xref: /freebsd/sys/kern/subr_smp.c (revision 6de306ecee3831f48debaad1d0b22418faa48e10)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27 
28 #include "opt_cpu.h"
29 
30 #ifdef SMP
31 #include <machine/smptests.h>
32 #else
33 #error
34 #endif
35 
36 #include <sys/param.h>
37 #include <sys/bus.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
43 #include <sys/memrange.h>
44 #include <sys/mutex.h>
45 #ifdef BETTER_CLOCK
46 #include <sys/dkstat.h>
47 #endif
48 #include <sys/cons.h>	/* cngetc() */
49 
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_extern.h>
55 #ifdef BETTER_CLOCK
56 #include <sys/lock.h>
57 #include <vm/vm_map.h>
58 #include <sys/user.h>
59 #ifdef GPROF
60 #include <sys/gmon.h>
61 #endif
62 #endif
63 
64 #include <machine/smp.h>
65 #include <machine/apic.h>
66 #include <machine/atomic.h>
67 #include <machine/cpufunc.h>
68 #include <machine/mpapic.h>
69 #include <machine/psl.h>
70 #include <machine/segments.h>
71 #include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
72 #include <machine/tss.h>
73 #include <machine/specialreg.h>
74 #include <machine/globaldata.h>
75 
76 #if defined(APIC_IO)
77 #include <machine/md_var.h>		/* setidt() */
78 #include <i386/isa/icu.h>		/* IPIs */
79 #include <i386/isa/intr_machdep.h>	/* IPIs */
80 #endif	/* APIC_IO */
81 
82 #if defined(TEST_DEFAULT_CONFIG)
83 #define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
84 #else
85 #define MPFPS_MPFB1	mpfps->mpfb1
86 #endif  /* TEST_DEFAULT_CONFIG */
87 
88 #define WARMBOOT_TARGET		0
89 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
90 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
91 
92 #ifdef PC98
93 #define BIOS_BASE		(0xe8000)
94 #define BIOS_SIZE		(0x18000)
95 #else
96 #define BIOS_BASE		(0xf0000)
97 #define BIOS_SIZE		(0x10000)
98 #endif
99 #define BIOS_COUNT		(BIOS_SIZE/4)
100 
101 #define CMOS_REG		(0x70)
102 #define CMOS_DATA		(0x71)
103 #define BIOS_RESET		(0x0f)
104 #define BIOS_WARM		(0x0a)
105 
106 #define PROCENTRY_FLAG_EN	0x01
107 #define PROCENTRY_FLAG_BP	0x02
108 #define IOAPICENTRY_FLAG_EN	0x01
109 
110 
111 /* MP Floating Pointer Structure */
112 typedef struct MPFPS {
113 	char    signature[4];
114 	void   *pap;
115 	u_char  length;
116 	u_char  spec_rev;
117 	u_char  checksum;
118 	u_char  mpfb1;
119 	u_char  mpfb2;
120 	u_char  mpfb3;
121 	u_char  mpfb4;
122 	u_char  mpfb5;
123 }      *mpfps_t;
124 
125 /* MP Configuration Table Header */
126 typedef struct MPCTH {
127 	char    signature[4];
128 	u_short base_table_length;
129 	u_char  spec_rev;
130 	u_char  checksum;
131 	u_char  oem_id[8];
132 	u_char  product_id[12];
133 	void   *oem_table_pointer;
134 	u_short oem_table_size;
135 	u_short entry_count;
136 	void   *apic_address;
137 	u_short extended_table_length;
138 	u_char  extended_table_checksum;
139 	u_char  reserved;
140 }      *mpcth_t;
141 
142 
143 typedef struct PROCENTRY {
144 	u_char  type;
145 	u_char  apic_id;
146 	u_char  apic_version;
147 	u_char  cpu_flags;
148 	u_long  cpu_signature;
149 	u_long  feature_flags;
150 	u_long  reserved1;
151 	u_long  reserved2;
152 }      *proc_entry_ptr;
153 
154 typedef struct BUSENTRY {
155 	u_char  type;
156 	u_char  bus_id;
157 	char    bus_type[6];
158 }      *bus_entry_ptr;
159 
160 typedef struct IOAPICENTRY {
161 	u_char  type;
162 	u_char  apic_id;
163 	u_char  apic_version;
164 	u_char  apic_flags;
165 	void   *apic_address;
166 }      *io_apic_entry_ptr;
167 
168 typedef struct INTENTRY {
169 	u_char  type;
170 	u_char  int_type;
171 	u_short int_flags;
172 	u_char  src_bus_id;
173 	u_char  src_bus_irq;
174 	u_char  dst_apic_id;
175 	u_char  dst_apic_int;
176 }      *int_entry_ptr;
177 
178 /* descriptions of MP basetable entries */
179 typedef struct BASETABLE_ENTRY {
180 	u_char  type;
181 	u_char  length;
182 	char    name[16];
183 }       basetable_entry;
184 
185 /*
186  * this code MUST be enabled here and in mpboot.s.
187  * it follows the very early stages of AP boot by placing values in CMOS ram.
188  * it NORMALLY will never be needed and thus the primitive method for enabling.
189  *
190 #define CHECK_POINTS
191  */
192 
193 #if defined(CHECK_POINTS) && !defined(PC98)
194 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
195 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
196 
197 #define CHECK_INIT(D);				\
198 	CHECK_WRITE(0x34, (D));			\
199 	CHECK_WRITE(0x35, (D));			\
200 	CHECK_WRITE(0x36, (D));			\
201 	CHECK_WRITE(0x37, (D));			\
202 	CHECK_WRITE(0x38, (D));			\
203 	CHECK_WRITE(0x39, (D));
204 
205 #define CHECK_PRINT(S);				\
206 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
207 	   (S),					\
208 	   CHECK_READ(0x34),			\
209 	   CHECK_READ(0x35),			\
210 	   CHECK_READ(0x36),			\
211 	   CHECK_READ(0x37),			\
212 	   CHECK_READ(0x38),			\
213 	   CHECK_READ(0x39));
214 
215 #else				/* CHECK_POINTS */
216 
217 #define CHECK_INIT(D)
218 #define CHECK_PRINT(S)
219 
220 #endif				/* CHECK_POINTS */
221 
222 /*
223  * Values to send to the POST hardware.
224  */
225 #define MP_BOOTADDRESS_POST	0x10
226 #define MP_PROBE_POST		0x11
227 #define MPTABLE_PASS1_POST	0x12
228 
229 #define MP_START_POST		0x13
230 #define MP_ENABLE_POST		0x14
231 #define MPTABLE_PASS2_POST	0x15
232 
233 #define START_ALL_APS_POST	0x16
234 #define INSTALL_AP_TRAMP_POST	0x17
235 #define START_AP_POST		0x18
236 
237 #define MP_ANNOUNCE_POST	0x19
238 
239 /* used to hold the AP's until we are ready to release them */
240 struct mtx			ap_boot_mtx;
241 
242 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
243 int	current_postcode;
244 
245 /** XXX FIXME: what system files declare these??? */
246 extern struct region_descriptor r_gdt, r_idt;
247 
248 int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
249 int	mp_ncpus;		/* # of CPUs, including BSP */
250 int	mp_naps;		/* # of Applications processors */
251 int	mp_nbusses;		/* # of busses */
252 int	mp_napics;		/* # of IO APICs */
253 int	boot_cpu_id;		/* designated BSP */
254 vm_offset_t cpu_apic_address;
255 vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
256 extern	int nkpt;
257 
258 u_int32_t cpu_apic_versions[MAXCPU];
259 u_int32_t *io_apic_versions;
260 
261 #ifdef APIC_INTR_REORDER
262 struct {
263 	volatile int *location;
264 	int bit;
265 } apic_isrbit_location[32];
266 #endif
267 
268 struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
269 
270 /*
271  * APIC ID logical/physical mapping structures.
272  * We oversize these to simplify boot-time config.
273  */
274 int     cpu_num_to_apic_id[NAPICID];
275 int     io_num_to_apic_id[NAPICID];
276 int     apic_id_to_logical[NAPICID];
277 
278 
279 /* Bitmap of all available CPUs */
280 u_int	all_cpus;
281 
282 /* AP uses this during bootstrap.  Do not staticize.  */
283 char *bootSTK;
284 static int bootAP;
285 
286 /* Hotwire a 0->4MB V==P mapping */
287 extern pt_entry_t *KPTphys;
288 
289 /* SMP page table page */
290 extern pt_entry_t *SMPpt;
291 
292 struct pcb stoppcbs[MAXCPU];
293 
294 int smp_started;		/* has the system started? */
295 int smp_active = 0;		/* are the APs allowed to run? */
296 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
297 
298 /* XXX maybe should be hw.ncpu */
299 static int smp_cpus = 1;	/* how many cpu's running */
300 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
301 
302 int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
303 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
304 
305 /* Enable forwarding of a signal to a process running on a different CPU */
306 static int forward_signal_enabled = 1;
307 SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
308 	   &forward_signal_enabled, 0, "");
309 
310 /* Enable forwarding of roundrobin to all other cpus */
311 static int forward_roundrobin_enabled = 1;
312 SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
313 	   &forward_roundrobin_enabled, 0, "");
314 
315 
316 /*
317  * Local data and functions.
318  */
319 
320 /* Set to 1 once we're ready to let the APs out of the pen. */
321 static volatile int aps_ready = 0;
322 
323 static int	mp_capable;
324 static u_int	boot_address;
325 static u_int	base_memory;
326 
327 static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
328 static mpfps_t	mpfps;
329 static int	search_for_sig(u_int32_t target, int count);
330 static void	mp_enable(u_int boot_addr);
331 
332 static void	mptable_pass1(void);
333 static int	mptable_pass2(void);
334 static void	default_mp_table(int type);
335 static void	fix_mp_table(void);
336 static void	setup_apic_irq_mapping(void);
337 static void	init_locks(void);
338 static int	start_all_aps(u_int boot_addr);
339 static void	install_ap_tramp(u_int boot_addr);
340 static int	start_ap(int logicalCpu, u_int boot_addr);
341 void		ap_init(void);
342 static int	apic_int_is_bus_type(int intr, int bus_type);
343 static void	release_aps(void *dummy);
344 
345 /*
346  * initialize all the SMP locks
347  */
348 
349 /* critical region around IO APIC, apic_imen */
350 struct mtx		imen_mtx;
351 
352 /* lock region used by kernel profiling */
353 struct mtx		mcount_mtx;
354 
355 #ifdef USE_COMLOCK
356 /* locks com (tty) data/hardware accesses: a FASTINTR() */
357 struct mtx		com_mtx;
358 #endif /* USE_COMLOCK */
359 
360 /* lock around the MP rendezvous */
361 static struct mtx	smp_rv_mtx;
362 
363 /* only 1 CPU can panic at a time :) */
364 struct mtx		panic_mtx;
365 
366 static void
367 init_locks(void)
368 {
369 	/*
370 	 * XXX The mcount mutex probably needs to be statically initialized,
371 	 * since it will be used even in the function calls that get us to this
372 	 * point.
373 	 */
374 	mtx_init(&mcount_mtx, "mcount", MTX_DEF);
375 
376 	mtx_init(&smp_rv_mtx, "smp rendezvous", MTX_SPIN);
377 	mtx_init(&panic_mtx, "panic", MTX_DEF);
378 
379 #ifdef USE_COMLOCK
380 	mtx_init(&com_mtx, "com", MTX_SPIN);
381 #endif /* USE_COMLOCK */
382 
383 	mtx_init(&ap_boot_mtx, "ap boot", MTX_SPIN);
384 }
385 
386 /*
387  * Calculate usable address in base memory for AP trampoline code.
388  */
389 u_int
390 mp_bootaddress(u_int basemem)
391 {
392 	POSTCODE(MP_BOOTADDRESS_POST);
393 
394 	base_memory = basemem * 1024;	/* convert to bytes */
395 
396 	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
397 	if ((base_memory - boot_address) < bootMP_size)
398 		boot_address -= 4096;	/* not enough, lower by 4k */
399 
400 	return boot_address;
401 }
402 
403 
404 /*
405  * Look for an Intel MP spec table (ie, SMP capable hardware).
406  */
407 int
408 mp_probe(void)
409 {
410 	int     x;
411 	u_long  segment;
412 	u_int32_t target;
413 
414 	POSTCODE(MP_PROBE_POST);
415 
416 	/* see if EBDA exists */
417 	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
418 		/* search first 1K of EBDA */
419 		target = (u_int32_t) (segment << 4);
420 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
421 			goto found;
422 	} else {
423 		/* last 1K of base memory, effective 'top of base' passed in */
424 		target = (u_int32_t) (base_memory - 0x400);
425 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
426 			goto found;
427 	}
428 
429 	/* search the BIOS */
430 	target = (u_int32_t) BIOS_BASE;
431 	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
432 		goto found;
433 
434 	/* nothing found */
435 	mpfps = (mpfps_t)0;
436 	mp_capable = 0;
437 	return 0;
438 
439 found:
440 	/* calculate needed resources */
441 	mpfps = (mpfps_t)x;
442 	mptable_pass1();
443 
444 	/* flag fact that we are running multiple processors */
445 	mp_capable = 1;
446 	return 1;
447 }
448 
449 
450 /*
451  * Initialize the SMP hardware and the APIC and start up the AP's.
452  */
453 void
454 mp_start(void)
455 {
456 	POSTCODE(MP_START_POST);
457 
458 	/* look for MP capable motherboard */
459 	if (mp_capable)
460 		mp_enable(boot_address);
461 	else
462 		panic("MP hardware not found!");
463 }
464 
465 
466 /*
467  * Print various information about the SMP system hardware and setup.
468  */
469 void
470 mp_announce(void)
471 {
472 	int     x;
473 
474 	POSTCODE(MP_ANNOUNCE_POST);
475 
476 	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
477 	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
478 	printf(", version: 0x%08x", cpu_apic_versions[0]);
479 	printf(", at 0x%08x\n", cpu_apic_address);
480 	for (x = 1; x <= mp_naps; ++x) {
481 		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
482 		printf(", version: 0x%08x", cpu_apic_versions[x]);
483 		printf(", at 0x%08x\n", cpu_apic_address);
484 	}
485 
486 #if defined(APIC_IO)
487 	for (x = 0; x < mp_napics; ++x) {
488 		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
489 		printf(", version: 0x%08x", io_apic_versions[x]);
490 		printf(", at 0x%08x\n", io_apic_address[x]);
491 	}
492 #else
493 	printf(" Warning: APIC I/O disabled\n");
494 #endif	/* APIC_IO */
495 }
496 
497 /*
498  * AP cpu's call this to sync up protected mode.
499  */
500 void
501 init_secondary(void)
502 {
503 	int	gsel_tss;
504 	int	x, myid = bootAP;
505 
506 	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
507 	gdt_segs[GPROC0_SEL].ssd_base =
508 		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
509 	SMP_prvspace[myid].globaldata.gd_prvspace =
510 		&SMP_prvspace[myid].globaldata;
511 
512 	for (x = 0; x < NGDT; x++) {
513 		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
514 	}
515 
516 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
517 	r_gdt.rd_base = (int) &gdt[myid * NGDT];
518 	lgdt(&r_gdt);			/* does magic intra-segment return */
519 
520 	lidt(&r_idt);
521 
522 	lldt(_default_ldt);
523 	PCPU_SET(currentldt, _default_ldt);
524 
525 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
526 	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
527 	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
528 	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
529 	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
530 	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
531 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
532 	ltr(gsel_tss);
533 
534 	pmap_set_opt();
535 }
536 
537 
538 #if defined(APIC_IO)
539 /*
540  * Final configuration of the BSP's local APIC:
541  *  - disable 'pic mode'.
542  *  - disable 'virtual wire mode'.
543  *  - enable NMI.
544  */
545 void
546 bsp_apic_configure(void)
547 {
548 	u_char		byte;
549 	u_int32_t	temp;
550 
551 	/* leave 'pic mode' if necessary */
552 	if (picmode) {
553 		outb(0x22, 0x70);	/* select IMCR */
554 		byte = inb(0x23);	/* current contents */
555 		byte |= 0x01;		/* mask external INTR */
556 		outb(0x23, byte);	/* disconnect 8259s/NMI */
557 	}
558 
559 	/* mask lint0 (the 8259 'virtual wire' connection) */
560 	temp = lapic.lvt_lint0;
561 	temp |= APIC_LVT_M;		/* set the mask */
562 	lapic.lvt_lint0 = temp;
563 
564         /* setup lint1 to handle NMI */
565         temp = lapic.lvt_lint1;
566         temp &= ~APIC_LVT_M;		/* clear the mask */
567         lapic.lvt_lint1 = temp;
568 
569 	if (bootverbose)
570 		apic_dump("bsp_apic_configure()");
571 }
572 #endif  /* APIC_IO */
573 
574 
575 /*******************************************************************
576  * local functions and data
577  */
578 
579 /*
580  * start the SMP system
581  */
582 static void
583 mp_enable(u_int boot_addr)
584 {
585 	int     x;
586 #if defined(APIC_IO)
587 	int     apic;
588 	u_int   ux;
589 #endif	/* APIC_IO */
590 
591 	POSTCODE(MP_ENABLE_POST);
592 
593 	/* turn on 4MB of V == P addressing so we can get to MP table */
594 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
595 	invltlb();
596 
597 	/* examine the MP table for needed info, uses physical addresses */
598 	x = mptable_pass2();
599 
600 	*(int *)PTD = 0;
601 	invltlb();
602 
603 	/* can't process default configs till the CPU APIC is pmapped */
604 	if (x)
605 		default_mp_table(x);
606 
607 	/* post scan cleanup */
608 	fix_mp_table();
609 	setup_apic_irq_mapping();
610 
611 #if defined(APIC_IO)
612 
613 	/* fill the LOGICAL io_apic_versions table */
614 	for (apic = 0; apic < mp_napics; ++apic) {
615 		ux = io_apic_read(apic, IOAPIC_VER);
616 		io_apic_versions[apic] = ux;
617 		io_apic_set_id(apic, IO_TO_ID(apic));
618 	}
619 
620 	/* program each IO APIC in the system */
621 	for (apic = 0; apic < mp_napics; ++apic)
622 		if (io_apic_setup(apic) < 0)
623 			panic("IO APIC setup failure");
624 
625 	/* install a 'Spurious INTerrupt' vector */
626 	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
627 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
628 
629 	/* install an inter-CPU IPI for TLB invalidation */
630 	setidt(XINVLTLB_OFFSET, Xinvltlb,
631 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
632 
633 #ifdef BETTER_CLOCK
634 	/* install an inter-CPU IPI for reading processor state */
635 	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
636 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
637 #endif
638 
639 	/* install an inter-CPU IPI for all-CPU rendezvous */
640 	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
641 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
642 
643 	/* install an inter-CPU IPI for forcing an additional software trap */
644 	setidt(XCPUAST_OFFSET, Xcpuast,
645 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
646 
647 	/* install an inter-CPU IPI for CPU stop/restart */
648 	setidt(XCPUSTOP_OFFSET, Xcpustop,
649 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
650 
651 #if defined(TEST_TEST1)
652 	/* install a "fake hardware INTerrupt" vector */
653 	setidt(XTEST1_OFFSET, Xtest1,
654 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
655 #endif  /** TEST_TEST1 */
656 
657 #endif	/* APIC_IO */
658 
659 	/* initialize all SMP locks */
660 	init_locks();
661 
662 	/* start each Application Processor */
663 	start_all_aps(boot_addr);
664 }
665 
666 
667 /*
668  * look for the MP spec signature
669  */
670 
671 /* string defined by the Intel MP Spec as identifying the MP table */
672 #define MP_SIG		0x5f504d5f	/* _MP_ */
673 #define NEXT(X)		((X) += 4)
674 static int
675 search_for_sig(u_int32_t target, int count)
676 {
677 	int     x;
678 	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
679 
680 	for (x = 0; x < count; NEXT(x))
681 		if (addr[x] == MP_SIG)
682 			/* make array index a byte index */
683 			return (target + (x * sizeof(u_int32_t)));
684 
685 	return -1;
686 }
687 
688 
689 static basetable_entry basetable_entry_types[] =
690 {
691 	{0, 20, "Processor"},
692 	{1, 8, "Bus"},
693 	{2, 8, "I/O APIC"},
694 	{3, 8, "I/O INT"},
695 	{4, 8, "Local INT"}
696 };
697 
698 typedef struct BUSDATA {
699 	u_char  bus_id;
700 	enum busTypes bus_type;
701 }       bus_datum;
702 
703 typedef struct INTDATA {
704 	u_char  int_type;
705 	u_short int_flags;
706 	u_char  src_bus_id;
707 	u_char  src_bus_irq;
708 	u_char  dst_apic_id;
709 	u_char  dst_apic_int;
710 	u_char	int_vector;
711 }       io_int, local_int;
712 
713 typedef struct BUSTYPENAME {
714 	u_char  type;
715 	char    name[7];
716 }       bus_type_name;
717 
718 static bus_type_name bus_type_table[] =
719 {
720 	{CBUS, "CBUS"},
721 	{CBUSII, "CBUSII"},
722 	{EISA, "EISA"},
723 	{MCA, "MCA"},
724 	{UNKNOWN_BUSTYPE, "---"},
725 	{ISA, "ISA"},
726 	{MCA, "MCA"},
727 	{UNKNOWN_BUSTYPE, "---"},
728 	{UNKNOWN_BUSTYPE, "---"},
729 	{UNKNOWN_BUSTYPE, "---"},
730 	{UNKNOWN_BUSTYPE, "---"},
731 	{UNKNOWN_BUSTYPE, "---"},
732 	{PCI, "PCI"},
733 	{UNKNOWN_BUSTYPE, "---"},
734 	{UNKNOWN_BUSTYPE, "---"},
735 	{UNKNOWN_BUSTYPE, "---"},
736 	{UNKNOWN_BUSTYPE, "---"},
737 	{XPRESS, "XPRESS"},
738 	{UNKNOWN_BUSTYPE, "---"}
739 };
740 /* from MP spec v1.4, table 5-1 */
741 static int default_data[7][5] =
742 {
743 /*   nbus, id0, type0, id1, type1 */
744 	{1, 0, ISA, 255, 255},
745 	{1, 0, EISA, 255, 255},
746 	{1, 0, EISA, 255, 255},
747 	{1, 0, MCA, 255, 255},
748 	{2, 0, ISA, 1, PCI},
749 	{2, 0, EISA, 1, PCI},
750 	{2, 0, MCA, 1, PCI}
751 };
752 
753 
754 /* the bus data */
755 static bus_datum *bus_data;
756 
757 /* the IO INT data, one entry per possible APIC INTerrupt */
758 static io_int  *io_apic_ints;
759 
760 static int nintrs;
761 
762 static int processor_entry	__P((proc_entry_ptr entry, int cpu));
763 static int bus_entry		__P((bus_entry_ptr entry, int bus));
764 static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
765 static int int_entry		__P((int_entry_ptr entry, int intr));
766 static int lookup_bus_type	__P((char *name));
767 
768 
769 /*
770  * 1st pass on motherboard's Intel MP specification table.
771  *
772  * initializes:
773  *	mp_ncpus = 1
774  *
775  * determines:
776  *	cpu_apic_address (common to all CPUs)
777  *	io_apic_address[N]
778  *	mp_naps
779  *	mp_nbusses
780  *	mp_napics
781  *	nintrs
782  */
783 static void
784 mptable_pass1(void)
785 {
786 	int	x;
787 	mpcth_t	cth;
788 	int	totalSize;
789 	void*	position;
790 	int	count;
791 	int	type;
792 
793 	POSTCODE(MPTABLE_PASS1_POST);
794 
795 	/* clear various tables */
796 	for (x = 0; x < NAPICID; ++x) {
797 		io_apic_address[x] = ~0;	/* IO APIC address table */
798 	}
799 
800 	/* init everything to empty */
801 	mp_naps = 0;
802 	mp_nbusses = 0;
803 	mp_napics = 0;
804 	nintrs = 0;
805 
806 	/* check for use of 'default' configuration */
807 	if (MPFPS_MPFB1 != 0) {
808 		/* use default addresses */
809 		cpu_apic_address = DEFAULT_APIC_BASE;
810 		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
811 
812 		/* fill in with defaults */
813 		mp_naps = 2;		/* includes BSP */
814 		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
815 #if defined(APIC_IO)
816 		mp_napics = 1;
817 		nintrs = 16;
818 #endif	/* APIC_IO */
819 	}
820 	else {
821 		if ((cth = mpfps->pap) == 0)
822 			panic("MP Configuration Table Header MISSING!");
823 
824 		cpu_apic_address = (vm_offset_t) cth->apic_address;
825 
826 		/* walk the table, recording info of interest */
827 		totalSize = cth->base_table_length - sizeof(struct MPCTH);
828 		position = (u_char *) cth + sizeof(struct MPCTH);
829 		count = cth->entry_count;
830 
831 		while (count--) {
832 			switch (type = *(u_char *) position) {
833 			case 0: /* processor_entry */
834 				if (((proc_entry_ptr)position)->cpu_flags
835 					& PROCENTRY_FLAG_EN)
836 					++mp_naps;
837 				break;
838 			case 1: /* bus_entry */
839 				++mp_nbusses;
840 				break;
841 			case 2: /* io_apic_entry */
842 				if (((io_apic_entry_ptr)position)->apic_flags
843 					& IOAPICENTRY_FLAG_EN)
844 					io_apic_address[mp_napics++] =
845 					    (vm_offset_t)((io_apic_entry_ptr)
846 						position)->apic_address;
847 				break;
848 			case 3: /* int_entry */
849 				++nintrs;
850 				break;
851 			case 4:	/* int_entry */
852 				break;
853 			default:
854 				panic("mpfps Base Table HOSED!");
855 				/* NOTREACHED */
856 			}
857 
858 			totalSize -= basetable_entry_types[type].length;
859 			(u_char*)position += basetable_entry_types[type].length;
860 		}
861 	}
862 
863 	/* qualify the numbers */
864 	if (mp_naps > MAXCPU) {
865 		printf("Warning: only using %d of %d available CPUs!\n",
866 			MAXCPU, mp_naps);
867 		mp_naps = MAXCPU;
868 	}
869 
870 	/*
871 	 * Count the BSP.
872 	 * This is also used as a counter while starting the APs.
873 	 */
874 	mp_ncpus = 1;
875 
876 	--mp_naps;	/* subtract the BSP */
877 }
878 
879 
880 /*
881  * 2nd pass on motherboard's Intel MP specification table.
882  *
883  * sets:
884  *	boot_cpu_id
885  *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
886  *	CPU_TO_ID(N), logical CPU to APIC ID table
887  *	IO_TO_ID(N), logical IO to APIC ID table
888  *	bus_data[N]
889  *	io_apic_ints[N]
890  */
891 static int
892 mptable_pass2(void)
893 {
894 	int     x;
895 	mpcth_t cth;
896 	int     totalSize;
897 	void*   position;
898 	int     count;
899 	int     type;
900 	int     apic, bus, cpu, intr;
901 	int	i, j;
902 	int	pgeflag;
903 
904 	POSTCODE(MPTABLE_PASS2_POST);
905 
906 	pgeflag = 0;		/* XXX - Not used under SMP yet.  */
907 
908 	MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
909 	    M_DEVBUF, M_WAITOK);
910 	MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
911 	    M_DEVBUF, M_WAITOK);
912 	MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
913 	    M_DEVBUF, M_WAITOK);
914 	MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
915 	    M_DEVBUF, M_WAITOK);
916 
917 	bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
918 
919 	for (i = 0; i < mp_napics; i++) {
920 		for (j = 0; j < mp_napics; j++) {
921 			/* same page frame as a previous IO apic? */
922 			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
923 			    (io_apic_address[i] & PG_FRAME)) {
924 				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
925 					+ (NPTEPG-2-j) * PAGE_SIZE
926 					+ (io_apic_address[i] & PAGE_MASK));
927 				break;
928 			}
929 			/* use this slot if available */
930 			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
931 				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
932 				    pgeflag | (io_apic_address[i] & PG_FRAME));
933 				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
934 					+ (NPTEPG-2-j) * PAGE_SIZE
935 					+ (io_apic_address[i] & PAGE_MASK));
936 				break;
937 			}
938 		}
939 	}
940 
941 	/* clear various tables */
942 	for (x = 0; x < NAPICID; ++x) {
943 		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
944 		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
945 		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
946 	}
947 
948 	/* clear bus data table */
949 	for (x = 0; x < mp_nbusses; ++x)
950 		bus_data[x].bus_id = 0xff;
951 
952 	/* clear IO APIC INT table */
953 	for (x = 0; x < (nintrs + 1); ++x) {
954 		io_apic_ints[x].int_type = 0xff;
955 		io_apic_ints[x].int_vector = 0xff;
956 	}
957 
958 	/* setup the cpu/apic mapping arrays */
959 	boot_cpu_id = -1;
960 
961 	/* record whether PIC or virtual-wire mode */
962 	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
963 
964 	/* check for use of 'default' configuration */
965 	if (MPFPS_MPFB1 != 0)
966 		return MPFPS_MPFB1;	/* return default configuration type */
967 
968 	if ((cth = mpfps->pap) == 0)
969 		panic("MP Configuration Table Header MISSING!");
970 
971 	/* walk the table, recording info of interest */
972 	totalSize = cth->base_table_length - sizeof(struct MPCTH);
973 	position = (u_char *) cth + sizeof(struct MPCTH);
974 	count = cth->entry_count;
975 	apic = bus = intr = 0;
976 	cpu = 1;				/* pre-count the BSP */
977 
978 	while (count--) {
979 		switch (type = *(u_char *) position) {
980 		case 0:
981 			if (processor_entry(position, cpu))
982 				++cpu;
983 			break;
984 		case 1:
985 			if (bus_entry(position, bus))
986 				++bus;
987 			break;
988 		case 2:
989 			if (io_apic_entry(position, apic))
990 				++apic;
991 			break;
992 		case 3:
993 			if (int_entry(position, intr))
994 				++intr;
995 			break;
996 		case 4:
997 			/* int_entry(position); */
998 			break;
999 		default:
1000 			panic("mpfps Base Table HOSED!");
1001 			/* NOTREACHED */
1002 		}
1003 
1004 		totalSize -= basetable_entry_types[type].length;
1005 		(u_char *) position += basetable_entry_types[type].length;
1006 	}
1007 
1008 	if (boot_cpu_id == -1)
1009 		panic("NO BSP found!");
1010 
1011 	/* report fact that its NOT a default configuration */
1012 	return 0;
1013 }
1014 
1015 
1016 void
1017 assign_apic_irq(int apic, int intpin, int irq)
1018 {
1019 	int x;
1020 
1021 	if (int_to_apicintpin[irq].ioapic != -1)
1022 		panic("assign_apic_irq: inconsistent table");
1023 
1024 	int_to_apicintpin[irq].ioapic = apic;
1025 	int_to_apicintpin[irq].int_pin = intpin;
1026 	int_to_apicintpin[irq].apic_address = ioapic[apic];
1027 	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
1028 
1029 	for (x = 0; x < nintrs; x++) {
1030 		if ((io_apic_ints[x].int_type == 0 ||
1031 		     io_apic_ints[x].int_type == 3) &&
1032 		    io_apic_ints[x].int_vector == 0xff &&
1033 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
1034 		    io_apic_ints[x].dst_apic_int == intpin)
1035 			io_apic_ints[x].int_vector = irq;
1036 	}
1037 }
1038 
1039 void
1040 revoke_apic_irq(int irq)
1041 {
1042 	int x;
1043 	int oldapic;
1044 	int oldintpin;
1045 
1046 	if (int_to_apicintpin[irq].ioapic == -1)
1047 		panic("assign_apic_irq: inconsistent table");
1048 
1049 	oldapic = int_to_apicintpin[irq].ioapic;
1050 	oldintpin = int_to_apicintpin[irq].int_pin;
1051 
1052 	int_to_apicintpin[irq].ioapic = -1;
1053 	int_to_apicintpin[irq].int_pin = 0;
1054 	int_to_apicintpin[irq].apic_address = NULL;
1055 	int_to_apicintpin[irq].redirindex = 0;
1056 
1057 	for (x = 0; x < nintrs; x++) {
1058 		if ((io_apic_ints[x].int_type == 0 ||
1059 		     io_apic_ints[x].int_type == 3) &&
1060 		    io_apic_ints[x].int_vector == 0xff &&
1061 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1062 		    io_apic_ints[x].dst_apic_int == oldintpin)
1063 			io_apic_ints[x].int_vector = 0xff;
1064 	}
1065 }
1066 
1067 
1068 static void
1069 allocate_apic_irq(int intr)
1070 {
1071 	int apic;
1072 	int intpin;
1073 	int irq;
1074 
1075 	if (io_apic_ints[intr].int_vector != 0xff)
1076 		return;		/* Interrupt handler already assigned */
1077 
1078 	if (io_apic_ints[intr].int_type != 0 &&
1079 	    (io_apic_ints[intr].int_type != 3 ||
1080 	     (io_apic_ints[intr].dst_apic_id == IO_TO_ID(0) &&
1081 	      io_apic_ints[intr].dst_apic_int == 0)))
1082 		return;		/* Not INT or ExtInt on != (0, 0) */
1083 
1084 	irq = 0;
1085 	while (irq < APIC_INTMAPSIZE &&
1086 	       int_to_apicintpin[irq].ioapic != -1)
1087 		irq++;
1088 
1089 	if (irq >= APIC_INTMAPSIZE)
1090 		return;		/* No free interrupt handlers */
1091 
1092 	apic = ID_TO_IO(io_apic_ints[intr].dst_apic_id);
1093 	intpin = io_apic_ints[intr].dst_apic_int;
1094 
1095 	assign_apic_irq(apic, intpin, irq);
1096 	io_apic_setup_intpin(apic, intpin);
1097 }
1098 
1099 
1100 static void
1101 swap_apic_id(int apic, int oldid, int newid)
1102 {
1103 	int x;
1104 	int oapic;
1105 
1106 
1107 	if (oldid == newid)
1108 		return;			/* Nothing to do */
1109 
1110 	printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
1111 	       apic, oldid, newid);
1112 
1113 	/* Swap physical APIC IDs in interrupt entries */
1114 	for (x = 0; x < nintrs; x++) {
1115 		if (io_apic_ints[x].dst_apic_id == oldid)
1116 			io_apic_ints[x].dst_apic_id = newid;
1117 		else if (io_apic_ints[x].dst_apic_id == newid)
1118 			io_apic_ints[x].dst_apic_id = oldid;
1119 	}
1120 
1121 	/* Swap physical APIC IDs in IO_TO_ID mappings */
1122 	for (oapic = 0; oapic < mp_napics; oapic++)
1123 		if (IO_TO_ID(oapic) == newid)
1124 			break;
1125 
1126 	if (oapic < mp_napics) {
1127 		printf("Changing APIC ID for IO APIC #%d from "
1128 		       "%d to %d in MP table\n",
1129 		       oapic, newid, oldid);
1130 		IO_TO_ID(oapic) = oldid;
1131 	}
1132 	IO_TO_ID(apic) = newid;
1133 }
1134 
1135 
1136 static void
1137 fix_id_to_io_mapping(void)
1138 {
1139 	int x;
1140 
1141 	for (x = 0; x < NAPICID; x++)
1142 		ID_TO_IO(x) = -1;
1143 
1144 	for (x = 0; x <= mp_naps; x++)
1145 		if (CPU_TO_ID(x) < NAPICID)
1146 			ID_TO_IO(CPU_TO_ID(x)) = x;
1147 
1148 	for (x = 0; x < mp_napics; x++)
1149 		if (IO_TO_ID(x) < NAPICID)
1150 			ID_TO_IO(IO_TO_ID(x)) = x;
1151 }
1152 
1153 
1154 static int
1155 first_free_apic_id(void)
1156 {
1157 	int freeid, x;
1158 
1159 	for (freeid = 0; freeid < NAPICID; freeid++) {
1160 		for (x = 0; x <= mp_naps; x++)
1161 			if (CPU_TO_ID(x) == freeid)
1162 				break;
1163 		if (x <= mp_naps)
1164 			continue;
1165 		for (x = 0; x < mp_napics; x++)
1166 			if (IO_TO_ID(x) == freeid)
1167 				break;
1168 		if (x < mp_napics)
1169 			continue;
1170 		return freeid;
1171 	}
1172 	return freeid;
1173 }
1174 
1175 
1176 static int
1177 io_apic_id_acceptable(int apic, int id)
1178 {
1179 	int cpu;		/* Logical CPU number */
1180 	int oapic;		/* Logical IO APIC number for other IO APIC */
1181 
1182 	if (id >= NAPICID)
1183 		return 0;	/* Out of range */
1184 
1185 	for (cpu = 0; cpu <= mp_naps; cpu++)
1186 		if (CPU_TO_ID(cpu) == id)
1187 			return 0;	/* Conflict with CPU */
1188 
1189 	for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
1190 		if (IO_TO_ID(oapic) == id)
1191 			return 0;	/* Conflict with other APIC */
1192 
1193 	return 1;		/* ID is acceptable for IO APIC */
1194 }
1195 
1196 
1197 /*
1198  * parse an Intel MP specification table
1199  */
1200 static void
1201 fix_mp_table(void)
1202 {
1203 	int	x;
1204 	int	id;
1205 	int	bus_0 = 0;	/* Stop GCC warning */
1206 	int	bus_pci = 0;	/* Stop GCC warning */
1207 	int	num_pci_bus;
1208 	int	apic;		/* IO APIC unit number */
1209 	int     freeid;		/* Free physical APIC ID */
1210 	int	physid;		/* Current physical IO APIC ID */
1211 
1212 	/*
1213 	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1214 	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1215 	 * exists the BIOS must begin with bus entries for the PCI bus and use
1216 	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1217 	 * exists the BIOS can choose to ignore this ordering, and indeed many
1218 	 * MP motherboards do ignore it.  This causes a problem when the PCI
1219 	 * sub-system makes requests of the MP sub-system based on PCI bus
1220 	 * numbers.	So here we look for the situation and renumber the
1221 	 * busses and associated INTs in an effort to "make it right".
1222 	 */
1223 
1224 	/* find bus 0, PCI bus, count the number of PCI busses */
1225 	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1226 		if (bus_data[x].bus_id == 0) {
1227 			bus_0 = x;
1228 		}
1229 		if (bus_data[x].bus_type == PCI) {
1230 			++num_pci_bus;
1231 			bus_pci = x;
1232 		}
1233 	}
1234 	/*
1235 	 * bus_0 == slot of bus with ID of 0
1236 	 * bus_pci == slot of last PCI bus encountered
1237 	 */
1238 
1239 	/* check the 1 PCI bus case for sanity */
1240 	/* if it is number 0 all is well */
1241 	if (num_pci_bus == 1 &&
1242 	    bus_data[bus_pci].bus_id != 0) {
1243 
1244 		/* mis-numbered, swap with whichever bus uses slot 0 */
1245 
1246 		/* swap the bus entry types */
1247 		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1248 		bus_data[bus_0].bus_type = PCI;
1249 
1250 		/* swap each relavant INTerrupt entry */
1251 		id = bus_data[bus_pci].bus_id;
1252 		for (x = 0; x < nintrs; ++x) {
1253 			if (io_apic_ints[x].src_bus_id == id) {
1254 				io_apic_ints[x].src_bus_id = 0;
1255 			}
1256 			else if (io_apic_ints[x].src_bus_id == 0) {
1257 				io_apic_ints[x].src_bus_id = id;
1258 			}
1259 		}
1260 	}
1261 
1262 	/* Assign IO APIC IDs.
1263 	 *
1264 	 * First try the existing ID. If a conflict is detected, try
1265 	 * the ID in the MP table.  If a conflict is still detected, find
1266 	 * a free id.
1267 	 *
1268 	 * We cannot use the ID_TO_IO table before all conflicts has been
1269 	 * resolved and the table has been corrected.
1270 	 */
1271 	for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
1272 
1273 		/* First try to use the value set by the BIOS */
1274 		physid = io_apic_get_id(apic);
1275 		if (io_apic_id_acceptable(apic, physid)) {
1276 			if (IO_TO_ID(apic) != physid)
1277 				swap_apic_id(apic, IO_TO_ID(apic), physid);
1278 			continue;
1279 		}
1280 
1281 		/* Then check if the value in the MP table is acceptable */
1282 		if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
1283 			continue;
1284 
1285 		/* Last resort, find a free APIC ID and use it */
1286 		freeid = first_free_apic_id();
1287 		if (freeid >= NAPICID)
1288 			panic("No free physical APIC IDs found");
1289 
1290 		if (io_apic_id_acceptable(apic, freeid)) {
1291 			swap_apic_id(apic, IO_TO_ID(apic), freeid);
1292 			continue;
1293 		}
1294 		panic("Free physical APIC ID not usable");
1295 	}
1296 	fix_id_to_io_mapping();
1297 
1298 	/* detect and fix broken Compaq MP table */
1299 	if (apic_int_type(0, 0) == -1) {
1300 		printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
1301 		io_apic_ints[nintrs].int_type = 3;	/* ExtInt */
1302 		io_apic_ints[nintrs].int_vector = 0xff;	/* Unassigned */
1303 		/* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
1304 		io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
1305 		io_apic_ints[nintrs].dst_apic_int = 0;	/* Pin 0 */
1306 		nintrs++;
1307 	}
1308 }
1309 
1310 
1311 /* Assign low level interrupt handlers */
1312 static void
1313 setup_apic_irq_mapping(void)
1314 {
1315 	int	x;
1316 	int	int_vector;
1317 
1318 	/* Clear array */
1319 	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1320 		int_to_apicintpin[x].ioapic = -1;
1321 		int_to_apicintpin[x].int_pin = 0;
1322 		int_to_apicintpin[x].apic_address = NULL;
1323 		int_to_apicintpin[x].redirindex = 0;
1324 	}
1325 
1326 	/* First assign ISA/EISA interrupts */
1327 	for (x = 0; x < nintrs; x++) {
1328 		int_vector = io_apic_ints[x].src_bus_irq;
1329 		if (int_vector < APIC_INTMAPSIZE &&
1330 		    io_apic_ints[x].int_vector == 0xff &&
1331 		    int_to_apicintpin[int_vector].ioapic == -1 &&
1332 		    (apic_int_is_bus_type(x, ISA) ||
1333 		     apic_int_is_bus_type(x, EISA)) &&
1334 		    io_apic_ints[x].int_type == 0) {
1335 			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1336 					io_apic_ints[x].dst_apic_int,
1337 					int_vector);
1338 		}
1339 	}
1340 
1341 	/* Assign ExtInt entry if no ISA/EISA interrupt 0 entry */
1342 	for (x = 0; x < nintrs; x++) {
1343 		if (io_apic_ints[x].dst_apic_int == 0 &&
1344 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1345 		    io_apic_ints[x].int_vector == 0xff &&
1346 		    int_to_apicintpin[0].ioapic == -1 &&
1347 		    io_apic_ints[x].int_type == 3) {
1348 			assign_apic_irq(0, 0, 0);
1349 			break;
1350 		}
1351 	}
1352 	/* PCI interrupt assignment is deferred */
1353 }
1354 
1355 
1356 static int
1357 processor_entry(proc_entry_ptr entry, int cpu)
1358 {
1359 	/* check for usability */
1360 	if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1361 		return 0;
1362 
1363 	if(entry->apic_id >= NAPICID)
1364 		panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
1365 	/* check for BSP flag */
1366 	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1367 		boot_cpu_id = entry->apic_id;
1368 		CPU_TO_ID(0) = entry->apic_id;
1369 		ID_TO_CPU(entry->apic_id) = 0;
1370 		return 0;	/* its already been counted */
1371 	}
1372 
1373 	/* add another AP to list, if less than max number of CPUs */
1374 	else if (cpu < MAXCPU) {
1375 		CPU_TO_ID(cpu) = entry->apic_id;
1376 		ID_TO_CPU(entry->apic_id) = cpu;
1377 		return 1;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 
1384 static int
1385 bus_entry(bus_entry_ptr entry, int bus)
1386 {
1387 	int     x;
1388 	char    c, name[8];
1389 
1390 	/* encode the name into an index */
1391 	for (x = 0; x < 6; ++x) {
1392 		if ((c = entry->bus_type[x]) == ' ')
1393 			break;
1394 		name[x] = c;
1395 	}
1396 	name[x] = '\0';
1397 
1398 	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1399 		panic("unknown bus type: '%s'", name);
1400 
1401 	bus_data[bus].bus_id = entry->bus_id;
1402 	bus_data[bus].bus_type = x;
1403 
1404 	return 1;
1405 }
1406 
1407 
1408 static int
1409 io_apic_entry(io_apic_entry_ptr entry, int apic)
1410 {
1411 	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1412 		return 0;
1413 
1414 	IO_TO_ID(apic) = entry->apic_id;
1415 	if (entry->apic_id < NAPICID)
1416 		ID_TO_IO(entry->apic_id) = apic;
1417 
1418 	return 1;
1419 }
1420 
1421 
1422 static int
1423 lookup_bus_type(char *name)
1424 {
1425 	int     x;
1426 
1427 	for (x = 0; x < MAX_BUSTYPE; ++x)
1428 		if (strcmp(bus_type_table[x].name, name) == 0)
1429 			return bus_type_table[x].type;
1430 
1431 	return UNKNOWN_BUSTYPE;
1432 }
1433 
1434 
1435 static int
1436 int_entry(int_entry_ptr entry, int intr)
1437 {
1438 	int apic;
1439 
1440 	io_apic_ints[intr].int_type = entry->int_type;
1441 	io_apic_ints[intr].int_flags = entry->int_flags;
1442 	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1443 	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1444 	if (entry->dst_apic_id == 255) {
1445 		/* This signal goes to all IO APICS.  Select an IO APIC
1446 		   with sufficient number of interrupt pins */
1447 		for (apic = 0; apic < mp_napics; apic++)
1448 			if (((io_apic_read(apic, IOAPIC_VER) &
1449 			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1450 			    entry->dst_apic_int)
1451 				break;
1452 		if (apic < mp_napics)
1453 			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1454 		else
1455 			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1456 	} else
1457 		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1458 	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1459 
1460 	return 1;
1461 }
1462 
1463 
1464 static int
1465 apic_int_is_bus_type(int intr, int bus_type)
1466 {
1467 	int     bus;
1468 
1469 	for (bus = 0; bus < mp_nbusses; ++bus)
1470 		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1471 		    && ((int) bus_data[bus].bus_type == bus_type))
1472 			return 1;
1473 
1474 	return 0;
1475 }
1476 
1477 
1478 /*
1479  * Given a traditional ISA INT mask, return an APIC mask.
1480  */
1481 u_int
1482 isa_apic_mask(u_int isa_mask)
1483 {
1484 	int isa_irq;
1485 	int apic_pin;
1486 
1487 #if defined(SKIP_IRQ15_REDIRECT)
1488 	if (isa_mask == (1 << 15)) {
1489 		printf("skipping ISA IRQ15 redirect\n");
1490 		return isa_mask;
1491 	}
1492 #endif  /* SKIP_IRQ15_REDIRECT */
1493 
1494 	isa_irq = ffs(isa_mask);		/* find its bit position */
1495 	if (isa_irq == 0)			/* doesn't exist */
1496 		return 0;
1497 	--isa_irq;				/* make it zero based */
1498 
1499 	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1500 	if (apic_pin == -1)
1501 		return 0;
1502 
1503 	return (1 << apic_pin);			/* convert pin# to a mask */
1504 }
1505 
1506 
1507 /*
1508  * Determine which APIC pin an ISA/EISA INT is attached to.
1509  */
1510 #define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1511 #define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1512 #define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1513 #define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1514 
1515 #define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1516 int
1517 isa_apic_irq(int isa_irq)
1518 {
1519 	int     intr;
1520 
1521 	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1522 		if (INTTYPE(intr) == 0) {		/* standard INT */
1523 			if (SRCBUSIRQ(intr) == isa_irq) {
1524 				if (apic_int_is_bus_type(intr, ISA) ||
1525 			            apic_int_is_bus_type(intr, EISA)) {
1526 					if (INTIRQ(intr) == 0xff)
1527 						return -1; /* unassigned */
1528 					return INTIRQ(intr);	/* found */
1529 				}
1530 			}
1531 		}
1532 	}
1533 	return -1;					/* NOT found */
1534 }
1535 
1536 
1537 /*
1538  * Determine which APIC pin a PCI INT is attached to.
1539  */
1540 #define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1541 #define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1542 #define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1543 int
1544 pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1545 {
1546 	int     intr;
1547 
1548 	--pciInt;					/* zero based */
1549 
1550 	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1551 		if ((INTTYPE(intr) == 0)		/* standard INT */
1552 		    && (SRCBUSID(intr) == pciBus)
1553 		    && (SRCBUSDEVICE(intr) == pciDevice)
1554 		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1555 			if (apic_int_is_bus_type(intr, PCI)) {
1556 				if (INTIRQ(intr) == 0xff)
1557 					allocate_apic_irq(intr);
1558 				if (INTIRQ(intr) == 0xff)
1559 					return -1;	/* unassigned */
1560 				return INTIRQ(intr);	/* exact match */
1561 			}
1562 
1563 	return -1;					/* NOT found */
1564 }
1565 
1566 int
1567 next_apic_irq(int irq)
1568 {
1569 	int intr, ointr;
1570 	int bus, bustype;
1571 
1572 	bus = 0;
1573 	bustype = 0;
1574 	for (intr = 0; intr < nintrs; intr++) {
1575 		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1576 			continue;
1577 		bus = SRCBUSID(intr);
1578 		bustype = apic_bus_type(bus);
1579 		if (bustype != ISA &&
1580 		    bustype != EISA &&
1581 		    bustype != PCI)
1582 			continue;
1583 		break;
1584 	}
1585 	if (intr >= nintrs) {
1586 		return -1;
1587 	}
1588 	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1589 		if (INTTYPE(ointr) != 0)
1590 			continue;
1591 		if (bus != SRCBUSID(ointr))
1592 			continue;
1593 		if (bustype == PCI) {
1594 			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1595 				continue;
1596 			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1597 				continue;
1598 		}
1599 		if (bustype == ISA || bustype == EISA) {
1600 			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1601 				continue;
1602 		}
1603 		if (INTPIN(intr) == INTPIN(ointr))
1604 			continue;
1605 		break;
1606 	}
1607 	if (ointr >= nintrs) {
1608 		return -1;
1609 	}
1610 	return INTIRQ(ointr);
1611 }
1612 #undef SRCBUSLINE
1613 #undef SRCBUSDEVICE
1614 #undef SRCBUSID
1615 #undef SRCBUSIRQ
1616 
1617 #undef INTPIN
1618 #undef INTIRQ
1619 #undef INTAPIC
1620 #undef INTTYPE
1621 
1622 
1623 /*
1624  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1625  *
1626  * XXX FIXME:
1627  *  Exactly what this means is unclear at this point.  It is a solution
1628  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1629  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1630  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1631  *  option.
1632  */
1633 int
1634 undirect_isa_irq(int rirq)
1635 {
1636 #if defined(READY)
1637 	if (bootverbose)
1638 	    printf("Freeing redirected ISA irq %d.\n", rirq);
1639 	/** FIXME: tickle the MB redirector chip */
1640 	return -1;
1641 #else
1642 	if (bootverbose)
1643 	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1644 	return 0;
1645 #endif  /* READY */
1646 }
1647 
1648 
1649 /*
1650  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1651  */
1652 int
1653 undirect_pci_irq(int rirq)
1654 {
1655 #if defined(READY)
1656 	if (bootverbose)
1657 		printf("Freeing redirected PCI irq %d.\n", rirq);
1658 
1659 	/** FIXME: tickle the MB redirector chip */
1660 	return -1;
1661 #else
1662 	if (bootverbose)
1663 		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1664 		       rirq);
1665 	return 0;
1666 #endif  /* READY */
1667 }
1668 
1669 
1670 /*
1671  * given a bus ID, return:
1672  *  the bus type if found
1673  *  -1 if NOT found
1674  */
1675 int
1676 apic_bus_type(int id)
1677 {
1678 	int     x;
1679 
1680 	for (x = 0; x < mp_nbusses; ++x)
1681 		if (bus_data[x].bus_id == id)
1682 			return bus_data[x].bus_type;
1683 
1684 	return -1;
1685 }
1686 
1687 
1688 /*
1689  * given a LOGICAL APIC# and pin#, return:
1690  *  the associated src bus ID if found
1691  *  -1 if NOT found
1692  */
1693 int
1694 apic_src_bus_id(int apic, int pin)
1695 {
1696 	int     x;
1697 
1698 	/* search each of the possible INTerrupt sources */
1699 	for (x = 0; x < nintrs; ++x)
1700 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1701 		    (pin == io_apic_ints[x].dst_apic_int))
1702 			return (io_apic_ints[x].src_bus_id);
1703 
1704 	return -1;		/* NOT found */
1705 }
1706 
1707 
1708 /*
1709  * given a LOGICAL APIC# and pin#, return:
1710  *  the associated src bus IRQ if found
1711  *  -1 if NOT found
1712  */
1713 int
1714 apic_src_bus_irq(int apic, int pin)
1715 {
1716 	int     x;
1717 
1718 	for (x = 0; x < nintrs; x++)
1719 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1720 		    (pin == io_apic_ints[x].dst_apic_int))
1721 			return (io_apic_ints[x].src_bus_irq);
1722 
1723 	return -1;		/* NOT found */
1724 }
1725 
1726 
1727 /*
1728  * given a LOGICAL APIC# and pin#, return:
1729  *  the associated INTerrupt type if found
1730  *  -1 if NOT found
1731  */
1732 int
1733 apic_int_type(int apic, int pin)
1734 {
1735 	int     x;
1736 
1737 	/* search each of the possible INTerrupt sources */
1738 	for (x = 0; x < nintrs; ++x)
1739 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1740 		    (pin == io_apic_ints[x].dst_apic_int))
1741 			return (io_apic_ints[x].int_type);
1742 
1743 	return -1;		/* NOT found */
1744 }
1745 
1746 int
1747 apic_irq(int apic, int pin)
1748 {
1749 	int x;
1750 	int res;
1751 
1752 	for (x = 0; x < nintrs; ++x)
1753 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1754 		    (pin == io_apic_ints[x].dst_apic_int)) {
1755 			res = io_apic_ints[x].int_vector;
1756 			if (res == 0xff)
1757 				return -1;
1758 			if (apic != int_to_apicintpin[res].ioapic)
1759 				panic("apic_irq: inconsistent table");
1760 			if (pin != int_to_apicintpin[res].int_pin)
1761 				panic("apic_irq inconsistent table (2)");
1762 			return res;
1763 		}
1764 	return -1;
1765 }
1766 
1767 
1768 /*
1769  * given a LOGICAL APIC# and pin#, return:
1770  *  the associated trigger mode if found
1771  *  -1 if NOT found
1772  */
1773 int
1774 apic_trigger(int apic, int pin)
1775 {
1776 	int     x;
1777 
1778 	/* search each of the possible INTerrupt sources */
1779 	for (x = 0; x < nintrs; ++x)
1780 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1781 		    (pin == io_apic_ints[x].dst_apic_int))
1782 			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1783 
1784 	return -1;		/* NOT found */
1785 }
1786 
1787 
1788 /*
1789  * given a LOGICAL APIC# and pin#, return:
1790  *  the associated 'active' level if found
1791  *  -1 if NOT found
1792  */
1793 int
1794 apic_polarity(int apic, int pin)
1795 {
1796 	int     x;
1797 
1798 	/* search each of the possible INTerrupt sources */
1799 	for (x = 0; x < nintrs; ++x)
1800 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1801 		    (pin == io_apic_ints[x].dst_apic_int))
1802 			return (io_apic_ints[x].int_flags & 0x03);
1803 
1804 	return -1;		/* NOT found */
1805 }
1806 
1807 
1808 /*
1809  * set data according to MP defaults
1810  * FIXME: probably not complete yet...
1811  */
1812 static void
1813 default_mp_table(int type)
1814 {
1815 	int     ap_cpu_id;
1816 #if defined(APIC_IO)
1817 	int     io_apic_id;
1818 	int     pin;
1819 #endif	/* APIC_IO */
1820 
1821 #if 0
1822 	printf("  MP default config type: %d\n", type);
1823 	switch (type) {
1824 	case 1:
1825 		printf("   bus: ISA, APIC: 82489DX\n");
1826 		break;
1827 	case 2:
1828 		printf("   bus: EISA, APIC: 82489DX\n");
1829 		break;
1830 	case 3:
1831 		printf("   bus: EISA, APIC: 82489DX\n");
1832 		break;
1833 	case 4:
1834 		printf("   bus: MCA, APIC: 82489DX\n");
1835 		break;
1836 	case 5:
1837 		printf("   bus: ISA+PCI, APIC: Integrated\n");
1838 		break;
1839 	case 6:
1840 		printf("   bus: EISA+PCI, APIC: Integrated\n");
1841 		break;
1842 	case 7:
1843 		printf("   bus: MCA+PCI, APIC: Integrated\n");
1844 		break;
1845 	default:
1846 		printf("   future type\n");
1847 		break;
1848 		/* NOTREACHED */
1849 	}
1850 #endif	/* 0 */
1851 
1852 	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1853 	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1854 
1855 	/* BSP */
1856 	CPU_TO_ID(0) = boot_cpu_id;
1857 	ID_TO_CPU(boot_cpu_id) = 0;
1858 
1859 	/* one and only AP */
1860 	CPU_TO_ID(1) = ap_cpu_id;
1861 	ID_TO_CPU(ap_cpu_id) = 1;
1862 
1863 #if defined(APIC_IO)
1864 	/* one and only IO APIC */
1865 	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1866 
1867 	/*
1868 	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1869 	 * necessary as some hardware isn't properly setting up the IO APIC
1870 	 */
1871 #if defined(REALLY_ANAL_IOAPICID_VALUE)
1872 	if (io_apic_id != 2) {
1873 #else
1874 	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1875 #endif	/* REALLY_ANAL_IOAPICID_VALUE */
1876 		io_apic_set_id(0, 2);
1877 		io_apic_id = 2;
1878 	}
1879 	IO_TO_ID(0) = io_apic_id;
1880 	ID_TO_IO(io_apic_id) = 0;
1881 #endif	/* APIC_IO */
1882 
1883 	/* fill out bus entries */
1884 	switch (type) {
1885 	case 1:
1886 	case 2:
1887 	case 3:
1888 	case 4:
1889 	case 5:
1890 	case 6:
1891 	case 7:
1892 		bus_data[0].bus_id = default_data[type - 1][1];
1893 		bus_data[0].bus_type = default_data[type - 1][2];
1894 		bus_data[1].bus_id = default_data[type - 1][3];
1895 		bus_data[1].bus_type = default_data[type - 1][4];
1896 		break;
1897 
1898 	/* case 4: case 7:		   MCA NOT supported */
1899 	default:		/* illegal/reserved */
1900 		panic("BAD default MP config: %d", type);
1901 		/* NOTREACHED */
1902 	}
1903 
1904 #if defined(APIC_IO)
1905 	/* general cases from MP v1.4, table 5-2 */
1906 	for (pin = 0; pin < 16; ++pin) {
1907 		io_apic_ints[pin].int_type = 0;
1908 		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1909 		io_apic_ints[pin].src_bus_id = 0;
1910 		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1911 		io_apic_ints[pin].dst_apic_id = io_apic_id;
1912 		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1913 	}
1914 
1915 	/* special cases from MP v1.4, table 5-2 */
1916 	if (type == 2) {
1917 		io_apic_ints[2].int_type = 0xff;	/* N/C */
1918 		io_apic_ints[13].int_type = 0xff;	/* N/C */
1919 #if !defined(APIC_MIXED_MODE)
1920 		/** FIXME: ??? */
1921 		panic("sorry, can't support type 2 default yet");
1922 #endif	/* APIC_MIXED_MODE */
1923 	}
1924 	else
1925 		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1926 
1927 	if (type == 7)
1928 		io_apic_ints[0].int_type = 0xff;	/* N/C */
1929 	else
1930 		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1931 #endif	/* APIC_IO */
1932 }
1933 
1934 
1935 /*
1936  * start each AP in our list
1937  */
1938 static int
1939 start_all_aps(u_int boot_addr)
1940 {
1941 	int     x, i, pg;
1942 	u_char  mpbiosreason;
1943 	u_long  mpbioswarmvec;
1944 	struct globaldata *gd;
1945 	char *stack;
1946 
1947 	POSTCODE(START_ALL_APS_POST);
1948 
1949 	/* initialize BSP's local APIC */
1950 	apic_initialize();
1951 	bsp_apic_ready = 1;
1952 
1953 	/* install the AP 1st level boot code */
1954 	install_ap_tramp(boot_addr);
1955 
1956 
1957 	/* save the current value of the warm-start vector */
1958 	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1959 #ifndef PC98
1960 	outb(CMOS_REG, BIOS_RESET);
1961 	mpbiosreason = inb(CMOS_DATA);
1962 #endif
1963 
1964 	/* record BSP in CPU map */
1965 	all_cpus = 1;
1966 
1967 	/* set up 0 -> 4MB P==V mapping for AP boot */
1968 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1969 	invltlb();
1970 
1971 	/* start each AP */
1972 	for (x = 1; x <= mp_naps; ++x) {
1973 
1974 		/* This is a bit verbose, it will go away soon.  */
1975 
1976 		/* first page of AP's private space */
1977 		pg = x * i386_btop(sizeof(struct privatespace));
1978 
1979 		/* allocate a new private data page */
1980 		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1981 
1982 		/* wire it into the private page table page */
1983 		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1984 
1985 		/* allocate and set up an idle stack data page */
1986 		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1987 		for (i = 0; i < UPAGES; i++)
1988 			SMPpt[pg + 1 + i] = (pt_entry_t)
1989 			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1990 
1991 		/* prime data page for it to use */
1992 		SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu);
1993 		gd->gd_cpuid = x;
1994 
1995 		/* setup a vector to our boot code */
1996 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1997 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1998 #ifndef PC98
1999 		outb(CMOS_REG, BIOS_RESET);
2000 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
2001 #endif
2002 
2003 		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
2004 		bootAP = x;
2005 
2006 		/* attempt to start the Application Processor */
2007 		CHECK_INIT(99);	/* setup checkpoints */
2008 		if (!start_ap(x, boot_addr)) {
2009 			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
2010 			CHECK_PRINT("trace");	/* show checkpoints */
2011 			/* better panic as the AP may be running loose */
2012 			printf("panic y/n? [y] ");
2013 			if (cngetc() != 'n')
2014 				panic("bye-bye");
2015 		}
2016 		CHECK_PRINT("trace");		/* show checkpoints */
2017 
2018 		/* record its version info */
2019 		cpu_apic_versions[x] = cpu_apic_versions[0];
2020 
2021 		all_cpus |= (1 << x);		/* record AP in CPU map */
2022 	}
2023 
2024 	/* build our map of 'other' CPUs */
2025 	PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2026 
2027 	/* fill in our (BSP) APIC version */
2028 	cpu_apic_versions[0] = lapic.version;
2029 
2030 	/* restore the warmstart vector */
2031 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
2032 #ifndef PC98
2033 	outb(CMOS_REG, BIOS_RESET);
2034 	outb(CMOS_DATA, mpbiosreason);
2035 #endif
2036 
2037 	/*
2038 	 * Set up the idle context for the BSP.  Similar to above except
2039 	 * that some was done by locore, some by pmap.c and some is implicit
2040 	 * because the BSP is cpu#0 and the page is initially zero, and also
2041 	 * because we can refer to variables by name on the BSP..
2042 	 */
2043 
2044 	/* Allocate and setup BSP idle stack */
2045 	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
2046 	for (i = 0; i < UPAGES; i++)
2047 		SMPpt[1 + i] = (pt_entry_t)
2048 		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
2049 
2050 	*(int *)PTD = 0;
2051 	pmap_set_opt();
2052 
2053 	/* number of APs actually started */
2054 	return mp_ncpus - 1;
2055 }
2056 
2057 
2058 /*
2059  * load the 1st level AP boot code into base memory.
2060  */
2061 
2062 /* targets for relocation */
2063 extern void bigJump(void);
2064 extern void bootCodeSeg(void);
2065 extern void bootDataSeg(void);
2066 extern void MPentry(void);
2067 extern u_int MP_GDT;
2068 extern u_int mp_gdtbase;
2069 
2070 static void
2071 install_ap_tramp(u_int boot_addr)
2072 {
2073 	int     x;
2074 	int     size = *(int *) ((u_long) & bootMP_size);
2075 	u_char *src = (u_char *) ((u_long) bootMP);
2076 	u_char *dst = (u_char *) boot_addr + KERNBASE;
2077 	u_int   boot_base = (u_int) bootMP;
2078 	u_int8_t *dst8;
2079 	u_int16_t *dst16;
2080 	u_int32_t *dst32;
2081 
2082 	POSTCODE(INSTALL_AP_TRAMP_POST);
2083 
2084 	for (x = 0; x < size; ++x)
2085 		*dst++ = *src++;
2086 
2087 	/*
2088 	 * modify addresses in code we just moved to basemem. unfortunately we
2089 	 * need fairly detailed info about mpboot.s for this to work.  changes
2090 	 * to mpboot.s might require changes here.
2091 	 */
2092 
2093 	/* boot code is located in KERNEL space */
2094 	dst = (u_char *) boot_addr + KERNBASE;
2095 
2096 	/* modify the lgdt arg */
2097 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
2098 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
2099 
2100 	/* modify the ljmp target for MPentry() */
2101 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
2102 	*dst32 = ((u_int) MPentry - KERNBASE);
2103 
2104 	/* modify the target for boot code segment */
2105 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
2106 	dst8 = (u_int8_t *) (dst16 + 1);
2107 	*dst16 = (u_int) boot_addr & 0xffff;
2108 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2109 
2110 	/* modify the target for boot data segment */
2111 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
2112 	dst8 = (u_int8_t *) (dst16 + 1);
2113 	*dst16 = (u_int) boot_addr & 0xffff;
2114 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2115 }
2116 
2117 
2118 /*
2119  * this function starts the AP (application processor) identified
2120  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
2121  * to accomplish this.  This is necessary because of the nuances
2122  * of the different hardware we might encounter.  It ain't pretty,
2123  * but it seems to work.
2124  */
2125 static int
2126 start_ap(int logical_cpu, u_int boot_addr)
2127 {
2128 	int     physical_cpu;
2129 	int     vector;
2130 	int     cpus;
2131 	u_long  icr_lo, icr_hi;
2132 
2133 	POSTCODE(START_AP_POST);
2134 
2135 	/* get the PHYSICAL APIC ID# */
2136 	physical_cpu = CPU_TO_ID(logical_cpu);
2137 
2138 	/* calculate the vector */
2139 	vector = (boot_addr >> 12) & 0xff;
2140 
2141 	/* used as a watchpoint to signal AP startup */
2142 	cpus = mp_ncpus;
2143 
2144 	/*
2145 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2146 	 * and running the target CPU. OR this INIT IPI might be latched (P5
2147 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2148 	 * ignored.
2149 	 */
2150 
2151 	/* setup the address for the target AP */
2152 	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2153 	icr_hi |= (physical_cpu << 24);
2154 	lapic.icr_hi = icr_hi;
2155 
2156 	/* do an INIT IPI: assert RESET */
2157 	icr_lo = lapic.icr_lo & 0xfff00000;
2158 	lapic.icr_lo = icr_lo | 0x0000c500;
2159 
2160 	/* wait for pending status end */
2161 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2162 		 /* spin */ ;
2163 
2164 	/* do an INIT IPI: deassert RESET */
2165 	lapic.icr_lo = icr_lo | 0x00008500;
2166 
2167 	/* wait for pending status end */
2168 	u_sleep(10000);		/* wait ~10mS */
2169 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2170 		 /* spin */ ;
2171 
2172 	/*
2173 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2174 	 * latched, (P5 bug) this 1st STARTUP would then terminate
2175 	 * immediately, and the previously started INIT IPI would continue. OR
2176 	 * the previous INIT IPI has already run. and this STARTUP IPI will
2177 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2178 	 * will run.
2179 	 */
2180 
2181 	/* do a STARTUP IPI */
2182 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2183 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2184 		 /* spin */ ;
2185 	u_sleep(200);		/* wait ~200uS */
2186 
2187 	/*
2188 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2189 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2190 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2191 	 * recognized after hardware RESET or INIT IPI.
2192 	 */
2193 
2194 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2195 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2196 		 /* spin */ ;
2197 	u_sleep(200);		/* wait ~200uS */
2198 
2199 	/* wait for it to start */
2200 	set_apic_timer(5000000);/* == 5 seconds */
2201 	while (read_apic_timer())
2202 		if (mp_ncpus > cpus)
2203 			return 1;	/* return SUCCESS */
2204 
2205 	return 0;		/* return FAILURE */
2206 }
2207 
2208 /*
2209  * Flush the TLB on all other CPU's
2210  *
2211  * XXX: Needs to handshake and wait for completion before proceding.
2212  */
2213 void
2214 smp_invltlb(void)
2215 {
2216 #if defined(APIC_IO)
2217 	if (smp_started && invltlb_ok)
2218 		all_but_self_ipi(XINVLTLB_OFFSET);
2219 #endif  /* APIC_IO */
2220 }
2221 
2222 void
2223 invlpg(u_int addr)
2224 {
2225 	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2226 
2227 	/* send a message to the other CPUs */
2228 	smp_invltlb();
2229 }
2230 
2231 void
2232 invltlb(void)
2233 {
2234 	u_long  temp;
2235 
2236 	/*
2237 	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2238 	 * inlined.
2239 	 */
2240 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2241 
2242 	/* send a message to the other CPUs */
2243 	smp_invltlb();
2244 }
2245 
2246 
2247 /*
2248  * This is called once the rest of the system is up and running and we're
2249  * ready to let the AP's out of the pen.
2250  */
2251 void
2252 ap_init(void)
2253 {
2254 	u_int	apic_id;
2255 
2256 	/* spin until all the AP's are ready */
2257 	while (!aps_ready)
2258 		/* spin */ ;
2259 
2260 	/*
2261 	 * Set curproc to our per-cpu idleproc so that mutexes have
2262 	 * something unique to lock with.
2263 	 */
2264 	PCPU_SET(curproc, PCPU_GET(idleproc));
2265 
2266 	/* lock against other AP's that are waking up */
2267 	mtx_lock_spin(&ap_boot_mtx);
2268 
2269 	/* BSP may have changed PTD while we're waiting for the lock */
2270 	cpu_invltlb();
2271 
2272 	smp_cpus++;
2273 
2274 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2275 	lidt(&r_idt);
2276 #endif
2277 
2278 	/* Build our map of 'other' CPUs. */
2279 	PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2280 
2281 	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
2282 
2283 	/* set up CPU registers and state */
2284 	cpu_setregs();
2285 
2286 	/* set up FPU state on the AP */
2287 	npxinit(__INITIAL_NPXCW__);
2288 
2289 	/* A quick check from sanity claus */
2290 	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2291 	if (PCPU_GET(cpuid) != apic_id) {
2292 		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
2293 		printf("SMP: apic_id = %d\n", apic_id);
2294 		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2295 		panic("cpuid mismatch! boom!!");
2296 	}
2297 
2298 	/* Init local apic for irq's */
2299 	apic_initialize();
2300 
2301 	/* Set memory range attributes for this CPU to match the BSP */
2302 	mem_range_AP_init();
2303 
2304 	/*
2305 	 * Activate smp_invltlb, although strictly speaking, this isn't
2306 	 * quite correct yet.  We should have a bitfield for cpus willing
2307 	 * to accept TLB flush IPI's or something and sync them.
2308 	 */
2309 	if (smp_cpus == mp_ncpus) {
2310 		invltlb_ok = 1;
2311 		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2312 		smp_active = 1;	 /* historic */
2313 	}
2314 
2315 	/* let other AP's wake up now */
2316 	mtx_unlock_spin(&ap_boot_mtx);
2317 
2318 	/* wait until all the AP's are up */
2319 	while (smp_started == 0)
2320 		; /* nothing */
2321 
2322 	microuptime(PCPU_PTR(switchtime));
2323 	PCPU_SET(switchticks, ticks);
2324 
2325 	/* ok, now grab sched_lock and enter the scheduler */
2326 	enable_intr();
2327 	mtx_lock_spin(&sched_lock);
2328 	cpu_throw();	/* doesn't return */
2329 
2330 	panic("scheduler returned us to ap_init");
2331 }
2332 
2333 #ifdef BETTER_CLOCK
2334 
2335 #define CHECKSTATE_USER	0
2336 #define CHECKSTATE_SYS	1
2337 #define CHECKSTATE_INTR	2
2338 
2339 /* Do not staticize.  Used from apic_vector.s */
2340 struct proc*	checkstate_curproc[MAXCPU];
2341 int		checkstate_cpustate[MAXCPU];
2342 u_long		checkstate_pc[MAXCPU];
2343 
2344 #define PC_TO_INDEX(pc, prof)				\
2345         ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2346             (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2347 
2348 static void
2349 addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2350 {
2351 	int i;
2352 	struct uprof *prof;
2353 	u_long pc;
2354 
2355 	pc = checkstate_pc[id];
2356 	prof = &p->p_stats->p_prof;
2357 	if (pc >= prof->pr_off &&
2358 	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2359 		mtx_assert(&sched_lock, MA_OWNED);
2360 		if ((p->p_sflag & PS_OWEUPC) == 0) {
2361 			prof->pr_addr = pc;
2362 			prof->pr_ticks = 1;
2363 			p->p_sflag |= PS_OWEUPC;
2364 		}
2365 		*astmap |= (1 << id);
2366 	}
2367 }
2368 
2369 static void
2370 forwarded_statclock(int id, int pscnt, int *astmap)
2371 {
2372 	struct pstats *pstats;
2373 	long rss;
2374 	struct rusage *ru;
2375 	struct vmspace *vm;
2376 	int cpustate;
2377 	struct proc *p;
2378 #ifdef GPROF
2379 	register struct gmonparam *g;
2380 	int i;
2381 #endif
2382 
2383 	mtx_assert(&sched_lock, MA_OWNED);
2384 	p = checkstate_curproc[id];
2385 	cpustate = checkstate_cpustate[id];
2386 
2387 	/* XXX */
2388 	if (p->p_ithd)
2389 		cpustate = CHECKSTATE_INTR;
2390 	else if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2391 		cpustate = CHECKSTATE_SYS;
2392 
2393 	switch (cpustate) {
2394 	case CHECKSTATE_USER:
2395 		if (p->p_sflag & PS_PROFIL)
2396 			addupc_intr_forwarded(p, id, astmap);
2397 		if (pscnt > 1)
2398 			return;
2399 		p->p_uticks++;
2400 		if (p->p_nice > NZERO)
2401 			cp_time[CP_NICE]++;
2402 		else
2403 			cp_time[CP_USER]++;
2404 		break;
2405 	case CHECKSTATE_SYS:
2406 #ifdef GPROF
2407 		/*
2408 		 * Kernel statistics are just like addupc_intr, only easier.
2409 		 */
2410 		g = &_gmonparam;
2411 		if (g->state == GMON_PROF_ON) {
2412 			i = checkstate_pc[id] - g->lowpc;
2413 			if (i < g->textsize) {
2414 				i /= HISTFRACTION * sizeof(*g->kcount);
2415 				g->kcount[i]++;
2416 			}
2417 		}
2418 #endif
2419 		if (pscnt > 1)
2420 			return;
2421 
2422 		p->p_sticks++;
2423 		if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2424 			cp_time[CP_IDLE]++;
2425 		else
2426 			cp_time[CP_SYS]++;
2427 		break;
2428 	case CHECKSTATE_INTR:
2429 	default:
2430 #ifdef GPROF
2431 		/*
2432 		 * Kernel statistics are just like addupc_intr, only easier.
2433 		 */
2434 		g = &_gmonparam;
2435 		if (g->state == GMON_PROF_ON) {
2436 			i = checkstate_pc[id] - g->lowpc;
2437 			if (i < g->textsize) {
2438 				i /= HISTFRACTION * sizeof(*g->kcount);
2439 				g->kcount[i]++;
2440 			}
2441 		}
2442 #endif
2443 		if (pscnt > 1)
2444 			return;
2445 		KASSERT(p != NULL, ("NULL process in interrupt state"));
2446 		p->p_iticks++;
2447 		cp_time[CP_INTR]++;
2448 	}
2449 
2450 	schedclock(p);
2451 
2452 	/* Update resource usage integrals and maximums. */
2453 	if ((pstats = p->p_stats) != NULL &&
2454 	    (ru = &pstats->p_ru) != NULL &&
2455 	    (vm = p->p_vmspace) != NULL) {
2456 		ru->ru_ixrss += pgtok(vm->vm_tsize);
2457 		ru->ru_idrss += pgtok(vm->vm_dsize);
2458 		ru->ru_isrss += pgtok(vm->vm_ssize);
2459 		rss = pgtok(vmspace_resident_count(vm));
2460 		if (ru->ru_maxrss < rss)
2461 			ru->ru_maxrss = rss;
2462 	}
2463 }
2464 
2465 void
2466 forward_statclock(int pscnt)
2467 {
2468 	int map;
2469 	int id;
2470 	int i;
2471 
2472 	/* Kludge. We don't yet have separate locks for the interrupts
2473 	 * and the kernel. This means that we cannot let the other processors
2474 	 * handle complex interrupts while inhibiting them from entering
2475 	 * the kernel in a non-interrupt context.
2476 	 *
2477 	 * What we can do, without changing the locking mechanisms yet,
2478 	 * is letting the other processors handle a very simple interrupt
2479 	 * (wich determines the processor states), and do the main
2480 	 * work ourself.
2481 	 */
2482 
2483 	CTR1(KTR_SMP, "forward_statclock(%d)", pscnt);
2484 
2485 	if (!smp_started || !invltlb_ok || cold || panicstr)
2486 		return;
2487 
2488 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2489 
2490 	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2491 	checkstate_probed_cpus = 0;
2492 	if (map != 0)
2493 		selected_apic_ipi(map,
2494 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2495 
2496 	i = 0;
2497 	while (checkstate_probed_cpus != map) {
2498 		/* spin */
2499 		i++;
2500 		if (i == 100000) {
2501 #ifdef BETTER_CLOCK_DIAGNOSTIC
2502 			printf("forward_statclock: checkstate %x\n",
2503 			       checkstate_probed_cpus);
2504 #endif
2505 			break;
2506 		}
2507 	}
2508 
2509 	/*
2510 	 * Step 2: walk through other processors processes, update ticks and
2511 	 * profiling info.
2512 	 */
2513 
2514 	map = 0;
2515 	for (id = 0; id < mp_ncpus; id++) {
2516 		if (id == PCPU_GET(cpuid))
2517 			continue;
2518 		if (((1 << id) & checkstate_probed_cpus) == 0)
2519 			continue;
2520 		forwarded_statclock(id, pscnt, &map);
2521 	}
2522 	if (map != 0) {
2523 		checkstate_need_ast |= map;
2524 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2525 		i = 0;
2526 		while ((checkstate_need_ast & map) != 0) {
2527 			/* spin */
2528 			i++;
2529 			if (i > 100000) {
2530 #ifdef BETTER_CLOCK_DIAGNOSTIC
2531 				printf("forward_statclock: dropped ast 0x%x\n",
2532 				       checkstate_need_ast & map);
2533 #endif
2534 				break;
2535 			}
2536 		}
2537 	}
2538 }
2539 
2540 void
2541 forward_hardclock(int pscnt)
2542 {
2543 	int map;
2544 	int id;
2545 	struct proc *p;
2546 	struct pstats *pstats;
2547 	int i;
2548 
2549 	/* Kludge. We don't yet have separate locks for the interrupts
2550 	 * and the kernel. This means that we cannot let the other processors
2551 	 * handle complex interrupts while inhibiting them from entering
2552 	 * the kernel in a non-interrupt context.
2553 	 *
2554 	 * What we can do, without changing the locking mechanisms yet,
2555 	 * is letting the other processors handle a very simple interrupt
2556 	 * (wich determines the processor states), and do the main
2557 	 * work ourself.
2558 	 */
2559 
2560 	CTR1(KTR_SMP, "forward_hardclock(%d)", pscnt);
2561 
2562 	if (!smp_started || !invltlb_ok || cold || panicstr)
2563 		return;
2564 
2565 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2566 
2567 	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2568 	checkstate_probed_cpus = 0;
2569 	if (map != 0)
2570 		selected_apic_ipi(map,
2571 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2572 
2573 	i = 0;
2574 	while (checkstate_probed_cpus != map) {
2575 		/* spin */
2576 		i++;
2577 		if (i == 100000) {
2578 #ifdef BETTER_CLOCK_DIAGNOSTIC
2579 			printf("forward_hardclock: checkstate %x\n",
2580 			       checkstate_probed_cpus);
2581 #endif
2582 			break;
2583 		}
2584 	}
2585 
2586 	/*
2587 	 * Step 2: walk through other processors processes, update virtual
2588 	 * timer and profiling timer. If stathz == 0, also update ticks and
2589 	 * profiling info.
2590 	 */
2591 
2592 	map = 0;
2593 	for (id = 0; id < mp_ncpus; id++) {
2594 		if (id == PCPU_GET(cpuid))
2595 			continue;
2596 		if (((1 << id) & checkstate_probed_cpus) == 0)
2597 			continue;
2598 		p = checkstate_curproc[id];
2599 		if (p) {
2600 			pstats = p->p_stats;
2601 			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2602 			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2603 			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2604 				p->p_sflag |= PS_ALRMPEND;
2605 				map |= (1 << id);
2606 			}
2607 			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2608 			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2609 				p->p_sflag |= PS_PROFPEND;
2610 				map |= (1 << id);
2611 			}
2612 		}
2613 		if (stathz == 0) {
2614 			forwarded_statclock( id, pscnt, &map);
2615 		}
2616 	}
2617 	if (map != 0) {
2618 		checkstate_need_ast |= map;
2619 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2620 		i = 0;
2621 		while ((checkstate_need_ast & map) != 0) {
2622 			/* spin */
2623 			i++;
2624 			if (i > 100000) {
2625 #ifdef BETTER_CLOCK_DIAGNOSTIC
2626 				printf("forward_hardclock: dropped ast 0x%x\n",
2627 				       checkstate_need_ast & map);
2628 #endif
2629 				break;
2630 			}
2631 		}
2632 	}
2633 }
2634 
2635 #endif /* BETTER_CLOCK */
2636 
2637 void
2638 forward_signal(struct proc *p)
2639 {
2640 	int map;
2641 	int id;
2642 	int i;
2643 
2644 	/* Kludge. We don't yet have separate locks for the interrupts
2645 	 * and the kernel. This means that we cannot let the other processors
2646 	 * handle complex interrupts while inhibiting them from entering
2647 	 * the kernel in a non-interrupt context.
2648 	 *
2649 	 * What we can do, without changing the locking mechanisms yet,
2650 	 * is letting the other processors handle a very simple interrupt
2651 	 * (wich determines the processor states), and do the main
2652 	 * work ourself.
2653 	 */
2654 
2655 	CTR1(KTR_SMP, "forward_signal(%p)", p);
2656 
2657 	if (!smp_started || !invltlb_ok || cold || panicstr)
2658 		return;
2659 	if (!forward_signal_enabled)
2660 		return;
2661 	mtx_lock_spin(&sched_lock);
2662 	while (1) {
2663 		if (p->p_stat != SRUN) {
2664 			mtx_unlock_spin(&sched_lock);
2665 			return;
2666 		}
2667 		id = p->p_oncpu;
2668 		mtx_unlock_spin(&sched_lock);
2669 		if (id == 0xff)
2670 			return;
2671 		map = (1<<id);
2672 		checkstate_need_ast |= map;
2673 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2674 		i = 0;
2675 		while ((checkstate_need_ast & map) != 0) {
2676 			/* spin */
2677 			i++;
2678 			if (i > 100000) {
2679 #if 0
2680 				printf("forward_signal: dropped ast 0x%x\n",
2681 				       checkstate_need_ast & map);
2682 #endif
2683 				break;
2684 			}
2685 		}
2686 		mtx_lock_spin(&sched_lock);
2687 		if (id == p->p_oncpu) {
2688 			mtx_unlock_spin(&sched_lock);
2689 			return;
2690 		}
2691 	}
2692 }
2693 
2694 void
2695 forward_roundrobin(void)
2696 {
2697 	u_int map;
2698 	int i;
2699 
2700 	CTR0(KTR_SMP, "forward_roundrobin()");
2701 
2702 	if (!smp_started || !invltlb_ok || cold || panicstr)
2703 		return;
2704 	if (!forward_roundrobin_enabled)
2705 		return;
2706 	resched_cpus |= PCPU_GET(other_cpus);
2707 	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2708 #if 1
2709 	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2710 #else
2711 	(void) all_but_self_ipi(XCPUAST_OFFSET);
2712 #endif
2713 	i = 0;
2714 	while ((checkstate_need_ast & map) != 0) {
2715 		/* spin */
2716 		i++;
2717 		if (i > 100000) {
2718 #if 0
2719 			printf("forward_roundrobin: dropped ast 0x%x\n",
2720 			       checkstate_need_ast & map);
2721 #endif
2722 			break;
2723 		}
2724 	}
2725 }
2726 
2727 /*
2728  * When called the executing CPU will send an IPI to all other CPUs
2729  *  requesting that they halt execution.
2730  *
2731  * Usually (but not necessarily) called with 'other_cpus' as its arg.
2732  *
2733  *  - Signals all CPUs in map to stop.
2734  *  - Waits for each to stop.
2735  *
2736  * Returns:
2737  *  -1: error
2738  *   0: NA
2739  *   1: ok
2740  *
2741  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2742  *            from executing at same time.
2743  */
2744 int
2745 stop_cpus(u_int map)
2746 {
2747 	int count = 0;
2748 
2749 	if (!smp_started)
2750 		return 0;
2751 
2752 	/* send the Xcpustop IPI to all CPUs in map */
2753 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2754 
2755 	while (count++ < 100000 && (stopped_cpus & map) != map)
2756 		/* spin */ ;
2757 
2758 #ifdef DIAGNOSTIC
2759 	if ((stopped_cpus & map) != map)
2760 		printf("Warning: CPUs 0x%x did not stop!\n",
2761 		    (~(stopped_cpus & map)) & map);
2762 #endif
2763 
2764 	return 1;
2765 }
2766 
2767 
2768 /*
2769  * Called by a CPU to restart stopped CPUs.
2770  *
2771  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2772  *
2773  *  - Signals all CPUs in map to restart.
2774  *  - Waits for each to restart.
2775  *
2776  * Returns:
2777  *  -1: error
2778  *   0: NA
2779  *   1: ok
2780  */
2781 int
2782 restart_cpus(u_int map)
2783 {
2784 	int count = 0;
2785 
2786 	if (!smp_started)
2787 		return 0;
2788 
2789 	started_cpus = map;		/* signal other cpus to restart */
2790 
2791 	/* wait for each to clear its bit */
2792 	while (count++ < 100000 && (stopped_cpus & map) != 0)
2793 		/* spin */ ;
2794 
2795 #ifdef DIAGNOSTIC
2796 	if ((stopped_cpus & map) != 0)
2797 		printf("Warning: CPUs 0x%x did not restart!\n",
2798 		    (~(stopped_cpus & map)) & map);
2799 #endif
2800 
2801 	return 1;
2802 }
2803 
2804 
2805 #ifdef APIC_INTR_REORDER
2806 /*
2807  *	Maintain mapping from softintr vector to isr bit in local apic.
2808  */
2809 void
2810 set_lapic_isrloc(int intr, int vector)
2811 {
2812 	if (intr < 0 || intr > 32)
2813 		panic("set_apic_isrloc: bad intr argument: %d",intr);
2814 	if (vector < ICU_OFFSET || vector > 255)
2815 		panic("set_apic_isrloc: bad vector argument: %d",vector);
2816 	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2817 	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2818 }
2819 #endif
2820 
2821 /*
2822  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
2823  * (if specified), rendezvous, execute the action function (if specified),
2824  * rendezvous again, execute the teardown function (if specified), and then
2825  * resume.
2826  *
2827  * Note that the supplied external functions _must_ be reentrant and aware
2828  * that they are running in parallel and in an unknown lock context.
2829  */
2830 static void (*smp_rv_setup_func)(void *arg);
2831 static void (*smp_rv_action_func)(void *arg);
2832 static void (*smp_rv_teardown_func)(void *arg);
2833 static void *smp_rv_func_arg;
2834 static volatile int smp_rv_waiters[2];
2835 
2836 void
2837 smp_rendezvous_action(void)
2838 {
2839 	/* setup function */
2840 	if (smp_rv_setup_func != NULL)
2841 		smp_rv_setup_func(smp_rv_func_arg);
2842 	/* spin on entry rendezvous */
2843 	atomic_add_int(&smp_rv_waiters[0], 1);
2844 	while (smp_rv_waiters[0] < mp_ncpus)
2845 		;
2846 	/* action function */
2847 	if (smp_rv_action_func != NULL)
2848 		smp_rv_action_func(smp_rv_func_arg);
2849 	/* spin on exit rendezvous */
2850 	atomic_add_int(&smp_rv_waiters[1], 1);
2851 	while (smp_rv_waiters[1] < mp_ncpus)
2852 		;
2853 	/* teardown function */
2854 	if (smp_rv_teardown_func != NULL)
2855 		smp_rv_teardown_func(smp_rv_func_arg);
2856 }
2857 
2858 void
2859 smp_rendezvous(void (* setup_func)(void *),
2860 	       void (* action_func)(void *),
2861 	       void (* teardown_func)(void *),
2862 	       void *arg)
2863 {
2864 
2865 	/* obtain rendezvous lock */
2866 	mtx_lock_spin(&smp_rv_mtx);
2867 
2868 	/* set static function pointers */
2869 	smp_rv_setup_func = setup_func;
2870 	smp_rv_action_func = action_func;
2871 	smp_rv_teardown_func = teardown_func;
2872 	smp_rv_func_arg = arg;
2873 	smp_rv_waiters[0] = 0;
2874 	smp_rv_waiters[1] = 0;
2875 
2876 	/*
2877 	 * signal other processors, which will enter the IPI with interrupts off
2878 	 */
2879 	all_but_self_ipi(XRENDEZVOUS_OFFSET);
2880 
2881 	/* call executor function */
2882 	smp_rendezvous_action();
2883 
2884 	/* release lock */
2885 	mtx_unlock_spin(&smp_rv_mtx);
2886 }
2887 
2888 void
2889 release_aps(void *dummy __unused)
2890 {
2891 	atomic_store_rel_int(&aps_ready, 1);
2892 }
2893 
2894 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
2895