_char  int_type;
669 	u_short int_flags;
670 	u_char  src_bus_id;
671 	u_char  src_bus_irq;
672 	u_char  dst_apic_id;
673 	u_char  dst_apic_int;
674 	u_char	int_vector;
675 }       io_int, local_int;
676 
677 typedef struct BUSTYPENAME {
678 	u_char  type;
679 	char    name[7];
680 }       bus_type_name;
681 
682 static bus_type_name bus_type_table[] =
683 {
684 	{CBUS, "CBUS"},
685 	{CBUSII, "CBUSII"},
686 	{EISA, "EISA"},
687 	{UNKNOWN_BUSTYPE, "---"},
688 	{UNKNOWN_BUSTYPE, "---"},
689 	{ISA, "ISA"},
690 	{UNKNOWN_BUSTYPE, "---"},
691 	{UNKNOWN_BUSTYPE, "---"},
692 	{UNKNOWN_BUSTYPE, "---"},
693 	{UNKNOWN_BUSTYPE, "---"},
694 	{UNKNOWN_BUSTYPE, "---"},
695 	{UNKNOWN_BUSTYPE, "---"},
696 	{PCI, "PCI"},
697 	{UNKNOWN_BUSTYPE, "---"},
698 	{UNKNOWN_BUSTYPE, "---"},
699 	{UNKNOWN_BUSTYPE, "---"},
700 	{UNKNOWN_BUSTYPE, "---"},
701 	{XPRESS, "XPRESS"},
702 	{UNKNOWN_BUSTYPE, "---"}
703 };
704 /* from MP spec v1.4, table 5-1 */
705 static int default_data[7][5] =
706 {
707 /*   nbus, id0, type0, id1, type1 */
708 	{1, 0, ISA, 255, 255},
709 	{1, 0, EISA, 255, 255},
710 	{1, 0, EISA, 255, 255},
711 	{0, 255, 255, 255, 255},/* MCA not supported */
712 	{2, 0, ISA, 1, PCI},
713 	{2, 0, EISA, 1, PCI},
714 	{0, 255, 255, 255, 255}	/* MCA not supported */
715 };
716 
717 
718 /* the bus data */
719 static bus_datum bus_data[NBUS];
720 
721 /* the IO INT data, one entry per possible APIC INTerrupt */
722 static io_int  io_apic_ints[NINTR];
723 
724 static int nintrs;
725 
726 static int processor_entry	__P((proc_entry_ptr entry, int cpu));
727 static int bus_entry		__P((bus_entry_ptr entry, int bus));
728 static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
729 static int int_entry		__P((int_entry_ptr entry, int intr));
730 static int lookup_bus_type	__P((char *name));
731 
732 
733 /*
734  * 1st pass on motherboard's Intel MP specification table.
735  *
736  * initializes:
737  *	mp_ncpus = 1
738  *
739  * determines:
740  *	cpu_apic_address (common to all CPUs)
741  *	io_apic_address[N]
742  *	mp_naps
743  *	mp_nbusses
744  *	mp_napics
745  *	nintrs
746  */
747 static int
748 mptable_pass1(void)
749 {
750 	int	x;
751 	mpcth_t	cth;
752 	int	totalSize;
753 	void*	position;
754 	int	count;
755 	int	type;
756 	int	mustpanic;
757 
758 	POSTCODE(MPTABLE_PASS1_POST);
759 
760 	mustpanic = 0;
761 
762 	/* clear various tables */
763 	for (x = 0; x < NAPICID; ++x) {
764 		io_apic_address[x] = ~0;	/* IO APIC address table */
765 	}
766 
767 	/* init everything to empty */
768 	mp_naps = 0;
769 	mp_nbusses = 0;
770 	mp_napics = 0;
771 	nintrs = 0;
772 
773 	/* check for use of 'default' configuration */
774 	if (MPFPS_MPFB1 != 0) {
775 		/* use default addresses */
776 		cpu_apic_address = DEFAULT_APIC_BASE;
777 		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
778 
779 		/* fill in with defaults */
780 		mp_naps = 2;		/* includes BSP */
781 		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
782 #if defined(APIC_IO)
783 		mp_napics = 1;
784 		nintrs = 16;
785 #endif	/* APIC_IO */
786 	}
787 	else {
788 		if ((cth = mpfps->pap) == 0)
789 			panic("MP Configuration Table Header MISSING!");
790 
791 		cpu_apic_address = (vm_offset_t) cth->apic_address;
792 
793 		/* walk the table, recording info of interest */
794 		totalSize = cth->base_table_length - sizeof(struct MPCTH);
795 		position = (u_char *) cth + sizeof(struct MPCTH);
796 		count = cth->entry_count;
797 
798 		while (count--) {
799 			switch (type = *(u_char *) position) {
800 			case 0: /* processor_entry */
801 				if (((proc_entry_ptr)position)->cpu_flags
802 					& PROCENTRY_FLAG_EN)
803 					++mp_naps;
804 				break;
805 			case 1: /* bus_entry */
806 				++mp_nbusses;
807 				break;
808 			case 2: /* io_apic_entry */
809 				if (((io_apic_entry_ptr)position)->apic_flags
810 					& IOAPICENTRY_FLAG_EN)
811 					io_apic_address[mp_napics++] =
812 					    (vm_offset_t)((io_apic_entry_ptr)
813 						position)->apic_address;
814 				break;
815 			case 3: /* int_entry */
816 				++nintrs;
817 				break;
818 			case 4:	/* int_entry */
819 				break;
820 			default:
821 				panic("mpfps Base Table HOSED!");
822 				/* NOTREACHED */
823 			}
824 
825 			totalSize -= basetable_entry_types[type].length;
826 			(u_char*)position += basetable_entry_types[type].length;
827 		}
828 	}
829 
830 	/* qualify the numbers */
831 	if (mp_naps > NCPU)
832 #if 0 /* XXX FIXME: kern/4255 */
833 		printf("Warning: only using %d of %d available CPUs!\n",
834 			NCPU, mp_naps);
835 #else
836 	{
837 		printf("NCPU cannot be different than actual CPU count.\n");
838 		printf(" add 'options NCPU=%d' to your kernel config file,\n",
839 			mp_naps);
840 		printf(" then rerun config & rebuild your SMP kernel\n");
841 		mustpanic = 1;
842 	}
843 #endif /* XXX FIXME: kern/4255 */
844 	if (mp_nbusses > NBUS) {
845 		printf("found %d busses, increase NBUS\n", mp_nbusses);
846 		mustpanic = 1;
847 	}
848 	if (mp_napics > NAPIC) {
849 		printf("found %d apics, increase NAPIC\n", mp_napics);
850 		mustpanic = 1;
851 	}
852 	if (nintrs > NINTR) {
853 		printf("found %d intrs, increase NINTR\n", nintrs);
854 		mustpanic = 1;
855 	}
856 
857 	/*
858 	 * Count the BSP.
859 	 * This is also used as a counter while starting the APs.
860 	 */
861 	mp_ncpus = 1;
862 
863 	--mp_naps;	/* subtract the BSP */
864 
865 	return mustpanic;
866 }
867 
868 
869 /*
870  * 2nd pass on motherboard's Intel MP specification table.
871  *
872  * sets:
873  *	boot_cpu_id
874  *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
875  *	CPU_TO_ID(N), logical CPU to APIC ID table
876  *	IO_TO_ID(N), logical IO to APIC ID table
877  *	bus_data[N]
878  *	io_apic_ints[N]
879  */
880 static int
881 mptable_pass2(void)
882 {
883 	int     x;
884 	mpcth_t cth;
885 	int     totalSize;
886 	void*   position;
887 	int     count;
888 	int     type;
889 	int     apic, bus, cpu, intr;
890 
891 	POSTCODE(MPTABLE_PASS2_POST);
892 
893 	/* clear various tables */
894 	for (x = 0; x < NAPICID; ++x) {
895 		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
896 		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
897 		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
898 	}
899 
900 	/* clear bus data table */
901 	for (x = 0; x < NBUS; ++x)
902 		bus_data[x].bus_id = 0xff;
903 
904 	/* clear IO APIC INT table */
905 	for (x = 0; x < NINTR; ++x) {
906 		io_apic_ints[x].int_type = 0xff;
907 		io_apic_ints[x].int_vector = 0xff;
908 	}
909 
910 	/* setup the cpu/apic mapping arrays */
911 	boot_cpu_id = -1;
912 
913 	/* record whether PIC or virtual-wire mode */
914 	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
915 
916 	/* check for use of 'default' configuration */
917 	if (MPFPS_MPFB1 != 0)
918 		return MPFPS_MPFB1;	/* return default configuration type */
919 
920 	if ((cth = mpfps->pap) == 0)
921 		panic("MP Configuration Table Header MISSING!");
922 
923 	/* walk the table, recording info of interest */
924 	totalSize = cth->base_table_length - sizeof(struct MPCTH);
925 	position = (u_char *) cth + sizeof(struct MPCTH);
926 	count = cth->entry_count;
927 	apic = bus = intr = 0;
928 	cpu = 1;				/* pre-count the BSP */
929 
930 	while (count--) {
931 		switch (type = *(u_char *) position) {
932 		case 0:
933 			if (processor_entry(position, cpu))
934 				++cpu;
935 			break;
936 		case 1:
937 			if (bus_entry(position, bus))
938 				++bus;
939 			break;
940 		case 2:
941 			if (io_apic_entry(position, apic))
942 				++apic;
943 			break;
944 		case 3:
945 			if (int_entry(position, intr))
946 				++intr;
947 			break;
948 		case 4:
949 			/* int_entry(position); */
950 			break;
951 		default:
952 			panic("mpfps Base Table HOSED!");
953 			/* NOTREACHED */
954 		}
955 
956 		totalSize -= basetable_entry_types[type].length;
957 		(u_char *) position += basetable_entry_types[type].length;
958 	}
959 
960 	if (boot_cpu_id == -1)
961 		panic("NO BSP found!");
962 
963 	/* report fact that its NOT a default configuration */
964 	return 0;
965 }
966 
967 
968 static void
969 assign_apic_irq(int apic, int intpin, int irq)
970 {
971 	int x;
972 
973 	if (int_to_apicintpin[irq].ioapic != -1)
974 		panic("assign_apic_irq: inconsistent table");
975 
976 	int_to_apicintpin[irq].ioapic = apic;
977 	int_to_apicintpin[irq].int_pin = intpin;
978 	int_to_apicintpin[irq].apic_address = ioapic[apic];
979 	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
980 
981 	for (x = 0; x < nintrs; x++) {
982 		if ((io_apic_ints[x].int_type == 0 ||
983 		     io_apic_ints[x].int_type == 3) &&
984 		    io_apic_ints[x].int_vector == 0xff &&
985 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
986 		    io_apic_ints[x].dst_apic_int == intpin)
987 			io_apic_ints[x].int_vector = irq;
988 	}
989 }
990 
991 /*
992  * parse an Intel MP specification table
993  */
994 static void
995 fix_mp_table(void)
996 {
997 	int	x;
998 	int	id;
999 	int	bus_0 = 0;	/* Stop GCC warning */
1000 	int	bus_pci = 0;	/* Stop GCC warning */
1001 	int	num_pci_bus;
1002 
1003 	/*
1004 	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1005 	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1006 	 * exists the BIOS must begin with bus entries for the PCI bus and use
1007 	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1008 	 * exists the BIOS can choose to ignore this ordering, and indeed many
1009 	 * MP motherboards do ignore it.  This causes a problem when the PCI
1010 	 * sub-system makes requests of the MP sub-system based on PCI bus
1011 	 * numbers.	So here we look for the situation and renumber the
1012 	 * busses and associated INTs in an effort to "make it right".
1013 	 */
1014 
1015 	/* find bus 0, PCI bus, count the number of PCI busses */
1016 	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1017 		if (bus_data[x].bus_id == 0) {
1018 			bus_0 = x;
1019 		}
1020 		if (bus_data[x].bus_type == PCI) {
1021 			++num_pci_bus;
1022 			bus_pci = x;
1023 		}
1024 	}
1025 	/*
1026 	 * bus_0 == slot of bus with ID of 0
1027 	 * bus_pci == slot of last PCI bus encountered
1028 	 */
1029 
1030 	/* check the 1 PCI bus case for sanity */
1031 	if (num_pci_bus == 1) {
1032 
1033 		/* if it is number 0 all is well */
1034 		if (bus_data[bus_pci].bus_id == 0)
1035 			return;
1036 
1037 		/* mis-numbered, swap with whichever bus uses slot 0 */
1038 
1039 		/* swap the bus entry types */
1040 		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1041 		bus_data[bus_0].bus_type = PCI;
1042 
1043 		/* swap each relavant INTerrupt entry */
1044 		id = bus_data[bus_pci].bus_id;
1045 		for (x = 0; x < nintrs; ++x) {
1046 			if (io_apic_ints[x].src_bus_id == id) {
1047 				io_apic_ints[x].src_bus_id = 0;
1048 			}
1049 			else if (io_apic_ints[x].src_bus_id == 0) {
1050 				io_apic_ints[x].src_bus_id = id;
1051 			}
1052 		}
1053 	}
1054 	/* sanity check if more than 1 PCI bus */
1055 	else if (num_pci_bus > 1) {
1056 		for (x = 0; x < mp_nbusses; ++x) {
1057 			if (bus_data[x].bus_type != PCI)
1058 				continue;
1059 			if (bus_data[x].bus_id >= num_pci_bus)
1060 				panic("bad PCI bus numbering");
1061 		}
1062 	}
1063 }
1064 
1065 
1066 static void
1067 setup_apic_irq_mapping(void)
1068 {
1069 	int	x;
1070 	int	int_vector;
1071 
1072 	/* Assign low level interrupt handlers */
1073 	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1074 		int_to_apicintpin[x].ioapic = -1;
1075 		int_to_apicintpin[x].int_pin = 0;
1076 		int_to_apicintpin[x].apic_address = NULL;
1077 		int_to_apicintpin[x].redirindex = 0;
1078 	}
1079 	for (x = 0; x < nintrs; x++) {
1080 		if (io_apic_ints[x].dst_apic_int < APIC_INTMAPSIZE &&
1081 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1082 		    io_apic_ints[x].int_vector == 0xff &&
1083 		    (io_apic_ints[x].int_type == 0 ||
1084 		     io_apic_ints[x].int_type == 3)) {
1085 			assign_apic_irq(0,
1086 					io_apic_ints[x].dst_apic_int,
1087 					io_apic_ints[x].dst_apic_int);
1088 		}
1089 	}
1090 	int_vector = 0;
1091 	while (int_vector < APIC_INTMAPSIZE &&
1092 	       int_to_apicintpin[int_vector].ioapic != -1)
1093 		int_vector++;
1094 	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1095 		if ((io_apic_ints[x].int_type == 0 ||
1096 		     io_apic_ints[x].int_type == 3) &&
1097 		    io_apic_ints[x].int_vector == 0xff) {
1098 			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1099 					io_apic_ints[x].dst_apic_int,
1100 					int_vector);
1101 			int_vector++;
1102 			while (int_vector < APIC_INTMAPSIZE &&
1103 			       int_to_apicintpin[int_vector].ioapic != -1)
1104 				int_vector++;
1105 		}
1106 	}
1107 }
1108 
1109 
1110 static int
1111 processor_entry(proc_entry_ptr entry, int cpu)
1112 {
1113 	/* check for usability */
1114 	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
1115 		return 0;
1116 
1117 	/* check for BSP flag */
1118 	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1119 		boot_cpu_id = entry->apic_id;
1120 		CPU_TO_ID(0) = entry->apic_id;
1121 		ID_TO_CPU(entry->apic_id) = 0;
1122 		return 0;	/* its already been counted */
1123 	}
1124 
1125 	/* add another AP to list, if less than max number of CPUs */
1126 	else {
1127 		CPU_TO_ID(cpu) = entry->apic_id;
1128 		ID_TO_CPU(entry->apic_id) = cpu;
1129 		return 1;
1130 	}
1131 }
1132 
1133 
1134 static int
1135 bus_entry(bus_entry_ptr entry, int bus)
1136 {
1137 	int     x;
1138 	char    c, name[8];
1139 
1140 	/* encode the name into an index */
1141 	for (x = 0; x < 6; ++x) {
1142 		if ((c = entry->bus_type[x]) == ' ')
1143 			break;
1144 		name[x] = c;
1145 	}
1146 	name[x] = '\0';
1147 
1148 	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1149 		panic("unknown bus type: '%s'", name);
1150 
1151 	bus_data[bus].bus_id = entry->bus_id;
1152 	bus_data[bus].bus_type = x;
1153 
1154 	return 1;
1155 }
1156 
1157 
1158 static int
1159 io_apic_entry(io_apic_entry_ptr entry, int apic)
1160 {
1161 	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1162 		return 0;
1163 
1164 	IO_TO_ID(apic) = entry->apic_id;
1165 	ID_TO_IO(entry->apic_id) = apic;
1166 
1167 	return 1;
1168 }
1169 
1170 
1171 static int
1172 lookup_bus_type(char *name)
1173 {
1174 	int     x;
1175 
1176 	for (x = 0; x < MAX_BUSTYPE; ++x)
1177 		if (strcmp(bus_type_table[x].name, name) == 0)
1178 			return bus_type_table[x].type;
1179 
1180 	return UNKNOWN_BUSTYPE;
1181 }
1182 
1183 
1184 static int
1185 int_entry(int_entry_ptr entry, int intr)
1186 {
1187 	int apic;
1188 
1189 	io_apic_ints[intr].int_type = entry->int_type;
1190 	io_apic_ints[intr].int_flags = entry->int_flags;
1191 	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1192 	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1193 	if (entry->dst_apic_id == 255) {
1194 		/* This signal goes to all IO APICS.  Select an IO APIC
1195 		   with sufficient number of interrupt pins */
1196 		for (apic = 0; apic < mp_napics; apic++)
1197 			if (((io_apic_read(apic, IOAPIC_VER) &
1198 			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1199 			    entry->dst_apic_int)
1200 				break;
1201 		if (apic < mp_napics)
1202 			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1203 		else
1204 			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1205 	} else
1206 		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1207 	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1208 
1209 	return 1;
1210 }
1211 
1212 
1213 static int
1214 apic_int_is_bus_type(int intr, int bus_type)
1215 {
1216 	int     bus;
1217 
1218 	for (bus = 0; bus < mp_nbusses; ++bus)
1219 		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1220 		    && ((int) bus_data[bus].bus_type == bus_type))
1221 			return 1;
1222 
1223 	return 0;
1224 }
1225 
1226 
1227 /*
1228  * Given a traditional ISA INT mask, return an APIC mask.
1229  */
1230 u_int
1231 isa_apic_mask(u_int isa_mask)
1232 {
1233 	int isa_irq;
1234 	int apic_pin;
1235 
1236 #if defined(SKIP_IRQ15_REDIRECT)
1237 	if (isa_mask == (1 << 15)) {
1238 		printf("skipping ISA IRQ15 redirect\n");
1239 		return isa_mask;
1240 	}
1241 #endif  /* SKIP_IRQ15_REDIRECT */
1242 
1243 	isa_irq = ffs(isa_mask);		/* find its bit position */
1244 	if (isa_irq == 0)			/* doesn't exist */
1245 		return 0;
1246 	--isa_irq;				/* make it zero based */
1247 
1248 	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1249 	if (apic_pin == -1)
1250 		return 0;
1251 
1252 	return (1 << apic_pin);			/* convert pin# to a mask */
1253 }
1254 
1255 
1256 /*
1257  * Determine which APIC pin an ISA/EISA INT is attached to.
1258  */
1259 #define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1260 #define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1261 #define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1262 #define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1263 
1264 #define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1265 int
1266 isa_apic_irq(int isa_irq)
1267 {
1268 	int     intr;
1269 
1270 	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1271 		if (INTTYPE(intr) == 0) {		/* standard INT */
1272 			if (SRCBUSIRQ(intr) == isa_irq) {
1273 				if (apic_int_is_bus_type(intr, ISA) ||
1274 			            apic_int_is_bus_type(intr, EISA))
1275 					return INTIRQ(intr);	/* found */
1276 			}
1277 		}
1278 	}
1279 	return -1;					/* NOT found */
1280 }
1281 
1282 
1283 /*
1284  * Determine which APIC pin a PCI INT is attached to.
1285  */
1286 #define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1287 #define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1288 #define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1289 int
1290 pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1291 {
1292 	int     intr;
1293 
1294 	--pciInt;					/* zero based */
1295 
1296 	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1297 		if ((INTTYPE(intr) == 0)		/* standard INT */
1298 		    && (SRCBUSID(intr) == pciBus)
1299 		    && (SRCBUSDEVICE(intr) == pciDevice)
1300 		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1301 			if (apic_int_is_bus_type(intr, PCI))
1302 				return INTIRQ(intr);	/* exact match */
1303 
1304 	return -1;					/* NOT found */
1305 }
1306 
1307 int
1308 next_apic_irq(int irq)
1309 {
1310 	int intr, ointr;
1311 	int bus, bustype;
1312 
1313 	bus = 0;
1314 	bustype = 0;
1315 	for (intr = 0; intr < nintrs; intr++) {
1316 		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1317 			continue;
1318 		bus = SRCBUSID(intr);
1319 		bustype = apic_bus_type(bus);
1320 		if (bustype != ISA &&
1321 		    bustype != EISA &&
1322 		    bustype != PCI)
1323 			continue;
1324 		break;
1325 	}
1326 	if (intr >= nintrs) {
1327 		return -1;
1328 	}
1329 	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1330 		if (INTTYPE(ointr) != 0)
1331 			continue;
1332 		if (bus != SRCBUSID(ointr))
1333 			continue;
1334 		if (bustype == PCI) {
1335 			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1336 				continue;
1337 			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1338 				continue;
1339 		}
1340 		if (bustype == ISA || bustype == EISA) {
1341 			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1342 				continue;
1343 		}
1344 		if (INTPIN(intr) == INTPIN(ointr))
1345 			continue;
1346 		break;
1347 	}
1348 	if (ointr >= nintrs) {
1349 		return -1;
1350 	}
1351 	return INTIRQ(ointr);
1352 }
1353 #undef SRCBUSLINE
1354 #undef SRCBUSDEVICE
1355 #undef SRCBUSID
1356 #undef SRCBUSIRQ
1357 
1358 #undef INTPIN
1359 #undef INTIRQ
1360 #undef INTAPIC
1361 #undef INTTYPE
1362 
1363 
1364 /*
1365  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1366  *
1367  * XXX FIXME:
1368  *  Exactly what this means is unclear at this point.  It is a solution
1369  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1370  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1371  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1372  *  option.
1373  */
1374 int
1375 undirect_isa_irq(int rirq)
1376 {
1377 #if defined(READY)
1378 	if (bootverbose)
1379 	    printf("Freeing redirected ISA irq %d.\n", rirq);
1380 	/** FIXME: tickle the MB redirector chip */
1381 	return ???;
1382 #else
1383 	if (bootverbose)
1384 	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1385 	return 0;
1386 #endif  /* READY */
1387 }
1388 
1389 
1390 /*
1391  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1392  */
1393 int
1394 undirect_pci_irq(int rirq)
1395 {
1396 #if defined(READY)
1397 	if (bootverbose)
1398 		printf("Freeing redirected PCI irq %d.\n", rirq);
1399 
1400 	/** FIXME: tickle the MB redirector chip */
1401 	return ???;
1402 #else
1403 	if (bootverbose)
1404 		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1405 		       rirq);
1406 	return 0;
1407 #endif  /* READY */
1408 }
1409 
1410 
1411 /*
1412  * given a bus ID, return:
1413  *  the bus type if found
1414  *  -1 if NOT found
1415  */
1416 int
1417 apic_bus_type(int id)
1418 {
1419 	int     x;
1420 
1421 	for (x = 0; x < mp_nbusses; ++x)
1422 		if (bus_data[x].bus_id == id)
1423 			return bus_data[x].bus_type;
1424 
1425 	return -1;
1426 }
1427 
1428 
1429 /*
1430  * given a LOGICAL APIC# and pin#, return:
1431  *  the associated src bus ID if found
1432  *  -1 if NOT found
1433  */
1434 int
1435 apic_src_bus_id(int apic, int pin)
1436 {
1437 	int     x;
1438 
1439 	/* search each of the possible INTerrupt sources */
1440 	for (x = 0; x < nintrs; ++x)
1441 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1442 		    (pin == io_apic_ints[x].dst_apic_int))
1443 			return (io_apic_ints[x].src_bus_id);
1444 
1445 	return -1;		/* NOT found */
1446 }
1447 
1448 
1449 /*
1450  * given a LOGICAL APIC# and pin#, return:
1451  *  the associated src bus IRQ if found
1452  *  -1 if NOT found
1453  */
1454 int
1455 apic_src_bus_irq(int apic, int pin)
1456 {
1457 	int     x;
1458 
1459 	for (x = 0; x < nintrs; x++)
1460 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1461 		    (pin == io_apic_ints[x].dst_apic_int))
1462 			return (io_apic_ints[x].src_bus_irq);
1463 
1464 	return -1;		/* NOT found */
1465 }
1466 
1467 
1468 /*
1469  * given a LOGICAL APIC# and pin#, return:
1470  *  the associated INTerrupt type if found
1471  *  -1 if NOT found
1472  */
1473 int
1474 apic_int_type(int apic, int pin)
1475 {
1476 	int     x;
1477 
1478 	/* search each of the possible INTerrupt sources */
1479 	for (x = 0; x < nintrs; ++x)
1480 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1481 		    (pin == io_apic_ints[x].dst_apic_int))
1482 			return (io_apic_ints[x].int_type);
1483 
1484 	return -1;		/* NOT found */
1485 }
1486 
1487 int
1488 apic_irq(int apic, int pin)
1489 {
1490 	int x;
1491 	int res;
1492 
1493 	for (x = 0; x < nintrs; ++x)
1494 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1495 		    (pin == io_apic_ints[x].dst_apic_int)) {
1496 			res = io_apic_ints[x].int_vector;
1497 			if (res == 0xff)
1498 				return -1;
1499 			if (apic != int_to_apicintpin[res].ioapic)
1500 				panic("apic_irq: inconsistent table");
1501 			if (pin != int_to_apicintpin[res].int_pin)
1502 				panic("apic_irq inconsistent table (2)");
1503 			return res;
1504 		}
1505 	return -1;
1506 }
1507 
1508 
1509 /*
1510  * given a LOGICAL APIC# and pin#, return:
1511  *  the associated trigger mode if found
1512  *  -1 if NOT found
1513  */
1514 int
1515 apic_trigger(int apic, int pin)
1516 {
1517 	int     x;
1518 
1519 	/* search each of the possible INTerrupt sources */
1520 	for (x = 0; x < nintrs; ++x)
1521 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1522 		    (pin == io_apic_ints[x].dst_apic_int))
1523 			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1524 
1525 	return -1;		/* NOT found */
1526 }
1527 
1528 
1529 /*
1530  * given a LOGICAL APIC# and pin#, return:
1531  *  the associated 'active' level if found
1532  *  -1 if NOT found
1533  */
1534 int
1535 apic_polarity(int apic, int pin)
1536 {
1537 	int     x;
1538 
1539 	/* search each of the possible INTerrupt sources */
1540 	for (x = 0; x < nintrs; ++x)
1541 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1542 		    (pin == io_apic_ints[x].dst_apic_int))
1543 			return (io_apic_ints[x].int_flags & 0x03);
1544 
1545 	return -1;		/* NOT found */
1546 }
1547 
1548 
1549 /*
1550  * set data according to MP defaults
1551  * FIXME: probably not complete yet...
1552  */
1553 static void
1554 default_mp_table(int type)
1555 {
1556 	int     ap_cpu_id;
1557 #if defined(APIC_IO)
1558 	u_int32_t ux;
1559 	int     io_apic_id;
1560 	int     pin;
1561 #endif	/* APIC_IO */
1562 
1563 #if 0
1564 	printf("  MP default config type: %d\n", type);
1565 	switch (type) {
1566 	case 1:
1567 		printf("   bus: ISA, APIC: 82489DX\n");
1568 		break;
1569 	case 2:
1570 		printf("   bus: EISA, APIC: 82489DX\n");
1571 		break;
1572 	case 3:
1573 		printf("   bus: EISA, APIC: 82489DX\n");
1574 		break;
1575 	case 4:
1576 		printf("   bus: MCA, APIC: 82489DX\n");
1577 		break;
1578 	case 5:
1579 		printf("   bus: ISA+PCI, APIC: Integrated\n");
1580 		break;
1581 	case 6:
1582 		printf("   bus: EISA+PCI, APIC: Integrated\n");
1583 		break;
1584 	case 7:
1585 		printf("   bus: MCA+PCI, APIC: Integrated\n");
1586 		break;
1587 	default:
1588 		printf("   future type\n");
1589 		break;
1590 		/* NOTREACHED */
1591 	}
1592 #endif	/* 0 */
1593 
1594 	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1595 	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1596 
1597 	/* BSP */
1598 	CPU_TO_ID(0) = boot_cpu_id;
1599 	ID_TO_CPU(boot_cpu_id) = 0;
1600 
1601 	/* one and only AP */
1602 	CPU_TO_ID(1) = ap_cpu_id;
1603 	ID_TO_CPU(ap_cpu_id) = 1;
1604 
1605 #if defined(APIC_IO)
1606 	/* one and only IO APIC */
1607 	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1608 
1609 	/*
1610 	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1611 	 * necessary as some hardware isn't properly setting up the IO APIC
1612 	 */
1613 #if defined(REALLY_ANAL_IOAPICID_VALUE)
1614 	if (io_apic_id != 2) {
1615 #else
1616 	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1617 #endif	/* REALLY_ANAL_IOAPICID_VALUE */
1618 		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1619 		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1620 		ux |= 0x02000000;	/* set it to '2' */
1621 		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1622 		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1623 		if ((ux & APIC_ID_MASK) != 0x02000000)
1624 			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1625 		io_apic_id = 2;
1626 	}
1627 	IO_TO_ID(0) = io_apic_id;
1628 	ID_TO_IO(io_apic_id) = 0;
1629 #endif	/* APIC_IO */
1630 
1631 	/* fill out bus entries */
1632 	switch (type) {
1633 	case 1:
1634 	case 2:
1635 	case 3:
1636 	case 5:
1637 	case 6:
1638 		bus_data[0].bus_id = default_data[type - 1][1];
1639 		bus_data[0].bus_type = default_data[type - 1][2];
1640 		bus_data[1].bus_id = default_data[type - 1][3];
1641 		bus_data[1].bus_type = default_data[type - 1][4];
1642 		break;
1643 
1644 	/* case 4: case 7:		   MCA NOT supported */
1645 	default:		/* illegal/reserved */
1646 		panic("BAD default MP config: %d", type);
1647 		/* NOTREACHED */
1648 	}
1649 
1650 #if defined(APIC_IO)
1651 	/* general cases from MP v1.4, table 5-2 */
1652 	for (pin = 0; pin < 16; ++pin) {
1653 		io_apic_ints[pin].int_type = 0;
1654 		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1655 		io_apic_ints[pin].src_bus_id = 0;
1656 		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1657 		io_apic_ints[pin].dst_apic_id = io_apic_id;
1658 		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1659 	}
1660 
1661 	/* special cases from MP v1.4, table 5-2 */
1662 	if (type == 2) {
1663 		io_apic_ints[2].int_type = 0xff;	/* N/C */
1664 		io_apic_ints[13].int_type = 0xff;	/* N/C */
1665 #if !defined(APIC_MIXED_MODE)
1666 		/** FIXME: ??? */
1667 		panic("sorry, can't support type 2 default yet");
1668 #endif	/* APIC_MIXED_MODE */
1669 	}
1670 	else
1671 		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1672 
1673 	if (type == 7)
1674 		io_apic_ints[0].int_type = 0xff;	/* N/C */
1675 	else
1676 		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1677 #endif	/* APIC_IO */
1678 }
1679 
1680 
1681 /*
1682  * initialize all the SMP locks
1683  */
1684 
1685 /* critical region around IO APIC, apic_imen */
1686 struct simplelock	imen_lock;
1687 
1688 /* critical region around splxx(), cpl, cml, cil, ipending */
1689 struct simplelock	cpl_lock;
1690 
1691 /* Make FAST_INTR() routines sequential */
1692 struct simplelock	fast_intr_lock;
1693 
1694 /* critical region around INTR() routines */
1695 struct simplelock	intr_lock;
1696 
1697 /* lock regions protected in UP kernel via cli/sti */
1698 struct simplelock	mpintr_lock;
1699 
1700 /* lock region used by kernel profiling */
1701 struct simplelock	mcount_lock;
1702 
1703 #ifdef USE_COMLOCK
1704 /* locks com (tty) data/hardware accesses: a FASTINTR() */
1705 struct simplelock	com_lock;
1706 #endif /* USE_COMLOCK */
1707 
1708 #ifdef USE_CLOCKLOCK
1709 /* lock regions around the clock hardware */
1710 struct simplelock	clock_lock;
1711 #endif /* USE_CLOCKLOCK */
1712 
1713 static void
1714 init_locks(void)
1715 {
1716 	/*
1717 	 * Get the initial mp_lock with a count of 1 for the BSP.
1718 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1719 	 */
1720 	mp_lock = 0x00000001;
1721 
1722 	/* ISR uses its own "giant lock" */
1723 	isr_lock = FREE_LOCK;
1724 
1725 #if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1726 	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1727 #endif
1728 
1729 	s_lock_init((struct simplelock*)&mpintr_lock);
1730 
1731 	s_lock_init((struct simplelock*)&mcount_lock);
1732 
1733 	s_lock_init((struct simplelock*)&fast_intr_lock);
1734 	s_lock_init((struct simplelock*)&intr_lock);
1735 	s_lock_init((struct simplelock*)&imen_lock);
1736 	s_lock_init((struct simplelock*)&cpl_lock);
1737 
1738 #ifdef USE_COMLOCK
1739 	s_lock_init((struct simplelock*)&com_lock);
1740 #endif /* USE_COMLOCK */
1741 #ifdef USE_CLOCKLOCK
1742 	s_lock_init((struct simplelock*)&clock_lock);
1743 #endif /* USE_CLOCKLOCK */
1744 }
1745 
1746 
1747 /* Wait for all APs to be fully initialized */
1748 extern int wait_ap(unsigned int);
1749 
1750 /*
1751  * start each AP in our list
1752  */
1753 static int
1754 start_all_aps(u_int boot_addr)
1755 {
1756 	int     x, i, pg;
1757 	u_char  mpbiosreason;
1758 	u_long  mpbioswarmvec;
1759 	struct globaldata *gd;
1760 	char *stack;
1761 
1762 	POSTCODE(START_ALL_APS_POST);
1763 
1764 	/* initialize BSP's local APIC */
1765 	apic_initialize();
1766 	bsp_apic_ready = 1;
1767 
1768 	/* install the AP 1st level boot code */
1769 	install_ap_tramp(boot_addr);
1770 
1771 
1772 	/* save the current value of the warm-start vector */
1773 	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1774 #ifndef PC98
1775 	outb(CMOS_REG, BIOS_RESET);
1776 	mpbiosreason = inb(CMOS_DATA);
1777 #endif
1778 
1779 	/* record BSP in CPU map */
1780 	all_cpus = 1;
1781 
1782 	/* set up 0 -> 4MB P==V mapping for AP boot */
1783 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1784 	invltlb();
1785 
1786 	/* start each AP */
1787 	for (x = 1; x <= mp_naps; ++x) {
1788 
1789 		/* This is a bit verbose, it will go away soon.  */
1790 
1791 		/* first page of AP's private space */
1792 		pg = x * i386_btop(sizeof(struct privatespace));
1793 
1794 		/* allocate a new private data page */
1795 		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1796 
1797 		/* wire it into the private page table page */
1798 		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1799 
1800 		/* allocate and set up an idle stack data page */
1801 		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1802 		for (i = 0; i < UPAGES; i++)
1803 			SMPpt[pg + 5 + i] = (pt_entry_t)
1804 			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1805 
1806 		SMPpt[pg + 1] = 0;		/* *prv_CMAP1 */
1807 		SMPpt[pg + 2] = 0;		/* *prv_CMAP2 */
1808 		SMPpt[pg + 3] = 0;		/* *prv_CMAP3 */
1809 		SMPpt[pg + 4] = 0;		/* *prv_PMAP1 */
1810 
1811 		/* prime data page for it to use */
1812 		gd->gd_cpuid = x;
1813 		gd->gd_cpu_lockid = x << 24;
1814 		gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
1815 		gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
1816 		gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
1817 		gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
1818 		gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
1819 		gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
1820 		gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
1821 		gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
1822 
1823 		/* setup a vector to our boot code */
1824 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1825 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1826 #ifndef PC98
1827 		outb(CMOS_REG, BIOS_RESET);
1828 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1829 #endif
1830 
1831 		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
1832 		boot_cpuid = x;
1833 
1834 		/* attempt to start the Application Processor */
1835 		CHECK_INIT(99);	/* setup checkpoints */
1836 		if (!start_ap(x, boot_addr)) {
1837 			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1838 			CHECK_PRINT("trace");	/* show checkpoints */
1839 			/* better panic as the AP may be running loose */
1840 			printf("panic y/n? [y] ");
1841 			if (cngetc() != 'n')
1842 				panic("bye-bye");
1843 		}
1844 		CHECK_PRINT("trace");		/* show checkpoints */
1845 
1846 		/* record its version info */
1847 		cpu_apic_versions[x] = cpu_apic_versions[0];
1848 
1849 		all_cpus |= (1 << x);		/* record AP in CPU map */
1850 	}
1851 
1852 	/* build our map of 'other' CPUs */
1853 	other_cpus = all_cpus & ~(1 << cpuid);
1854 
1855 	/* fill in our (BSP) APIC version */
1856 	cpu_apic_versions[0] = lapic.version;
1857 
1858 	/* restore the warmstart vector */
1859 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1860 #ifndef PC98
1861 	outb(CMOS_REG, BIOS_RESET);
1862 	outb(CMOS_DATA, mpbiosreason);
1863 #endif
1864 
1865 	/*
1866 	 * Set up the idle context for the BSP.  Similar to above except
1867 	 * that some was done by locore, some by pmap.c and some is implicit
1868 	 * because the BSP is cpu#0 and the page is initially zero, and also
1869 	 * because we can refer to variables by name on the BSP..
1870 	 */
1871 
1872 	/* Allocate and setup BSP idle stack */
1873 	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1874 	for (i = 0; i < UPAGES; i++)
1875 		SMPpt[5 + i] = (pt_entry_t)
1876 		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1877 
1878 	*(int *)PTD = 0;
1879 	pmap_set_opt_bsp();
1880 
1881 	/* number of APs actually started */
1882 	return mp_ncpus - 1;
1883 }
1884 
1885 
1886 /*
1887  * load the 1st level AP boot code into base memory.
1888  */
1889 
1890 /* targets for relocation */
1891 extern void bigJump(void);
1892 extern void bootCodeSeg(void);
1893 extern void bootDataSeg(void);
1894 extern void MPentry(void);
1895 extern u_int MP_GDT;
1896 extern u_int mp_gdtbase;
1897 
1898 static void
1899 install_ap_tramp(u_int boot_addr)
1900 {
1901 	int     x;
1902 	int     size = *(int *) ((u_long) & bootMP_size);
1903 	u_char *src = (u_char *) ((u_long) bootMP);
1904 	u_char *dst = (u_char *) boot_addr + KERNBASE;
1905 	u_int   boot_base = (u_int) bootMP;
1906 	u_int8_t *dst8;
1907 	u_int16_t *dst16;
1908 	u_int32_t *dst32;
1909 
1910 	POSTCODE(INSTALL_AP_TRAMP_POST);
1911 
1912 	for (x = 0; x < size; ++x)
1913 		*dst++ = *src++;
1914 
1915 	/*
1916 	 * modify addresses in code we just moved to basemem. unfortunately we
1917 	 * need fairly detailed info about mpboot.s for this to work.  changes
1918 	 * to mpboot.s might require changes here.
1919 	 */
1920 
1921 	/* boot code is located in KERNEL space */
1922 	dst = (u_char *) boot_addr + KERNBASE;
1923 
1924 	/* modify the lgdt arg */
1925 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1926 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1927 
1928 	/* modify the ljmp target for MPentry() */
1929 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1930 	*dst32 = ((u_int) MPentry - KERNBASE);
1931 
1932 	/* modify the target for boot code segment */
1933 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1934 	dst8 = (u_int8_t *) (dst16 + 1);
1935 	*dst16 = (u_int) boot_addr & 0xffff;
1936 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1937 
1938 	/* modify the target for boot data segment */
1939 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1940 	dst8 = (u_int8_t *) (dst16 + 1);
1941 	*dst16 = (u_int) boot_addr & 0xffff;
1942 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1943 }
1944 
1945 
1946 /*
1947  * this function starts the AP (application processor) identified
1948  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1949  * to accomplish this.  This is necessary because of the nuances
1950  * of the different hardware we might encounter.  It ain't pretty,
1951  * but it seems to work.
1952  */
1953 static int
1954 start_ap(int logical_cpu, u_int boot_addr)
1955 {
1956 	int     physical_cpu;
1957 	int     vector;
1958 	int     cpus;
1959 	u_long  icr_lo, icr_hi;
1960 
1961 	POSTCODE(START_AP_POST);
1962 
1963 	/* get the PHYSICAL APIC ID# */
1964 	physical_cpu = CPU_TO_ID(logical_cpu);
1965 
1966 	/* calculate the vector */
1967 	vector = (boot_addr >> 12) & 0xff;
1968 
1969 	/* used as a watchpoint to signal AP startup */
1970 	cpus = mp_ncpus;
1971 
1972 	/*
1973 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1974 	 * and running the target CPU. OR this INIT IPI might be latched (P5
1975 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1976 	 * ignored.
1977 	 */
1978 
1979 	/* setup the address for the target AP */
1980 	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
1981 	icr_hi |= (physical_cpu << 24);
1982 	lapic.icr_hi = icr_hi;
1983 
1984 	/* do an INIT IPI: assert RESET */
1985 	icr_lo = lapic.icr_lo & 0xfff00000;
1986 	lapic.icr_lo = icr_lo | 0x0000c500;
1987 
1988 	/* wait for pending status end */
1989 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1990 		 /* spin */ ;
1991 
1992 	/* do an INIT IPI: deassert RESET */
1993 	lapic.icr_lo = icr_lo | 0x00008500;
1994 
1995 	/* wait for pending status end */
1996 	u_sleep(10000);		/* wait ~10mS */
1997 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1998 		 /* spin */ ;
1999 
2000 	/*
2001 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2002 	 * latched, (P5 bug) this 1st STARTUP would then terminate
2003 	 * immediately, and the previously started INIT IPI would continue. OR
2004 	 * the previous INIT IPI has already run. and this STARTUP IPI will
2005 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2006 	 * will run.
2007 	 */
2008 
2009 	/* do a STARTUP IPI */
2010 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2011 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2012 		 /* spin */ ;
2013 	u_sleep(200);		/* wait ~200uS */
2014 
2015 	/*
2016 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2017 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2018 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2019 	 * recognized after hardware RESET or INIT IPI.
2020 	 */
2021 
2022 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2023 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2024 		 /* spin */ ;
2025 	u_sleep(200);		/* wait ~200uS */
2026 
2027 	/* wait for it to start */
2028 	set_apic_timer(5000000);/* == 5 seconds */
2029 	while (read_apic_timer())
2030 		if (mp_ncpus > cpus)
2031 			return 1;	/* return SUCCESS */
2032 
2033 	return 0;		/* return FAILURE */
2034 }
2035 
2036 
2037 /*
2038  * Flush the TLB on all other CPU's
2039  *
2040  * XXX: Needs to handshake and wait for completion before proceding.
2041  */
2042 void
2043 smp_invltlb(void)
2044 {
2045 #if defined(APIC_IO)
2046 	if (smp_started && invltlb_ok)
2047 		all_but_self_ipi(XINVLTLB_OFFSET);
2048 #endif  /* APIC_IO */
2049 }
2050 
2051 void
2052 invlpg(u_int addr)
2053 {
2054 	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2055 
2056 	/* send a message to the other CPUs */
2057 	smp_invltlb();
2058 }
2059 
2060 void
2061 invltlb(void)
2062 {
2063 	u_long  temp;
2064 
2065 	/*
2066 	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2067 	 * inlined.
2068 	 */
2069 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2070 
2071 	/* send a message to the other CPUs */
2072 	smp_invltlb();
2073 }
2074 
2075 
2076 /*
2077  * When called the executing CPU will send an IPI to all other CPUs
2078  *  requesting that they halt execution.
2079  *
2080  * Usually (but not necessarily) called with 'other_cpus' as its arg.
2081  *
2082  *  - Signals all CPUs in map to stop.
2083  *  - Waits for each to stop.
2084  *
2085  * Returns:
2086  *  -1: error
2087  *   0: NA
2088  *   1: ok
2089  *
2090  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2091  *            from executing at same time.
2092  */
2093 int
2094 stop_cpus(u_int map)
2095 {
2096 	if (!smp_started)
2097 		return 0;
2098 
2099 	/* send the Xcpustop IPI to all CPUs in map */
2100 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2101 
2102 	while ((stopped_cpus & map) != map)
2103 		/* spin */ ;
2104 
2105 	return 1;
2106 }
2107 
2108 
2109 /*
2110  * Called by a CPU to restart stopped CPUs.
2111  *
2112  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2113  *
2114  *  - Signals all CPUs in map to restart.
2115  *  - Waits for each to restart.
2116  *
2117  * Returns:
2118  *  -1: error
2119  *   0: NA
2120  *   1: ok
2121  */
2122 int
2123 restart_cpus(u_int map)
2124 {
2125 	if (!smp_started)
2126 		return 0;
2127 
2128 	started_cpus = map;		/* signal other cpus to restart */
2129 
2130 	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2131 		/* spin */ ;
2132 
2133 	return 1;
2134 }
2135 
2136 int smp_active = 0;	/* are the APs allowed to run? */
2137 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2138 
2139 /* XXX maybe should be hw.ncpu */
2140 static int smp_cpus = 1;	/* how many cpu's running */
2141 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2142 
2143 int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2144 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2145 
2146 /* Warning: Do not staticize.  Used from swtch.s */
2147 int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2148 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2149 	   &do_page_zero_idle, 0, "");
2150 
2151 /* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2152 int forward_irq_enabled = 1;
2153 SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2154 	   &forward_irq_enabled, 0, "");
2155 
2156 /* Enable forwarding of a signal to a process running on a different CPU */
2157 static int forward_signal_enabled = 1;
2158 SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2159 	   &forward_signal_enabled, 0, "");
2160 
2161 /* Enable forwarding of roundrobin to all other cpus */
2162 static int forward_roundrobin_enabled = 1;
2163 SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2164 	   &forward_roundrobin_enabled, 0, "");
2165 
2166 /*
2167  * This is called once the rest of the system is up and running and we're
2168  * ready to let the AP's out of the pen.
2169  */
2170 void ap_init(void);
2171 
2172 void
2173 ap_init()
2174 {
2175 	u_int	apic_id;
2176 
2177 	smp_cpus++;
2178 
2179 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2180 	lidt(&r_idt);
2181 #endif
2182 
2183 	/* Build our map of 'other' CPUs. */
2184 	other_cpus = all_cpus & ~(1 << cpuid);
2185 
2186 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2187 
2188 	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
2189 	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
2190 
2191 	/* A quick check from sanity claus */
2192 	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2193 	if (cpuid != apic_id) {
2194 		printf("SMP: cpuid = %d\n", cpuid);
2195 		printf("SMP: apic_id = %d\n", apic_id);
2196 		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2197 		panic("cpuid mismatch! boom!!");
2198 	}
2199 
2200 	/* Init local apic for irq's */
2201 	apic_initialize();
2202 
2203 	/* Set memory range attributes for this CPU to match the BSP */
2204 	mem_range_AP_init();
2205 
2206 	/*
2207 	 * Activate smp_invltlb, although strictly speaking, this isn't
2208 	 * quite correct yet.  We should have a bitfield for cpus willing
2209 	 * to accept TLB flush IPI's or something and sync them.
2210 	 */
2211 	if (smp_cpus == mp_ncpus) {
2212 		invltlb_ok = 1;
2213 		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2214 		smp_active = 1;	 /* historic */
2215 	}
2216 }
2217 
2218 #ifdef BETTER_CLOCK
2219 
2220 #define CHECKSTATE_USER	0
2221 #define CHECKSTATE_SYS	1
2222 #define CHECKSTATE_INTR	2
2223 
2224 /* Do not staticize.  Used from apic_vector.s */
2225 struct proc*	checkstate_curproc[NCPU];
2226 int		checkstate_cpustate[NCPU];
2227 u_long		checkstate_pc[NCPU];
2228 
2229 extern long	cp_time[CPUSTATES];
2230 
2231 #define PC_TO_INDEX(pc, prof)				\
2232         ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2233             (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2234 
2235 static void
2236 addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2237 {
2238 	int i;
2239 	struct uprof *prof;
2240 	u_long pc;
2241 
2242 	pc = checkstate_pc[id];
2243 	prof = &p->p_stats->p_prof;
2244 	if (pc >= prof->pr_off &&
2245 	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2246 		if ((p->p_flag & P_OWEUPC) == 0) {
2247 			prof->pr_addr = pc;
2248 			prof->pr_ticks = 1;
2249 			p->p_flag |= P_OWEUPC;
2250 		}
2251 		*astmap |= (1 << id);
2252 	}
2253 }
2254 
2255 static void
2256 forwarded_statclock(int id, int pscnt, int *astmap)
2257 {
2258 	struct pstats *pstats;
2259 	long rss;
2260 	struct rusage *ru;
2261 	struct vmspace *vm;
2262 	int cpustate;
2263 	struct proc *p;
2264 #ifdef GPROF
2265 	register struct gmonparam *g;
2266 	int i;
2267 #endif
2268 
2269 	p = checkstate_curproc[id];
2270 	cpustate = checkstate_cpustate[id];
2271 
2272 	switch (cpustate) {
2273 	case CHECKSTATE_USER:
2274 		if (p->p_flag & P_PROFIL)
2275 			addupc_intr_forwarded(p, id, astmap);
2276 		if (pscnt > 1)
2277 			return;
2278 		p->p_uticks++;
2279 		if (p->p_nice > NZERO)
2280 			cp_time[CP_NICE]++;
2281 		else
2282 			cp_time[CP_USER]++;
2283 		break;
2284 	case CHECKSTATE_SYS:
2285 #ifdef GPROF
2286 		/*
2287 		 * Kernel statistics are just like addupc_intr, only easier.
2288 		 */
2289 		g = &_gmonparam;
2290 		if (g->state == GMON_PROF_ON) {
2291 			i = checkstate_pc[id] - g->lowpc;
2292 			if (i < g->textsize) {
2293 				i /= HISTFRACTION * sizeof(*g->kcount);
2294 				g->kcount[i]++;
2295 			}
2296 		}
2297 #endif
2298 		if (pscnt > 1)
2299 			return;
2300 
2301 		if (!p)
2302 			cp_time[CP_IDLE]++;
2303 		else {
2304 			p->p_sticks++;
2305 			cp_time[CP_SYS]++;
2306 		}
2307 		break;
2308 	case CHECKSTATE_INTR:
2309 	default:
2310 #ifdef GPROF
2311 		/*
2312 		 * Kernel statistics are just like addupc_intr, only easier.
2313 		 */
2314 		g = &_gmonparam;
2315 		if (g->state == GMON_PROF_ON) {
2316 			i = checkstate_pc[id] - g->lowpc;
2317 			if (i < g->textsize) {
2318 				i /= HISTFRACTION * sizeof(*g->kcount);
2319 				g->kcount[i]++;
2320 			}
2321 		}
2322 #endif
2323 		if (pscnt > 1)
2324 			return;
2325 		if (p)
2326 			p->p_iticks++;
2327 		cp_time[CP_INTR]++;
2328 	}
2329 	if (p != NULL) {
2330 		p->p_cpticks++;
2331 		if (++p->p_estcpu == 0)
2332 			p->p_estcpu--;
2333 		if ((p->p_estcpu & 3) == 0) {
2334 			resetpriority(p);
2335 			if (p->p_priority >= PUSER)
2336 				p->p_priority = p->p_usrpri;
2337 		}
2338 
2339 		/* Update resource usage integrals and maximums. */
2340 		if ((pstats = p->p_stats) != NULL &&
2341 		    (ru = &pstats->p_ru) != NULL &&
2342 		    (vm = p->p_vmspace) != NULL) {
2343 			ru->ru_ixrss += pgtok(vm->vm_tsize);
2344 			ru->ru_idrss += pgtok(vm->vm_dsize);
2345 			ru->ru_isrss += pgtok(vm->vm_ssize);
2346 			rss = pgtok(vmspace_resident_count(vm));
2347 			if (ru->ru_maxrss < rss)
2348 				ru->ru_maxrss = rss;
2349         	}
2350 	}
2351 }
2352 
2353 void
2354 forward_statclock(int pscnt)
2355 {
2356 	int map;
2357 	int id;
2358 	int i;
2359 
2360 	/* Kludge. We don't yet have separate locks for the interrupts
2361 	 * and the kernel. This means that we cannot let the other processors
2362 	 * handle complex interrupts while inhibiting them from entering
2363 	 * the kernel in a non-interrupt context.
2364 	 *
2365 	 * What we can do, without changing the locking mechanisms yet,
2366 	 * is letting the other processors handle a very simple interrupt
2367 	 * (wich determines the processor states), and do the main
2368 	 * work ourself.
2369 	 */
2370 
2371 	if (!smp_started || !invltlb_ok || cold || panicstr)
2372 		return;
2373 
2374 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2375 
2376 	map = other_cpus & ~stopped_cpus ;
2377 	checkstate_probed_cpus = 0;
2378 	if (map != 0)
2379 		selected_apic_ipi(map,
2380 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2381 
2382 	i = 0;
2383 	while (checkstate_probed_cpus != map) {
2384 		/* spin */
2385 		i++;
2386 		if (i == 100000) {
2387 #ifdef BETTER_CLOCK_DIAGNOSTIC
2388 			printf("forward_statclock: checkstate %x\n",
2389 			       checkstate_probed_cpus);
2390 #endif
2391 			break;
2392 		}
2393 	}
2394 
2395 	/*
2396 	 * Step 2: walk through other processors processes, update ticks and
2397 	 * profiling info.
2398 	 */
2399 
2400 	map = 0;
2401 	for (id = 0; id < mp_ncpus; id++) {
2402 		if (id == cpuid)
2403 			continue;
2404 		if (((1 << id) & checkstate_probed_cpus) == 0)
2405 			continue;
2406 		forwarded_statclock(id, pscnt, &map);
2407 	}
2408 	if (map != 0) {
2409 		checkstate_need_ast |= map;
2410 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2411 		i = 0;
2412 		while ((checkstate_need_ast & map) != 0) {
2413 			/* spin */
2414 			i++;
2415 			if (i > 100000) {
2416 #ifdef BETTER_CLOCK_DIAGNOSTIC
2417 				printf("forward_statclock: dropped ast 0x%x\n",
2418 				       checkstate_need_ast & map);
2419 #endif
2420 				break;
2421 			}
2422 		}
2423 	}
2424 }
2425 
2426 void
2427 forward_hardclock(int pscnt)
2428 {
2429 	int map;
2430 	int id;
2431 	struct proc *p;
2432 	struct pstats *pstats;
2433 	int i;
2434 
2435 	/* Kludge. We don't yet have separate locks for the interrupts
2436 	 * and the kernel. This means that we cannot let the other processors
2437 	 * handle complex interrupts while inhibiting them from entering
2438 	 * the kernel in a non-interrupt context.
2439 	 *
2440 	 * What we can do, without changing the locking mechanisms yet,
2441 	 * is letting the other processors handle a very simple interrupt
2442 	 * (wich determines the processor states), and do the main
2443 	 * work ourself.
2444 	 */
2445 
2446 	if (!smp_started || !invltlb_ok || cold || panicstr)
2447 		return;
2448 
2449 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2450 
2451 	map = other_cpus & ~stopped_cpus ;
2452 	checkstate_probed_cpus = 0;
2453 	if (map != 0)
2454 		selected_apic_ipi(map,
2455 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2456 
2457 	i = 0;
2458 	while (checkstate_probed_cpus != map) {
2459 		/* spin */
2460 		i++;
2461 		if (i == 100000) {
2462 #ifdef BETTER_CLOCK_DIAGNOSTIC
2463 			printf("forward_hardclock: checkstate %x\n",
2464 			       checkstate_probed_cpus);
2465 #endif
2466 			break;
2467 		}
2468 	}
2469 
2470 	/*
2471 	 * Step 2: walk through other processors processes, update virtual
2472 	 * timer and profiling timer. If stathz == 0, also update ticks and
2473 	 * profiling info.
2474 	 */
2475 
2476 	map = 0;
2477 	for (id = 0; id < mp_ncpus; id++) {
2478 		if (id == cpuid)
2479 			continue;
2480 		if (((1 << id) & checkstate_probed_cpus) == 0)
2481 			continue;
2482 		p = checkstate_curproc[id];
2483 		if (p) {
2484 			pstats = p->p_stats;
2485 			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2486 			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2487 			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2488 				psignal(p, SIGVTALRM);
2489 				map |= (1 << id);
2490 			}
2491 			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2492 			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2493 				psignal(p, SIGPROF);
2494 				map |= (1 << id);
2495 			}
2496 		}
2497 		if (stathz == 0) {
2498 			forwarded_statclock( id, pscnt, &map);
2499 		}
2500 	}
2501 	if (map != 0) {
2502 		checkstate_need_ast |= map;
2503 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2504 		i = 0;
2505 		while ((checkstate_need_ast & map) != 0) {
2506 			/* spin */
2507 			i++;
2508 			if (i > 100000) {
2509 #ifdef BETTER_CLOCK_DIAGNOSTIC
2510 				printf("forward_hardclock: dropped ast 0x%x\n",
2511 				       checkstate_need_ast & map);
2512 #endif
2513 				break;
2514 			}
2515 		}
2516 	}
2517 }
2518 
2519 #endif /* BETTER_CLOCK */
2520 
2521 void
2522 forward_signal(struct proc *p)
2523 {
2524 	int map;
2525 	int id;
2526 	int i;
2527 
2528 	/* Kludge. We don't yet have separate locks for the interrupts
2529 	 * and the kernel. This means that we cannot let the other processors
2530 	 * handle complex interrupts while inhibiting them from entering
2531 	 * the kernel in a non-interrupt context.
2532 	 *
2533 	 * What we can do, without changing the locking mechanisms yet,
2534 	 * is letting the other processors handle a very simple interrupt
2535 	 * (wich determines the processor states), and do the main
2536 	 * work ourself.
2537 	 */
2538 
2539 	if (!smp_started || !invltlb_ok || cold || panicstr)
2540 		return;
2541 	if (!forward_signal_enabled)
2542 		return;
2543 	while (1) {
2544 		if (p->p_stat != SRUN)
2545 			return;
2546 		id = p->p_oncpu;
2547 		if (id == 0xff)
2548 			return;
2549 		map = (1<<id);
2550 		checkstate_need_ast |= map;
2551 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2552 		i = 0;
2553 		while ((checkstate_need_ast & map) != 0) {
2554 			/* spin */
2555 			i++;
2556 			if (i > 100000) {
2557 #if 0
2558 				printf("forward_signal: dropped ast 0x%x\n",
2559 				       checkstate_need_ast & map);
2560 #endif
2561 				break;
2562 			}
2563 		}
2564 		if (id == p->p_oncpu)
2565 			return;
2566 	}
2567 }
2568 
2569 void
2570 forward_roundrobin(void)
2571 {
2572 	u_int map;
2573 	int i;
2574 
2575 	if (!smp_started || !invltlb_ok || cold || panicstr)
2576 		return;
2577 	if (!forward_roundrobin_enabled)
2578 		return;
2579 	resched_cpus |= other_cpus;
2580 	map = other_cpus & ~stopped_cpus ;
2581 #if 1
2582 	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2583 #else
2584 	(void) all_but_self_ipi(XCPUAST_OFFSET);
2585 #endif
2586 	i = 0;
2587 	while ((checkstate_need_ast & map) != 0) {
2588 		/* spin */
2589 		i++;
2590 		if (i > 100000) {
2591 #if 0
2592 			printf("forward_roundrobin: dropped ast 0x%x\n",
2593 			       checkstate_need_ast & map);
2594 #endif
2595 			break;
2596 		}
2597 	}
2598 }
2599 
2600 
2601 #ifdef APIC_INTR_REORDER
2602 /*
2603  *	Maintain mapping from softintr vector to isr bit in local apic.
2604  */
2605 void
2606 set_lapic_isrloc(int intr, int vector)
2607 {
2608 	if (intr < 0 || intr > 32)
2609 		panic("set_apic_isrloc: bad intr argument: %d",intr);
2610 	if (vector < ICU_OFFSET || vector > 255)
2611 		panic("set_apic_isrloc: bad vector argument: %d",vector);
2612 	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2613 	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2614 }
2615 #endif
2616