xref: /freebsd/sys/kern/subr_smp.c (revision 380a989b3223d455375b4fae70fd0b9bdd43bafb)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  *	$Id: mp_machdep.c,v 1.85 1998/11/26 23:14:23 tegge Exp $
26  */
27 
28 #include "opt_smp.h"
29 #include "opt_vm86.h"
30 #include "opt_cpu.h"
31 #include "opt_user_ldt.h"
32 
33 #ifdef SMP
34 #include <machine/smptests.h>
35 #else
36 #error
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/sysctl.h>
44 #ifdef BETTER_CLOCK
45 #include <sys/dkstat.h>
46 #endif
47 
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_extern.h>
53 #ifdef BETTER_CLOCK
54 #include <sys/lock.h>
55 #include <vm/vm_map.h>
56 #include <sys/user.h>
57 #ifdef GPROF
58 #include <sys/gmon.h>
59 #endif
60 #endif
61 
62 #include <machine/smp.h>
63 #include <machine/apic.h>
64 #include <machine/mpapic.h>
65 #include <machine/segments.h>
66 #include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
67 #include <machine/tss.h>
68 #include <machine/specialreg.h>
69 #include <machine/cputypes.h>
70 #include <machine/globaldata.h>
71 
72 #include <i386/i386/cons.h>	/* cngetc() */
73 
74 #if defined(APIC_IO)
75 #include <machine/md_var.h>		/* setidt() */
76 #include <i386/isa/icu.h>		/* IPIs */
77 #include <i386/isa/intr_machdep.h>	/* IPIs */
78 #endif	/* APIC_IO */
79 
80 #if defined(TEST_DEFAULT_CONFIG)
81 #define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
82 #else
83 #define MPFPS_MPFB1	mpfps->mpfb1
84 #endif  /* TEST_DEFAULT_CONFIG */
85 
86 #define WARMBOOT_TARGET		0
87 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
88 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
89 
90 #ifdef PC98
91 #define BIOS_BASE		(0xe8000)
92 #define BIOS_SIZE		(0x18000)
93 #else
94 #define BIOS_BASE		(0xf0000)
95 #define BIOS_SIZE		(0x10000)
96 #endif
97 #define BIOS_COUNT		(BIOS_SIZE/4)
98 
99 #define CMOS_REG		(0x70)
100 #define CMOS_DATA		(0x71)
101 #define BIOS_RESET		(0x0f)
102 #define BIOS_WARM		(0x0a)
103 
104 #define PROCENTRY_FLAG_EN	0x01
105 #define PROCENTRY_FLAG_BP	0x02
106 #define IOAPICENTRY_FLAG_EN	0x01
107 
108 
109 /* MP Floating Pointer Structure */
110 typedef struct MPFPS {
111 	char    signature[4];
112 	void   *pap;
113 	u_char  length;
114 	u_char  spec_rev;
115 	u_char  checksum;
116 	u_char  mpfb1;
117 	u_char  mpfb2;
118 	u_char  mpfb3;
119 	u_char  mpfb4;
120 	u_char  mpfb5;
121 }      *mpfps_t;
122 
123 /* MP Configuration Table Header */
124 typedef struct MPCTH {
125 	char    signature[4];
126 	u_short base_table_length;
127 	u_char  spec_rev;
128 	u_char  checksum;
129 	u_char  oem_id[8];
130 	u_char  product_id[12];
131 	void   *oem_table_pointer;
132 	u_short oem_table_size;
133 	u_short entry_count;
134 	void   *apic_address;
135 	u_short extended_table_length;
136 	u_char  extended_table_checksum;
137 	u_char  reserved;
138 }      *mpcth_t;
139 
140 
141 typedef struct PROCENTRY {
142 	u_char  type;
143 	u_char  apic_id;
144 	u_char  apic_version;
145 	u_char  cpu_flags;
146 	u_long  cpu_signature;
147 	u_long  feature_flags;
148 	u_long  reserved1;
149 	u_long  reserved2;
150 }      *proc_entry_ptr;
151 
152 typedef struct BUSENTRY {
153 	u_char  type;
154 	u_char  bus_id;
155 	char    bus_type[6];
156 }      *bus_entry_ptr;
157 
158 typedef struct IOAPICENTRY {
159 	u_char  type;
160 	u_char  apic_id;
161 	u_char  apic_version;
162 	u_char  apic_flags;
163 	void   *apic_address;
164 }      *io_apic_entry_ptr;
165 
166 typedef struct INTENTRY {
167 	u_char  type;
168 	u_char  int_type;
169 	u_short int_flags;
170 	u_char  src_bus_id;
171 	u_char  src_bus_irq;
172 	u_char  dst_apic_id;
173 	u_char  dst_apic_int;
174 }      *int_entry_ptr;
175 
176 /* descriptions of MP basetable entries */
177 typedef struct BASETABLE_ENTRY {
178 	u_char  type;
179 	u_char  length;
180 	char    name[16];
181 }       basetable_entry;
182 
183 /*
184  * this code MUST be enabled here and in mpboot.s.
185  * it follows the very early stages of AP boot by placing values in CMOS ram.
186  * it NORMALLY will never be needed and thus the primitive method for enabling.
187  *
188 #define CHECK_POINTS
189  */
190 
191 #if defined(CHECK_POINTS) && !defined(PC98)
192 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
193 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
194 
195 #define CHECK_INIT(D);				\
196 	CHECK_WRITE(0x34, (D));			\
197 	CHECK_WRITE(0x35, (D));			\
198 	CHECK_WRITE(0x36, (D));			\
199 	CHECK_WRITE(0x37, (D));			\
200 	CHECK_WRITE(0x38, (D));			\
201 	CHECK_WRITE(0x39, (D));
202 
203 #define CHECK_PRINT(S);				\
204 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
205 	   (S),					\
206 	   CHECK_READ(0x34),			\
207 	   CHECK_READ(0x35),			\
208 	   CHECK_READ(0x36),			\
209 	   CHECK_READ(0x37),			\
210 	   CHECK_READ(0x38),			\
211 	   CHECK_READ(0x39));
212 
213 #else				/* CHECK_POINTS */
214 
215 #define CHECK_INIT(D)
216 #define CHECK_PRINT(S)
217 
218 #endif				/* CHECK_POINTS */
219 
220 /*
221  * Values to send to the POST hardware.
222  */
223 #define MP_BOOTADDRESS_POST	0x10
224 #define MP_PROBE_POST		0x11
225 #define MPTABLE_PASS1_POST	0x12
226 
227 #define MP_START_POST		0x13
228 #define MP_ENABLE_POST		0x14
229 #define MPTABLE_PASS2_POST	0x15
230 
231 #define START_ALL_APS_POST	0x16
232 #define INSTALL_AP_TRAMP_POST	0x17
233 #define START_AP_POST		0x18
234 
235 #define MP_ANNOUNCE_POST	0x19
236 
237 
238 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
239 int	current_postcode;
240 
241 /** XXX FIXME: what system files declare these??? */
242 extern struct region_descriptor r_gdt, r_idt;
243 
244 int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
245 int	mp_ncpus;		/* # of CPUs, including BSP */
246 int	mp_naps;		/* # of Applications processors */
247 int	mp_nbusses;		/* # of busses */
248 int	mp_napics;		/* # of IO APICs */
249 int	boot_cpu_id;		/* designated BSP */
250 vm_offset_t cpu_apic_address;
251 vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
252 extern	int nkpt;
253 
254 u_int32_t cpu_apic_versions[NCPU];
255 u_int32_t io_apic_versions[NAPIC];
256 
257 #ifdef APIC_INTR_DIAGNOSTIC
258 int apic_itrace_enter[32];
259 int apic_itrace_tryisrlock[32];
260 int apic_itrace_gotisrlock[32];
261 int apic_itrace_active[32];
262 int apic_itrace_masked[32];
263 int apic_itrace_noisrlock[32];
264 int apic_itrace_masked2[32];
265 int apic_itrace_unmask[32];
266 int apic_itrace_noforward[32];
267 int apic_itrace_leave[32];
268 int apic_itrace_enter2[32];
269 int apic_itrace_doreti[32];
270 int apic_itrace_splz[32];
271 int apic_itrace_eoi[32];
272 #ifdef APIC_INTR_DIAGNOSTIC_IRQ
273 unsigned short apic_itrace_debugbuffer[32768];
274 int apic_itrace_debugbuffer_idx;
275 struct simplelock apic_itrace_debuglock;
276 #endif
277 #endif
278 
279 #ifdef APIC_INTR_REORDER
280 struct {
281 	volatile int *location;
282 	int bit;
283 } apic_isrbit_location[32];
284 #endif
285 
286 struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
287 
288 /*
289  * APIC ID logical/physical mapping structures.
290  * We oversize these to simplify boot-time config.
291  */
292 int     cpu_num_to_apic_id[NAPICID];
293 int     io_num_to_apic_id[NAPICID];
294 int     apic_id_to_logical[NAPICID];
295 
296 
297 /* Bitmap of all available CPUs */
298 u_int	all_cpus;
299 
300 /* AP uses this PTD during bootstrap.  Do not staticize.  */
301 pd_entry_t *bootPTD;
302 
303 /* Hotwire a 0->4MB V==P mapping */
304 extern pt_entry_t *KPTphys;
305 
306 /* Virtual address of per-cpu common_tss */
307 extern struct i386tss common_tss;
308 #ifdef VM86
309 extern struct segment_descriptor common_tssd;
310 extern u_int private_tss;		/* flag indicating private tss */
311 extern u_int my_tr;
312 #endif /* VM86 */
313 
314 /* IdlePTD per cpu */
315 pd_entry_t *IdlePTDS[NCPU];
316 
317 /* "my" private page table page, for BSP init */
318 extern pt_entry_t SMP_prvpt[];
319 
320 /* Private page pointer to curcpu's PTD, used during BSP init */
321 extern pd_entry_t *my_idlePTD;
322 
323 struct pcb stoppcbs[NCPU];
324 
325 int smp_started;		/* has the system started? */
326 
327 /*
328  * Local data and functions.
329  */
330 
331 static int	mp_capable;
332 static u_int	boot_address;
333 static u_int	base_memory;
334 
335 static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
336 static mpfps_t	mpfps;
337 static int	search_for_sig(u_int32_t target, int count);
338 static void	mp_enable(u_int boot_addr);
339 
340 static int	mptable_pass1(void);
341 static int	mptable_pass2(void);
342 static void	default_mp_table(int type);
343 static void	fix_mp_table(void);
344 static void	setup_apic_irq_mapping(void);
345 static void	init_locks(void);
346 static int	start_all_aps(u_int boot_addr);
347 static void	install_ap_tramp(u_int boot_addr);
348 static int	start_ap(int logicalCpu, u_int boot_addr);
349 
350 /*
351  * Calculate usable address in base memory for AP trampoline code.
352  */
353 u_int
354 mp_bootaddress(u_int basemem)
355 {
356 	POSTCODE(MP_BOOTADDRESS_POST);
357 
358 	base_memory = basemem * 1024;	/* convert to bytes */
359 
360 	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
361 	if ((base_memory - boot_address) < bootMP_size)
362 		boot_address -= 4096;	/* not enough, lower by 4k */
363 
364 	return boot_address;
365 }
366 
367 
368 /*
369  * Look for an Intel MP spec table (ie, SMP capable hardware).
370  */
371 int
372 mp_probe(void)
373 {
374 	int     x;
375 	u_long  segment;
376 	u_int32_t target;
377 
378 	POSTCODE(MP_PROBE_POST);
379 
380 	/* see if EBDA exists */
381 	if (segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) {
382 		/* search first 1K of EBDA */
383 		target = (u_int32_t) (segment << 4);
384 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
385 			goto found;
386 	} else {
387 		/* last 1K of base memory, effective 'top of base' passed in */
388 		target = (u_int32_t) (base_memory - 0x400);
389 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
390 			goto found;
391 	}
392 
393 	/* search the BIOS */
394 	target = (u_int32_t) BIOS_BASE;
395 	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
396 		goto found;
397 
398 	/* nothing found */
399 	mpfps = (mpfps_t)0;
400 	mp_capable = 0;
401 	return 0;
402 
403 found:
404 	/* calculate needed resources */
405 	mpfps = (mpfps_t)x;
406 	if (mptable_pass1())
407 		panic("you must reconfigure your kernel");
408 
409 	/* flag fact that we are running multiple processors */
410 	mp_capable = 1;
411 	return 1;
412 }
413 
414 
415 /*
416  * Startup the SMP processors.
417  */
418 void
419 mp_start(void)
420 {
421 	POSTCODE(MP_START_POST);
422 
423 	/* look for MP capable motherboard */
424 	if (mp_capable)
425 		mp_enable(boot_address);
426 	else
427 		panic("MP hardware not found!");
428 }
429 
430 
431 /*
432  * Print various information about the SMP system hardware and setup.
433  */
434 void
435 mp_announce(void)
436 {
437 	int     x;
438 
439 	POSTCODE(MP_ANNOUNCE_POST);
440 
441 	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
442 	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
443 	printf(", version: 0x%08x", cpu_apic_versions[0]);
444 	printf(", at 0x%08x\n", cpu_apic_address);
445 	for (x = 1; x <= mp_naps; ++x) {
446 		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
447 		printf(", version: 0x%08x", cpu_apic_versions[x]);
448 		printf(", at 0x%08x\n", cpu_apic_address);
449 	}
450 
451 #if defined(APIC_IO)
452 	for (x = 0; x < mp_napics; ++x) {
453 		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
454 		printf(", version: 0x%08x", io_apic_versions[x]);
455 		printf(", at 0x%08x\n", io_apic_address[x]);
456 	}
457 #else
458 	printf(" Warning: APIC I/O disabled\n");
459 #endif	/* APIC_IO */
460 }
461 
462 /*
463  * AP cpu's call this to sync up protected mode.
464  */
465 void
466 init_secondary(void)
467 {
468 	int	gsel_tss;
469 #ifndef VM86
470 	u_int	my_tr;
471 #endif
472 
473 	r_gdt.rd_limit = sizeof(gdt[0]) * (NGDT + NCPU) - 1;
474 	r_gdt.rd_base = (int) gdt;
475 	lgdt(&r_gdt);			/* does magic intra-segment return */
476 	lidt(&r_idt);
477 	lldt(_default_ldt);
478 #ifdef USER_LDT
479 	currentldt = _default_ldt;
480 #endif
481 
482 	my_tr = NGDT + cpuid;
483 	gsel_tss = GSEL(my_tr, SEL_KPL);
484 	gdt[my_tr].sd.sd_type = SDT_SYS386TSS;
485 	common_tss.tss_esp0 = 0;	/* not used until after switch */
486 	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
487 	common_tss.tss_ioopt = (sizeof common_tss) << 16;
488 #ifdef VM86
489 	common_tssd = gdt[my_tr].sd;
490 	private_tss = 0;
491 #endif /* VM86 */
492 	ltr(gsel_tss);
493 
494 	load_cr0(0x8005003b);		/* XXX! */
495 
496 	PTD[0] = 0;
497 	pmap_set_opt((unsigned *)PTD);
498 
499 	putmtrr();
500 	pmap_setvidram();
501 
502 	invltlb();
503 }
504 
505 
506 #if defined(APIC_IO)
507 /*
508  * Final configuration of the BSP's local APIC:
509  *  - disable 'pic mode'.
510  *  - disable 'virtual wire mode'.
511  *  - enable NMI.
512  */
513 void
514 bsp_apic_configure(void)
515 {
516 	u_char		byte;
517 	u_int32_t	temp;
518 
519 	/* leave 'pic mode' if necessary */
520 	if (picmode) {
521 		outb(0x22, 0x70);	/* select IMCR */
522 		byte = inb(0x23);	/* current contents */
523 		byte |= 0x01;		/* mask external INTR */
524 		outb(0x23, byte);	/* disconnect 8259s/NMI */
525 	}
526 
527 	/* mask lint0 (the 8259 'virtual wire' connection) */
528 	temp = lapic.lvt_lint0;
529 	temp |= APIC_LVT_M;		/* set the mask */
530 	lapic.lvt_lint0 = temp;
531 
532         /* setup lint1 to handle NMI */
533         temp = lapic.lvt_lint1;
534         temp &= ~APIC_LVT_M;		/* clear the mask */
535         lapic.lvt_lint1 = temp;
536 
537 	if (bootverbose)
538 		apic_dump("bsp_apic_configure()");
539 }
540 #endif  /* APIC_IO */
541 
542 
543 /*******************************************************************
544  * local functions and data
545  */
546 
547 /*
548  * start the SMP system
549  */
550 static void
551 mp_enable(u_int boot_addr)
552 {
553 	int     x;
554 #if defined(APIC_IO)
555 	int     apic;
556 	u_int   ux;
557 #endif	/* APIC_IO */
558 
559 	getmtrr();
560 	pmap_setvidram();
561 
562 	POSTCODE(MP_ENABLE_POST);
563 
564 	/* turn on 4MB of V == P addressing so we can get to MP table */
565 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
566 	invltlb();
567 
568 	/* examine the MP table for needed info, uses physical addresses */
569 	x = mptable_pass2();
570 
571 	*(int *)PTD = 0;
572 	invltlb();
573 
574 	/* can't process default configs till the CPU APIC is pmapped */
575 	if (x)
576 		default_mp_table(x);
577 
578 	/* post scan cleanup */
579 	fix_mp_table();
580 	setup_apic_irq_mapping();
581 
582 #if defined(APIC_IO)
583 
584 	/* fill the LOGICAL io_apic_versions table */
585 	for (apic = 0; apic < mp_napics; ++apic) {
586 		ux = io_apic_read(apic, IOAPIC_VER);
587 		io_apic_versions[apic] = ux;
588 	}
589 
590 	/* program each IO APIC in the system */
591 	for (apic = 0; apic < mp_napics; ++apic)
592 		if (io_apic_setup(apic) < 0)
593 			panic("IO APIC setup failure");
594 
595 	/* install a 'Spurious INTerrupt' vector */
596 	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
597 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
598 
599 	/* install an inter-CPU IPI for TLB invalidation */
600 	setidt(XINVLTLB_OFFSET, Xinvltlb,
601 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
602 
603 #ifdef BETTER_CLOCK
604 	/* install an inter-CPU IPI for reading processor state */
605 	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
606 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
607 #endif
608 
609 	/* install an inter-CPU IPI for forcing an additional software trap */
610 	setidt(XCPUAST_OFFSET, Xcpuast,
611 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
612 
613 	/* install an inter-CPU IPI for interrupt forwarding */
614 	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
615 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
616 
617 	/* install an inter-CPU IPI for CPU stop/restart */
618 	setidt(XCPUSTOP_OFFSET, Xcpustop,
619 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
620 
621 #if defined(TEST_TEST1)
622 	/* install a "fake hardware INTerrupt" vector */
623 	setidt(XTEST1_OFFSET, Xtest1,
624 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
625 #endif  /** TEST_TEST1 */
626 
627 #endif	/* APIC_IO */
628 
629 	/* initialize all SMP locks */
630 	init_locks();
631 
632 	/* start each Application Processor */
633 	start_all_aps(boot_addr);
634 
635 	/*
636 	 * The init process might be started on a different CPU now,
637 	 * and the boot CPU might not call prepare_usermode to get
638 	 * cr0 correctly configured. Thus we initialize cr0 here.
639 	 */
640 	load_cr0(rcr0() | CR0_WP | CR0_AM);
641 }
642 
643 
644 /*
645  * look for the MP spec signature
646  */
647 
648 /* string defined by the Intel MP Spec as identifying the MP table */
649 #define MP_SIG		0x5f504d5f	/* _MP_ */
650 #define NEXT(X)		((X) += 4)
651 static int
652 search_for_sig(u_int32_t target, int count)
653 {
654 	int     x;
655 	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
656 
657 	for (x = 0; x < count; NEXT(x))
658 		if (addr[x] == MP_SIG)
659 			/* make array index a byte index */
660 			return (target + (x * sizeof(u_int32_t)));
661 
662 	return -1;
663 }
664 
665 
666 static basetable_entry basetable_entry_types[] =
667 {
668 	{0, 20, "Processor"},
669 	{1, 8, "Bus"},
670 	{2, 8, "I/O APIC"},
671 	{3, 8, "I/O INT"},
672 	{4, 8, "Local INT"}
673 };
674 
675 typedef struct BUSDATA {
676 	u_char  bus_id;
677 	enum busTypes bus_type;
678 }       bus_datum;
679 
680 typedef struct INTDATA {
681 	u_char  int_type;
682 	u_short int_flags;
683 	u_char  src_bus_id;
684 	u_char  src_bus_irq;
685 	u_char  dst_apic_id;
686 	u_char  dst_apic_int;
687 	u_char	int_vector;
688 }       io_int, local_int;
689 
690 typedef struct BUSTYPENAME {
691 	u_char  type;
692 	char    name[7];
693 }       bus_type_name;
694 
695 static bus_type_name bus_type_table[] =
696 {
697 	{CBUS, "CBUS"},
698 	{CBUSII, "CBUSII"},
699 	{EISA, "EISA"},
700 	{UNKNOWN_BUSTYPE, "---"},
701 	{UNKNOWN_BUSTYPE, "---"},
702 	{ISA, "ISA"},
703 	{UNKNOWN_BUSTYPE, "---"},
704 	{UNKNOWN_BUSTYPE, "---"},
705 	{UNKNOWN_BUSTYPE, "---"},
706 	{UNKNOWN_BUSTYPE, "---"},
707 	{UNKNOWN_BUSTYPE, "---"},
708 	{UNKNOWN_BUSTYPE, "---"},
709 	{PCI, "PCI"},
710 	{UNKNOWN_BUSTYPE, "---"},
711 	{UNKNOWN_BUSTYPE, "---"},
712 	{UNKNOWN_BUSTYPE, "---"},
713 	{UNKNOWN_BUSTYPE, "---"},
714 	{XPRESS, "XPRESS"},
715 	{UNKNOWN_BUSTYPE, "---"}
716 };
717 /* from MP spec v1.4, table 5-1 */
718 static int default_data[7][5] =
719 {
720 /*   nbus, id0, type0, id1, type1 */
721 	{1, 0, ISA, 255, 255},
722 	{1, 0, EISA, 255, 255},
723 	{1, 0, EISA, 255, 255},
724 	{0, 255, 255, 255, 255},/* MCA not supported */
725 	{2, 0, ISA, 1, PCI},
726 	{2, 0, EISA, 1, PCI},
727 	{0, 255, 255, 255, 255}	/* MCA not supported */
728 };
729 
730 
731 /* the bus data */
732 static bus_datum bus_data[NBUS];
733 
734 /* the IO INT data, one entry per possible APIC INTerrupt */
735 static io_int  io_apic_ints[NINTR];
736 
737 static int nintrs;
738 
739 static int processor_entry	__P((proc_entry_ptr entry, int cpu));
740 static int bus_entry		__P((bus_entry_ptr entry, int bus));
741 static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
742 static int int_entry		__P((int_entry_ptr entry, int intr));
743 static int lookup_bus_type	__P((char *name));
744 
745 
746 /*
747  * 1st pass on motherboard's Intel MP specification table.
748  *
749  * initializes:
750  *	mp_ncpus = 1
751  *
752  * determines:
753  *	cpu_apic_address (common to all CPUs)
754  *	io_apic_address[N]
755  *	mp_naps
756  *	mp_nbusses
757  *	mp_napics
758  *	nintrs
759  */
760 static int
761 mptable_pass1(void)
762 {
763 	int	x;
764 	mpcth_t	cth;
765 	int	totalSize;
766 	void*	position;
767 	int	count;
768 	int	type;
769 	int	mustpanic;
770 
771 	POSTCODE(MPTABLE_PASS1_POST);
772 
773 	mustpanic = 0;
774 
775 	/* clear various tables */
776 	for (x = 0; x < NAPICID; ++x) {
777 		io_apic_address[x] = ~0;	/* IO APIC address table */
778 	}
779 
780 	/* init everything to empty */
781 	mp_naps = 0;
782 	mp_nbusses = 0;
783 	mp_napics = 0;
784 	nintrs = 0;
785 
786 	/* check for use of 'default' configuration */
787 	if (MPFPS_MPFB1 != 0) {
788 		/* use default addresses */
789 		cpu_apic_address = DEFAULT_APIC_BASE;
790 		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
791 
792 		/* fill in with defaults */
793 		mp_naps = 2;		/* includes BSP */
794 		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
795 #if defined(APIC_IO)
796 		mp_napics = 1;
797 		nintrs = 16;
798 #endif	/* APIC_IO */
799 	}
800 	else {
801 		if ((cth = mpfps->pap) == 0)
802 			panic("MP Configuration Table Header MISSING!");
803 
804 		cpu_apic_address = (vm_offset_t) cth->apic_address;
805 
806 		/* walk the table, recording info of interest */
807 		totalSize = cth->base_table_length - sizeof(struct MPCTH);
808 		position = (u_char *) cth + sizeof(struct MPCTH);
809 		count = cth->entry_count;
810 
811 		while (count--) {
812 			switch (type = *(u_char *) position) {
813 			case 0: /* processor_entry */
814 				if (((proc_entry_ptr)position)->cpu_flags
815 					& PROCENTRY_FLAG_EN)
816 					++mp_naps;
817 				break;
818 			case 1: /* bus_entry */
819 				++mp_nbusses;
820 				break;
821 			case 2: /* io_apic_entry */
822 				if (((io_apic_entry_ptr)position)->apic_flags
823 					& IOAPICENTRY_FLAG_EN)
824 					io_apic_address[mp_napics++] =
825 					    (vm_offset_t)((io_apic_entry_ptr)
826 						position)->apic_address;
827 				break;
828 			case 3: /* int_entry */
829 				++nintrs;
830 				break;
831 			case 4:	/* int_entry */
832 				break;
833 			default:
834 				panic("mpfps Base Table HOSED!");
835 				/* NOTREACHED */
836 			}
837 
838 			totalSize -= basetable_entry_types[type].length;
839 			(u_char*)position += basetable_entry_types[type].length;
840 		}
841 	}
842 
843 	/* qualify the numbers */
844 	if (mp_naps > NCPU)
845 #if 0 /* XXX FIXME: kern/4255 */
846 		printf("Warning: only using %d of %d available CPUs!\n",
847 			NCPU, mp_naps);
848 #else
849 	{
850 		printf("NCPU cannot be different than actual CPU count.\n");
851 		printf(" add 'options NCPU=%d' to your kernel config file,\n",
852 			mp_naps);
853 		printf(" then rerun config & rebuild your SMP kernel\n");
854 		mustpanic = 1;
855 	}
856 #endif /* XXX FIXME: kern/4255 */
857 	if (mp_nbusses > NBUS) {
858 		printf("found %d busses, increase NBUS\n", mp_nbusses);
859 		mustpanic = 1;
860 	}
861 	if (mp_napics > NAPIC) {
862 		printf("found %d apics, increase NAPIC\n", mp_napics);
863 		mustpanic = 1;
864 	}
865 	if (nintrs > NINTR) {
866 		printf("found %d intrs, increase NINTR\n", nintrs);
867 		mustpanic = 1;
868 	}
869 
870 	/*
871 	 * Count the BSP.
872 	 * This is also used as a counter while starting the APs.
873 	 */
874 	mp_ncpus = 1;
875 
876 	--mp_naps;	/* subtract the BSP */
877 
878 	return mustpanic;
879 }
880 
881 
882 /*
883  * 2nd pass on motherboard's Intel MP specification table.
884  *
885  * sets:
886  *	boot_cpu_id
887  *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
888  *	CPU_TO_ID(N), logical CPU to APIC ID table
889  *	IO_TO_ID(N), logical IO to APIC ID table
890  *	bus_data[N]
891  *	io_apic_ints[N]
892  */
893 static int
894 mptable_pass2(void)
895 {
896 	int     x;
897 	mpcth_t cth;
898 	int     totalSize;
899 	void*   position;
900 	int     count;
901 	int     type;
902 	int     apic, bus, cpu, intr;
903 
904 	POSTCODE(MPTABLE_PASS2_POST);
905 
906 	/* clear various tables */
907 	for (x = 0; x < NAPICID; ++x) {
908 		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
909 		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
910 		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
911 	}
912 
913 	/* clear bus data table */
914 	for (x = 0; x < NBUS; ++x)
915 		bus_data[x].bus_id = 0xff;
916 
917 	/* clear IO APIC INT table */
918 	for (x = 0; x < NINTR; ++x) {
919 		io_apic_ints[x].int_type = 0xff;
920 		io_apic_ints[x].int_vector = 0xff;
921 	}
922 
923 	/* setup the cpu/apic mapping arrays */
924 	boot_cpu_id = -1;
925 
926 	/* record whether PIC or virtual-wire mode */
927 	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
928 
929 	/* check for use of 'default' configuration */
930 	if (MPFPS_MPFB1 != 0)
931 		return MPFPS_MPFB1;	/* return default configuration type */
932 
933 	if ((cth = mpfps->pap) == 0)
934 		panic("MP Configuration Table Header MISSING!");
935 
936 	/* walk the table, recording info of interest */
937 	totalSize = cth->base_table_length - sizeof(struct MPCTH);
938 	position = (u_char *) cth + sizeof(struct MPCTH);
939 	count = cth->entry_count;
940 	apic = bus = intr = 0;
941 	cpu = 1;				/* pre-count the BSP */
942 
943 	while (count--) {
944 		switch (type = *(u_char *) position) {
945 		case 0:
946 			if (processor_entry(position, cpu))
947 				++cpu;
948 			break;
949 		case 1:
950 			if (bus_entry(position, bus))
951 				++bus;
952 			break;
953 		case 2:
954 			if (io_apic_entry(position, apic))
955 				++apic;
956 			break;
957 		case 3:
958 			if (int_entry(position, intr))
959 				++intr;
960 			break;
961 		case 4:
962 			/* int_entry(position); */
963 			break;
964 		default:
965 			panic("mpfps Base Table HOSED!");
966 			/* NOTREACHED */
967 		}
968 
969 		totalSize -= basetable_entry_types[type].length;
970 		(u_char *) position += basetable_entry_types[type].length;
971 	}
972 
973 	if (boot_cpu_id == -1)
974 		panic("NO BSP found!");
975 
976 	/* report fact that its NOT a default configuration */
977 	return 0;
978 }
979 
980 
981 static void
982 assign_apic_irq(int apic, int intpin, int irq)
983 {
984 	int x;
985 
986 	if (int_to_apicintpin[irq].ioapic != -1)
987 		panic("assign_apic_irq: inconsistent table");
988 
989 	int_to_apicintpin[irq].ioapic = apic;
990 	int_to_apicintpin[irq].int_pin = intpin;
991 	int_to_apicintpin[irq].apic_address = ioapic[apic];
992 	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
993 
994 	for (x = 0; x < nintrs; x++) {
995 		if ((io_apic_ints[x].int_type == 0 ||
996 		     io_apic_ints[x].int_type == 3) &&
997 		    io_apic_ints[x].int_vector == 0xff &&
998 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
999 		    io_apic_ints[x].dst_apic_int == intpin)
1000 			io_apic_ints[x].int_vector = irq;
1001 	}
1002 }
1003 
1004 /*
1005  * parse an Intel MP specification table
1006  */
1007 static void
1008 fix_mp_table(void)
1009 {
1010 	int	x;
1011 	int	id;
1012 	int	bus_0;
1013 	int	bus_pci;
1014 	int	num_pci_bus;
1015 
1016 	/*
1017 	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1018 	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1019 	 * exists the BIOS must begin with bus entries for the PCI bus and use
1020 	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1021 	 * exists the BIOS can choose to ignore this ordering, and indeed many
1022 	 * MP motherboards do ignore it.  This causes a problem when the PCI
1023 	 * sub-system makes requests of the MP sub-system based on PCI bus
1024 	 * numbers.	So here we look for the situation and renumber the
1025 	 * busses and associated INTs in an effort to "make it right".
1026 	 */
1027 
1028 	/* find bus 0, PCI bus, count the number of PCI busses */
1029 	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1030 		if (bus_data[x].bus_id == 0) {
1031 			bus_0 = x;
1032 		}
1033 		if (bus_data[x].bus_type == PCI) {
1034 			++num_pci_bus;
1035 			bus_pci = x;
1036 		}
1037 	}
1038 	/*
1039 	 * bus_0 == slot of bus with ID of 0
1040 	 * bus_pci == slot of last PCI bus encountered
1041 	 */
1042 
1043 	/* check the 1 PCI bus case for sanity */
1044 	if (num_pci_bus == 1) {
1045 
1046 		/* if it is number 0 all is well */
1047 		if (bus_data[bus_pci].bus_id == 0)
1048 			return;
1049 
1050 		/* mis-numbered, swap with whichever bus uses slot 0 */
1051 
1052 		/* swap the bus entry types */
1053 		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1054 		bus_data[bus_0].bus_type = PCI;
1055 
1056 		/* swap each relavant INTerrupt entry */
1057 		id = bus_data[bus_pci].bus_id;
1058 		for (x = 0; x < nintrs; ++x) {
1059 			if (io_apic_ints[x].src_bus_id == id) {
1060 				io_apic_ints[x].src_bus_id = 0;
1061 			}
1062 			else if (io_apic_ints[x].src_bus_id == 0) {
1063 				io_apic_ints[x].src_bus_id = id;
1064 			}
1065 		}
1066 	}
1067 	/* sanity check if more than 1 PCI bus */
1068 	else if (num_pci_bus > 1) {
1069 		for (x = 0; x < mp_nbusses; ++x) {
1070 			if (bus_data[x].bus_type != PCI)
1071 				continue;
1072 			if (bus_data[x].bus_id >= num_pci_bus)
1073 				panic("bad PCI bus numbering");
1074 		}
1075 	}
1076 }
1077 
1078 
1079 static void
1080 setup_apic_irq_mapping(void)
1081 {
1082 	int	x;
1083 	int	int_vector;
1084 
1085 	/* Assign low level interrupt handlers */
1086 	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1087 		int_to_apicintpin[x].ioapic = -1;
1088 		int_to_apicintpin[x].int_pin = 0;
1089 		int_to_apicintpin[x].apic_address = NULL;
1090 		int_to_apicintpin[x].redirindex = 0;
1091 	}
1092 	for (x = 0; x < nintrs; x++) {
1093 		if (io_apic_ints[x].dst_apic_int <= APIC_INTMAPSIZE &&
1094 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1095 		    io_apic_ints[x].int_vector == 0xff &&
1096 		    (io_apic_ints[x].int_type == 0 ||
1097 		     io_apic_ints[x].int_type == 3)) {
1098 			assign_apic_irq(0,
1099 					io_apic_ints[x].dst_apic_int,
1100 					io_apic_ints[x].dst_apic_int);
1101 		}
1102 	}
1103 	int_vector = 0;
1104 	while (int_vector < APIC_INTMAPSIZE &&
1105 	       int_to_apicintpin[int_vector].ioapic != -1)
1106 		int_vector++;
1107 	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1108 		if ((io_apic_ints[x].int_type == 0 ||
1109 		     io_apic_ints[x].int_type == 3) &&
1110 		    io_apic_ints[x].int_vector == 0xff) {
1111 			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1112 					io_apic_ints[x].dst_apic_int,
1113 					int_vector);
1114 			int_vector++;
1115 			while (int_vector < APIC_INTMAPSIZE &&
1116 			       int_to_apicintpin[int_vector].ioapic != -1)
1117 				int_vector++;
1118 		}
1119 	}
1120 }
1121 
1122 
1123 static int
1124 processor_entry(proc_entry_ptr entry, int cpu)
1125 {
1126 	/* check for usability */
1127 	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
1128 		return 0;
1129 
1130 	/* check for BSP flag */
1131 	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1132 		boot_cpu_id = entry->apic_id;
1133 		CPU_TO_ID(0) = entry->apic_id;
1134 		ID_TO_CPU(entry->apic_id) = 0;
1135 		return 0;	/* its already been counted */
1136 	}
1137 
1138 	/* add another AP to list, if less than max number of CPUs */
1139 	else {
1140 		CPU_TO_ID(cpu) = entry->apic_id;
1141 		ID_TO_CPU(entry->apic_id) = cpu;
1142 		return 1;
1143 	}
1144 }
1145 
1146 
1147 static int
1148 bus_entry(bus_entry_ptr entry, int bus)
1149 {
1150 	int     x;
1151 	char    c, name[8];
1152 
1153 	/* encode the name into an index */
1154 	for (x = 0; x < 6; ++x) {
1155 		if ((c = entry->bus_type[x]) == ' ')
1156 			break;
1157 		name[x] = c;
1158 	}
1159 	name[x] = '\0';
1160 
1161 	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1162 		panic("unknown bus type: '%s'", name);
1163 
1164 	bus_data[bus].bus_id = entry->bus_id;
1165 	bus_data[bus].bus_type = x;
1166 
1167 	return 1;
1168 }
1169 
1170 
1171 static int
1172 io_apic_entry(io_apic_entry_ptr entry, int apic)
1173 {
1174 	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1175 		return 0;
1176 
1177 	IO_TO_ID(apic) = entry->apic_id;
1178 	ID_TO_IO(entry->apic_id) = apic;
1179 
1180 	return 1;
1181 }
1182 
1183 
1184 static int
1185 lookup_bus_type(char *name)
1186 {
1187 	int     x;
1188 
1189 	for (x = 0; x < MAX_BUSTYPE; ++x)
1190 		if (strcmp(bus_type_table[x].name, name) == 0)
1191 			return bus_type_table[x].type;
1192 
1193 	return UNKNOWN_BUSTYPE;
1194 }
1195 
1196 
1197 static int
1198 int_entry(int_entry_ptr entry, int intr)
1199 {
1200 	int apic;
1201 
1202 	io_apic_ints[intr].int_type = entry->int_type;
1203 	io_apic_ints[intr].int_flags = entry->int_flags;
1204 	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1205 	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1206 	if (entry->dst_apic_id == 255) {
1207 		/* This signal goes to all IO APICS.  Select an IO APIC
1208 		   with sufficient number of interrupt pins */
1209 		for (apic = 0; apic < mp_napics; apic++)
1210 			if (((io_apic_read(apic, IOAPIC_VER) &
1211 			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1212 			    entry->dst_apic_int)
1213 				break;
1214 		if (apic < mp_napics)
1215 			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1216 		else
1217 			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1218 	} else
1219 		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1220 	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1221 
1222 	return 1;
1223 }
1224 
1225 
1226 static int
1227 apic_int_is_bus_type(int intr, int bus_type)
1228 {
1229 	int     bus;
1230 
1231 	for (bus = 0; bus < mp_nbusses; ++bus)
1232 		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1233 		    && ((int) bus_data[bus].bus_type == bus_type))
1234 			return 1;
1235 
1236 	return 0;
1237 }
1238 
1239 
1240 /*
1241  * Given a traditional ISA INT mask, return an APIC mask.
1242  */
1243 u_int
1244 isa_apic_mask(u_int isa_mask)
1245 {
1246 	int isa_irq;
1247 	int apic_pin;
1248 
1249 #if defined(SKIP_IRQ15_REDIRECT)
1250 	if (isa_mask == (1 << 15)) {
1251 		printf("skipping ISA IRQ15 redirect\n");
1252 		return isa_mask;
1253 	}
1254 #endif  /* SKIP_IRQ15_REDIRECT */
1255 
1256 	isa_irq = ffs(isa_mask);		/* find its bit position */
1257 	if (isa_irq == 0)			/* doesn't exist */
1258 		return 0;
1259 	--isa_irq;				/* make it zero based */
1260 
1261 	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1262 	if (apic_pin == -1)
1263 		return 0;
1264 
1265 	return (1 << apic_pin);			/* convert pin# to a mask */
1266 }
1267 
1268 
1269 /*
1270  * Determine which APIC pin an ISA/EISA INT is attached to.
1271  */
1272 #define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1273 #define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1274 #define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1275 #define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1276 
1277 #define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1278 int
1279 isa_apic_irq(int isa_irq)
1280 {
1281 	int     intr;
1282 
1283 	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1284 		if (INTTYPE(intr) == 0) {		/* standard INT */
1285 			if (SRCBUSIRQ(intr) == isa_irq) {
1286 				if (apic_int_is_bus_type(intr, ISA) ||
1287 			            apic_int_is_bus_type(intr, EISA))
1288 					return INTIRQ(intr);	/* found */
1289 			}
1290 		}
1291 	}
1292 	return -1;					/* NOT found */
1293 }
1294 
1295 
1296 /*
1297  * Determine which APIC pin a PCI INT is attached to.
1298  */
1299 #define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1300 #define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1301 #define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1302 int
1303 pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1304 {
1305 	int     intr;
1306 
1307 	--pciInt;					/* zero based */
1308 
1309 	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1310 		if ((INTTYPE(intr) == 0)		/* standard INT */
1311 		    && (SRCBUSID(intr) == pciBus)
1312 		    && (SRCBUSDEVICE(intr) == pciDevice)
1313 		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1314 			if (apic_int_is_bus_type(intr, PCI))
1315 				return INTIRQ(intr);	/* exact match */
1316 
1317 	return -1;					/* NOT found */
1318 }
1319 
1320 int
1321 next_apic_irq(int irq)
1322 {
1323 	int intr, ointr;
1324 	int bus, bustype;
1325 
1326 	bus = 0;
1327 	bustype = 0;
1328 	for (intr = 0; intr < nintrs; intr++) {
1329 		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1330 			continue;
1331 		bus = SRCBUSID(intr);
1332 		bustype = apic_bus_type(bus);
1333 		if (bustype != ISA &&
1334 		    bustype != EISA &&
1335 		    bustype != PCI)
1336 			continue;
1337 		break;
1338 	}
1339 	if (intr >= nintrs) {
1340 		return -1;
1341 	}
1342 	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1343 		if (INTTYPE(ointr) != 0)
1344 			continue;
1345 		if (bus != SRCBUSID(ointr))
1346 			continue;
1347 		if (bustype == PCI) {
1348 			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1349 				continue;
1350 			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1351 				continue;
1352 		}
1353 		if (bustype == ISA || bustype == EISA) {
1354 			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1355 				continue;
1356 		}
1357 		if (INTPIN(intr) == INTPIN(ointr))
1358 			continue;
1359 		break;
1360 	}
1361 	if (ointr >= nintrs) {
1362 		return -1;
1363 	}
1364 	return INTIRQ(ointr);
1365 }
1366 #undef SRCBUSLINE
1367 #undef SRCBUSDEVICE
1368 #undef SRCBUSID
1369 #undef SRCBUSIRQ
1370 
1371 #undef INTPIN
1372 #undef INTIRQ
1373 #undef INTAPIC
1374 #undef INTTYPE
1375 
1376 
1377 /*
1378  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1379  *
1380  * XXX FIXME:
1381  *  Exactly what this means is unclear at this point.  It is a solution
1382  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1383  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1384  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1385  *  option.
1386  */
1387 int
1388 undirect_isa_irq(int rirq)
1389 {
1390 #if defined(READY)
1391 	printf("Freeing redirected ISA irq %d.\n", rirq);
1392 	/** FIXME: tickle the MB redirector chip */
1393 	return ???;
1394 #else
1395 	printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1396 	return 0;
1397 #endif  /* READY */
1398 }
1399 
1400 
1401 /*
1402  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1403  */
1404 int
1405 undirect_pci_irq(int rirq)
1406 {
1407 #if defined(READY)
1408 	if (bootverbose)
1409 		printf("Freeing redirected PCI irq %d.\n", rirq);
1410 
1411 	/** FIXME: tickle the MB redirector chip */
1412 	return ???;
1413 #else
1414 	if (bootverbose)
1415 		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1416 		       rirq);
1417 	return 0;
1418 #endif  /* READY */
1419 }
1420 
1421 
1422 /*
1423  * given a bus ID, return:
1424  *  the bus type if found
1425  *  -1 if NOT found
1426  */
1427 int
1428 apic_bus_type(int id)
1429 {
1430 	int     x;
1431 
1432 	for (x = 0; x < mp_nbusses; ++x)
1433 		if (bus_data[x].bus_id == id)
1434 			return bus_data[x].bus_type;
1435 
1436 	return -1;
1437 }
1438 
1439 
1440 /*
1441  * given a LOGICAL APIC# and pin#, return:
1442  *  the associated src bus ID if found
1443  *  -1 if NOT found
1444  */
1445 int
1446 apic_src_bus_id(int apic, int pin)
1447 {
1448 	int     x;
1449 
1450 	/* search each of the possible INTerrupt sources */
1451 	for (x = 0; x < nintrs; ++x)
1452 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1453 		    (pin == io_apic_ints[x].dst_apic_int))
1454 			return (io_apic_ints[x].src_bus_id);
1455 
1456 	return -1;		/* NOT found */
1457 }
1458 
1459 
1460 /*
1461  * given a LOGICAL APIC# and pin#, return:
1462  *  the associated src bus IRQ if found
1463  *  -1 if NOT found
1464  */
1465 int
1466 apic_src_bus_irq(int apic, int pin)
1467 {
1468 	int     x;
1469 
1470 	for (x = 0; x < nintrs; x++)
1471 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1472 		    (pin == io_apic_ints[x].dst_apic_int))
1473 			return (io_apic_ints[x].src_bus_irq);
1474 
1475 	return -1;		/* NOT found */
1476 }
1477 
1478 
1479 /*
1480  * given a LOGICAL APIC# and pin#, return:
1481  *  the associated INTerrupt type if found
1482  *  -1 if NOT found
1483  */
1484 int
1485 apic_int_type(int apic, int pin)
1486 {
1487 	int     x;
1488 
1489 	/* search each of the possible INTerrupt sources */
1490 	for (x = 0; x < nintrs; ++x)
1491 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1492 		    (pin == io_apic_ints[x].dst_apic_int))
1493 			return (io_apic_ints[x].int_type);
1494 
1495 	return -1;		/* NOT found */
1496 }
1497 
1498 int
1499 apic_irq(int apic, int pin)
1500 {
1501 	int x;
1502 	int res;
1503 
1504 	for (x = 0; x < nintrs; ++x)
1505 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1506 		    (pin == io_apic_ints[x].dst_apic_int)) {
1507 			res = io_apic_ints[x].int_vector;
1508 			if (res == 0xff)
1509 				return -1;
1510 			if (apic != int_to_apicintpin[res].ioapic)
1511 				panic("apic_irq: inconsistent table");
1512 			if (pin != int_to_apicintpin[res].int_pin)
1513 				panic("apic_irq inconsistent table (2)");
1514 			return res;
1515 		}
1516 	return -1;
1517 }
1518 
1519 
1520 /*
1521  * given a LOGICAL APIC# and pin#, return:
1522  *  the associated trigger mode if found
1523  *  -1 if NOT found
1524  */
1525 int
1526 apic_trigger(int apic, int pin)
1527 {
1528 	int     x;
1529 
1530 	/* search each of the possible INTerrupt sources */
1531 	for (x = 0; x < nintrs; ++x)
1532 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1533 		    (pin == io_apic_ints[x].dst_apic_int))
1534 			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1535 
1536 	return -1;		/* NOT found */
1537 }
1538 
1539 
1540 /*
1541  * given a LOGICAL APIC# and pin#, return:
1542  *  the associated 'active' level if found
1543  *  -1 if NOT found
1544  */
1545 int
1546 apic_polarity(int apic, int pin)
1547 {
1548 	int     x;
1549 
1550 	/* search each of the possible INTerrupt sources */
1551 	for (x = 0; x < nintrs; ++x)
1552 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1553 		    (pin == io_apic_ints[x].dst_apic_int))
1554 			return (io_apic_ints[x].int_flags & 0x03);
1555 
1556 	return -1;		/* NOT found */
1557 }
1558 
1559 
1560 /*
1561  * set data according to MP defaults
1562  * FIXME: probably not complete yet...
1563  */
1564 static void
1565 default_mp_table(int type)
1566 {
1567 	int     ap_cpu_id;
1568 #if defined(APIC_IO)
1569 	u_int32_t ux;
1570 	int     io_apic_id;
1571 	int     pin;
1572 #endif	/* APIC_IO */
1573 
1574 #if 0
1575 	printf("  MP default config type: %d\n", type);
1576 	switch (type) {
1577 	case 1:
1578 		printf("   bus: ISA, APIC: 82489DX\n");
1579 		break;
1580 	case 2:
1581 		printf("   bus: EISA, APIC: 82489DX\n");
1582 		break;
1583 	case 3:
1584 		printf("   bus: EISA, APIC: 82489DX\n");
1585 		break;
1586 	case 4:
1587 		printf("   bus: MCA, APIC: 82489DX\n");
1588 		break;
1589 	case 5:
1590 		printf("   bus: ISA+PCI, APIC: Integrated\n");
1591 		break;
1592 	case 6:
1593 		printf("   bus: EISA+PCI, APIC: Integrated\n");
1594 		break;
1595 	case 7:
1596 		printf("   bus: MCA+PCI, APIC: Integrated\n");
1597 		break;
1598 	default:
1599 		printf("   future type\n");
1600 		break;
1601 		/* NOTREACHED */
1602 	}
1603 #endif	/* 0 */
1604 
1605 	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1606 	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1607 
1608 	/* BSP */
1609 	CPU_TO_ID(0) = boot_cpu_id;
1610 	ID_TO_CPU(boot_cpu_id) = 0;
1611 
1612 	/* one and only AP */
1613 	CPU_TO_ID(1) = ap_cpu_id;
1614 	ID_TO_CPU(ap_cpu_id) = 1;
1615 
1616 #if defined(APIC_IO)
1617 	/* one and only IO APIC */
1618 	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1619 
1620 	/*
1621 	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1622 	 * necessary as some hardware isn't properly setting up the IO APIC
1623 	 */
1624 #if defined(REALLY_ANAL_IOAPICID_VALUE)
1625 	if (io_apic_id != 2) {
1626 #else
1627 	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1628 #endif	/* REALLY_ANAL_IOAPICID_VALUE */
1629 		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1630 		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1631 		ux |= 0x02000000;	/* set it to '2' */
1632 		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1633 		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1634 		if ((ux & APIC_ID_MASK) != 0x02000000)
1635 			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1636 		io_apic_id = 2;
1637 	}
1638 	IO_TO_ID(0) = io_apic_id;
1639 	ID_TO_IO(io_apic_id) = 0;
1640 #endif	/* APIC_IO */
1641 
1642 	/* fill out bus entries */
1643 	switch (type) {
1644 	case 1:
1645 	case 2:
1646 	case 3:
1647 	case 5:
1648 	case 6:
1649 		bus_data[0].bus_id = default_data[type - 1][1];
1650 		bus_data[0].bus_type = default_data[type - 1][2];
1651 		bus_data[1].bus_id = default_data[type - 1][3];
1652 		bus_data[1].bus_type = default_data[type - 1][4];
1653 		break;
1654 
1655 	/* case 4: case 7:		   MCA NOT supported */
1656 	default:		/* illegal/reserved */
1657 		panic("BAD default MP config: %d", type);
1658 		/* NOTREACHED */
1659 	}
1660 
1661 #if defined(APIC_IO)
1662 	/* general cases from MP v1.4, table 5-2 */
1663 	for (pin = 0; pin < 16; ++pin) {
1664 		io_apic_ints[pin].int_type = 0;
1665 		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1666 		io_apic_ints[pin].src_bus_id = 0;
1667 		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1668 		io_apic_ints[pin].dst_apic_id = io_apic_id;
1669 		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1670 	}
1671 
1672 	/* special cases from MP v1.4, table 5-2 */
1673 	if (type == 2) {
1674 		io_apic_ints[2].int_type = 0xff;	/* N/C */
1675 		io_apic_ints[13].int_type = 0xff;	/* N/C */
1676 #if !defined(APIC_MIXED_MODE)
1677 		/** FIXME: ??? */
1678 		panic("sorry, can't support type 2 default yet");
1679 #endif	/* APIC_MIXED_MODE */
1680 	}
1681 	else
1682 		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1683 
1684 	if (type == 7)
1685 		io_apic_ints[0].int_type = 0xff;	/* N/C */
1686 	else
1687 		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1688 #endif	/* APIC_IO */
1689 }
1690 
1691 
1692 /*
1693  * initialize all the SMP locks
1694  */
1695 
1696 /* critical region around IO APIC, apic_imen */
1697 struct simplelock	imen_lock;
1698 
1699 /* critical region around splxx(), cpl, cml, cil, ipending */
1700 struct simplelock	cpl_lock;
1701 
1702 /* Make FAST_INTR() routines sequential */
1703 struct simplelock	fast_intr_lock;
1704 
1705 /* critical region around INTR() routines */
1706 struct simplelock	intr_lock;
1707 
1708 /* lock regions protected in UP kernel via cli/sti */
1709 struct simplelock	mpintr_lock;
1710 
1711 /* lock region used by kernel profiling */
1712 struct simplelock	mcount_lock;
1713 
1714 #ifdef USE_COMLOCK
1715 /* locks com (tty) data/hardware accesses: a FASTINTR() */
1716 struct simplelock	com_lock;
1717 #endif /* USE_COMLOCK */
1718 
1719 #ifdef USE_CLOCKLOCK
1720 /* lock regions around the clock hardware */
1721 struct simplelock	clock_lock;
1722 #endif /* USE_CLOCKLOCK */
1723 
1724 static void
1725 init_locks(void)
1726 {
1727 	/*
1728 	 * Get the initial mp_lock with a count of 1 for the BSP.
1729 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1730 	 */
1731 	mp_lock = 0x00000001;
1732 
1733 	/* ISR uses its own "giant lock" */
1734 	isr_lock = FREE_LOCK;
1735 
1736 #if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1737 	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1738 #endif
1739 
1740 	s_lock_init((struct simplelock*)&mpintr_lock);
1741 
1742 	s_lock_init((struct simplelock*)&mcount_lock);
1743 
1744 	s_lock_init((struct simplelock*)&fast_intr_lock);
1745 	s_lock_init((struct simplelock*)&intr_lock);
1746 	s_lock_init((struct simplelock*)&imen_lock);
1747 	s_lock_init((struct simplelock*)&cpl_lock);
1748 
1749 #ifdef USE_COMLOCK
1750 	s_lock_init((struct simplelock*)&com_lock);
1751 #endif /* USE_COMLOCK */
1752 #ifdef USE_CLOCKLOCK
1753 	s_lock_init((struct simplelock*)&clock_lock);
1754 #endif /* USE_CLOCKLOCK */
1755 }
1756 
1757 
1758 /*
1759  * start each AP in our list
1760  */
1761 static int
1762 start_all_aps(u_int boot_addr)
1763 {
1764 	int     x, i;
1765 	u_char  mpbiosreason;
1766 	u_long  mpbioswarmvec;
1767 	pd_entry_t *newptd;
1768 	pt_entry_t *newpt;
1769 	struct globaldata *gd;
1770 	char *stack;
1771 	pd_entry_t	*myPTD;
1772 
1773 	POSTCODE(START_ALL_APS_POST);
1774 
1775 	/* initialize BSP's local APIC */
1776 	apic_initialize();
1777 	bsp_apic_ready = 1;
1778 
1779 	/* install the AP 1st level boot code */
1780 	install_ap_tramp(boot_addr);
1781 
1782 
1783 	/* save the current value of the warm-start vector */
1784 	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1785 #ifndef PC98
1786 	outb(CMOS_REG, BIOS_RESET);
1787 	mpbiosreason = inb(CMOS_DATA);
1788 #endif
1789 
1790 	/* record BSP in CPU map */
1791 	all_cpus = 1;
1792 
1793 	/* start each AP */
1794 	for (x = 1; x <= mp_naps; ++x) {
1795 
1796 		/* This is a bit verbose, it will go away soon.  */
1797 
1798 		/* alloc new page table directory */
1799 		newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1800 
1801 		/* Store the virtual PTD address for this CPU */
1802 		IdlePTDS[x] = newptd;
1803 
1804 		/* clone currently active one (ie: IdlePTD) */
1805 		bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1806 
1807 		/* set up 0 -> 4MB P==V mapping for AP boot */
1808 		newptd[0] = (void *)(uintptr_t)(PG_V | PG_RW |
1809 		    ((uintptr_t)(void *)KPTphys & PG_FRAME));
1810 
1811 		/* store PTD for this AP's boot sequence */
1812 		myPTD = (pd_entry_t *)vtophys(newptd);
1813 
1814 		/* alloc new page table page */
1815 		newpt = (pt_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1816 
1817 		/* set the new PTD's private page to point there */
1818 		newptd[MPPTDI] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1819 
1820 		/* install self referential entry */
1821 		newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1822 
1823 		/* allocate a new private data page */
1824 		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1825 
1826 		/* wire it into the private page table page */
1827 		newpt[0] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1828 
1829 		/* wire the ptp into itself for access */
1830 		newpt[1] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1831 
1832 		/* copy in the pointer to the local apic */
1833 		newpt[2] = SMP_prvpt[2];
1834 
1835 		/* and the IO apic mapping[s] */
1836 		for (i = 16; i < 32; i++)
1837 			newpt[i] = SMP_prvpt[i];
1838 
1839 		/* allocate and set up an idle stack data page */
1840 		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1841 		for (i = 0; i < UPAGES; i++)
1842 			newpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1843 
1844 		newpt[3 + UPAGES] = 0;		/* *prv_CMAP1 */
1845 		newpt[4 + UPAGES] = 0;		/* *prv_CMAP2 */
1846 		newpt[5 + UPAGES] = 0;		/* *prv_CMAP3 */
1847 		newpt[6 + UPAGES] = 0;		/* *prv_PMAP1 */
1848 
1849 		/* prime data page for it to use */
1850 		gd->cpuid = x;
1851 		gd->cpu_lockid = x << 24;
1852 		gd->my_idlePTD = myPTD;
1853 		gd->prv_CMAP1 = &newpt[3 + UPAGES];
1854 		gd->prv_CMAP2 = &newpt[4 + UPAGES];
1855 		gd->prv_CMAP3 = &newpt[5 + UPAGES];
1856 		gd->prv_PMAP1 = &newpt[6 + UPAGES];
1857 
1858 		/* setup a vector to our boot code */
1859 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1860 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1861 #ifndef PC98
1862 		outb(CMOS_REG, BIOS_RESET);
1863 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1864 #endif
1865 
1866 		bootPTD = myPTD;
1867 		/* attempt to start the Application Processor */
1868 		CHECK_INIT(99);	/* setup checkpoints */
1869 		if (!start_ap(x, boot_addr)) {
1870 			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1871 			CHECK_PRINT("trace");	/* show checkpoints */
1872 			/* better panic as the AP may be running loose */
1873 			printf("panic y/n? [y] ");
1874 			if (cngetc() != 'n')
1875 				panic("bye-bye");
1876 		}
1877 		CHECK_PRINT("trace");		/* show checkpoints */
1878 
1879 		/* record its version info */
1880 		cpu_apic_versions[x] = cpu_apic_versions[0];
1881 
1882 		all_cpus |= (1 << x);		/* record AP in CPU map */
1883 	}
1884 
1885 	/* build our map of 'other' CPUs */
1886 	other_cpus = all_cpus & ~(1 << cpuid);
1887 
1888 	/* fill in our (BSP) APIC version */
1889 	cpu_apic_versions[0] = lapic.version;
1890 
1891 	/* restore the warmstart vector */
1892 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1893 #ifndef PC98
1894 	outb(CMOS_REG, BIOS_RESET);
1895 	outb(CMOS_DATA, mpbiosreason);
1896 #endif
1897 
1898 	/*
1899 	 * Set up the idle context for the BSP.  Similar to above except
1900 	 * that some was done by locore, some by pmap.c and some is implicit
1901 	 * because the BSP is cpu#0 and the page is initially zero, and also
1902 	 * because we can refer to variables by name on the BSP..
1903 	 */
1904 	newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1905 
1906 	bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1907 	IdlePTDS[0] = newptd;
1908 
1909 	/* Point PTD[] to this page instead of IdlePTD's physical page */
1910 	newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1911 
1912 	my_idlePTD = (pd_entry_t *)vtophys(newptd);
1913 
1914 	/* Allocate and setup BSP idle stack */
1915 	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1916 	for (i = 0; i < UPAGES; i++)
1917 		SMP_prvpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1918 
1919 	pmap_set_opt_bsp();
1920 
1921 	for (i = 0; i < mp_ncpus; i++) {
1922 		bcopy( (int *) PTD + KPTDI, (int *) IdlePTDS[i] + KPTDI, NKPDE * sizeof (int));
1923 	}
1924 
1925 	/* number of APs actually started */
1926 	return mp_ncpus - 1;
1927 }
1928 
1929 
1930 /*
1931  * load the 1st level AP boot code into base memory.
1932  */
1933 
1934 /* targets for relocation */
1935 extern void bigJump(void);
1936 extern void bootCodeSeg(void);
1937 extern void bootDataSeg(void);
1938 extern void MPentry(void);
1939 extern u_int MP_GDT;
1940 extern u_int mp_gdtbase;
1941 
1942 static void
1943 install_ap_tramp(u_int boot_addr)
1944 {
1945 	int     x;
1946 	int     size = *(int *) ((u_long) & bootMP_size);
1947 	u_char *src = (u_char *) ((u_long) bootMP);
1948 	u_char *dst = (u_char *) boot_addr + KERNBASE;
1949 	u_int   boot_base = (u_int) bootMP;
1950 	u_int8_t *dst8;
1951 	u_int16_t *dst16;
1952 	u_int32_t *dst32;
1953 
1954 	POSTCODE(INSTALL_AP_TRAMP_POST);
1955 
1956 	for (x = 0; x < size; ++x)
1957 		*dst++ = *src++;
1958 
1959 	/*
1960 	 * modify addresses in code we just moved to basemem. unfortunately we
1961 	 * need fairly detailed info about mpboot.s for this to work.  changes
1962 	 * to mpboot.s might require changes here.
1963 	 */
1964 
1965 	/* boot code is located in KERNEL space */
1966 	dst = (u_char *) boot_addr + KERNBASE;
1967 
1968 	/* modify the lgdt arg */
1969 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1970 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1971 
1972 	/* modify the ljmp target for MPentry() */
1973 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1974 	*dst32 = ((u_int) MPentry - KERNBASE);
1975 
1976 	/* modify the target for boot code segment */
1977 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1978 	dst8 = (u_int8_t *) (dst16 + 1);
1979 	*dst16 = (u_int) boot_addr & 0xffff;
1980 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1981 
1982 	/* modify the target for boot data segment */
1983 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1984 	dst8 = (u_int8_t *) (dst16 + 1);
1985 	*dst16 = (u_int) boot_addr & 0xffff;
1986 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1987 }
1988 
1989 
1990 /*
1991  * this function starts the AP (application processor) identified
1992  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1993  * to accomplish this.  This is necessary because of the nuances
1994  * of the different hardware we might encounter.  It ain't pretty,
1995  * but it seems to work.
1996  */
1997 static int
1998 start_ap(int logical_cpu, u_int boot_addr)
1999 {
2000 	int     physical_cpu;
2001 	int     vector;
2002 	int     cpus;
2003 	u_long  icr_lo, icr_hi;
2004 
2005 	POSTCODE(START_AP_POST);
2006 
2007 	/* get the PHYSICAL APIC ID# */
2008 	physical_cpu = CPU_TO_ID(logical_cpu);
2009 
2010 	/* calculate the vector */
2011 	vector = (boot_addr >> 12) & 0xff;
2012 
2013 	/* used as a watchpoint to signal AP startup */
2014 	cpus = mp_ncpus;
2015 
2016 	/*
2017 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2018 	 * and running the target CPU. OR this INIT IPI might be latched (P5
2019 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2020 	 * ignored.
2021 	 */
2022 
2023 	/* setup the address for the target AP */
2024 	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2025 	icr_hi |= (physical_cpu << 24);
2026 	lapic.icr_hi = icr_hi;
2027 
2028 	/* do an INIT IPI: assert RESET */
2029 	icr_lo = lapic.icr_lo & 0xfff00000;
2030 	lapic.icr_lo = icr_lo | 0x0000c500;
2031 
2032 	/* wait for pending status end */
2033 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2034 		 /* spin */ ;
2035 
2036 	/* do an INIT IPI: deassert RESET */
2037 	lapic.icr_lo = icr_lo | 0x00008500;
2038 
2039 	/* wait for pending status end */
2040 	u_sleep(10000);		/* wait ~10mS */
2041 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2042 		 /* spin */ ;
2043 
2044 	/*
2045 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2046 	 * latched, (P5 bug) this 1st STARTUP would then terminate
2047 	 * immediately, and the previously started INIT IPI would continue. OR
2048 	 * the previous INIT IPI has already run. and this STARTUP IPI will
2049 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2050 	 * will run.
2051 	 */
2052 
2053 	/* do a STARTUP IPI */
2054 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2055 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2056 		 /* spin */ ;
2057 	u_sleep(200);		/* wait ~200uS */
2058 
2059 	/*
2060 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2061 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2062 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2063 	 * recognized after hardware RESET or INIT IPI.
2064 	 */
2065 
2066 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2067 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2068 		 /* spin */ ;
2069 	u_sleep(200);		/* wait ~200uS */
2070 
2071 	/* wait for it to start */
2072 	set_apic_timer(5000000);/* == 5 seconds */
2073 	while (read_apic_timer())
2074 		if (mp_ncpus > cpus)
2075 			return 1;	/* return SUCCESS */
2076 
2077 	return 0;		/* return FAILURE */
2078 }
2079 
2080 
2081 /*
2082  * Flush the TLB on all other CPU's
2083  *
2084  * XXX: Needs to handshake and wait for completion before proceding.
2085  */
2086 void
2087 smp_invltlb(void)
2088 {
2089 #if defined(APIC_IO)
2090 	if (smp_started && invltlb_ok)
2091 		all_but_self_ipi(XINVLTLB_OFFSET);
2092 #endif  /* APIC_IO */
2093 }
2094 
2095 void
2096 invlpg(u_int addr)
2097 {
2098 	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2099 
2100 	/* send a message to the other CPUs */
2101 	smp_invltlb();
2102 }
2103 
2104 void
2105 invltlb(void)
2106 {
2107 	u_long  temp;
2108 
2109 	/*
2110 	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2111 	 * inlined.
2112 	 */
2113 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2114 
2115 	/* send a message to the other CPUs */
2116 	smp_invltlb();
2117 }
2118 
2119 
2120 /*
2121  * When called the executing CPU will send an IPI to all other CPUs
2122  *  requesting that they halt execution.
2123  *
2124  * Usually (but not necessarily) called with 'other_cpus' as its arg.
2125  *
2126  *  - Signals all CPUs in map to stop.
2127  *  - Waits for each to stop.
2128  *
2129  * Returns:
2130  *  -1: error
2131  *   0: NA
2132  *   1: ok
2133  *
2134  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2135  *            from executing at same time.
2136  */
2137 int
2138 stop_cpus(u_int map)
2139 {
2140 	if (!smp_started)
2141 		return 0;
2142 
2143 	/* send the Xcpustop IPI to all CPUs in map */
2144 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2145 
2146 	while ((stopped_cpus & map) != map)
2147 		/* spin */ ;
2148 
2149 	return 1;
2150 }
2151 
2152 
2153 /*
2154  * Called by a CPU to restart stopped CPUs.
2155  *
2156  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2157  *
2158  *  - Signals all CPUs in map to restart.
2159  *  - Waits for each to restart.
2160  *
2161  * Returns:
2162  *  -1: error
2163  *   0: NA
2164  *   1: ok
2165  */
2166 int
2167 restart_cpus(u_int map)
2168 {
2169 	if (!smp_started)
2170 		return 0;
2171 
2172 	started_cpus = map;		/* signal other cpus to restart */
2173 
2174 	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2175 		/* spin */ ;
2176 
2177 	return 1;
2178 }
2179 
2180 int smp_active = 0;	/* are the APs allowed to run? */
2181 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2182 
2183 /* XXX maybe should be hw.ncpu */
2184 static int smp_cpus = 1;	/* how many cpu's running */
2185 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2186 
2187 int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2188 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2189 
2190 /* Warning: Do not staticize.  Used from swtch.s */
2191 int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2192 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2193 	   &do_page_zero_idle, 0, "");
2194 
2195 /* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2196 int forward_irq_enabled = 1;
2197 SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2198 	   &forward_irq_enabled, 0, "");
2199 
2200 /* Enable forwarding of a signal to a process running on a different CPU */
2201 static int forward_signal_enabled = 1;
2202 SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2203 	   &forward_signal_enabled, 0, "");
2204 
2205 /* Enable forwarding of roundrobin to all other cpus */
2206 static int forward_roundrobin_enabled = 1;
2207 SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2208 	   &forward_roundrobin_enabled, 0, "");
2209 
2210 /*
2211  * This is called once the rest of the system is up and running and we're
2212  * ready to let the AP's out of the pen.
2213  */
2214 void ap_init(void);
2215 
2216 void
2217 ap_init()
2218 {
2219 	u_int	apic_id;
2220 
2221 	smp_cpus++;
2222 
2223 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2224 	lidt(&r_idt);
2225 #endif
2226 
2227 	/* Build our map of 'other' CPUs. */
2228 	other_cpus = all_cpus & ~(1 << cpuid);
2229 
2230 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2231 
2232 	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
2233 	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
2234 
2235 	/* A quick check from sanity claus */
2236 	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2237 	if (cpuid != apic_id) {
2238 		printf("SMP: cpuid = %d\n", cpuid);
2239 		printf("SMP: apic_id = %d\n", apic_id);
2240 		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2241 		panic("cpuid mismatch! boom!!");
2242 	}
2243 
2244 	getmtrr();
2245 
2246 	/* Init local apic for irq's */
2247 	apic_initialize();
2248 
2249 	/*
2250 	 * Activate smp_invltlb, although strictly speaking, this isn't
2251 	 * quite correct yet.  We should have a bitfield for cpus willing
2252 	 * to accept TLB flush IPI's or something and sync them.
2253 	 */
2254 	if (smp_cpus == mp_ncpus) {
2255 		invltlb_ok = 1;
2256 		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2257 		smp_active = 1;	 /* historic */
2258 	}
2259 
2260 	curproc = NULL;		/* make sure */
2261 }
2262 
2263 #ifdef BETTER_CLOCK
2264 
2265 #define CHECKSTATE_USER	0
2266 #define CHECKSTATE_SYS	1
2267 #define CHECKSTATE_INTR	2
2268 
2269 /* Do not staticize.  Used from apic_vector.s */
2270 struct proc*	checkstate_curproc[NCPU];
2271 int		checkstate_cpustate[NCPU];
2272 u_long		checkstate_pc[NCPU];
2273 
2274 extern long	cp_time[CPUSTATES];
2275 
2276 #define PC_TO_INDEX(pc, prof)				\
2277         ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2278             (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2279 
2280 static void
2281 addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2282 {
2283 	int i;
2284 	struct uprof *prof;
2285 	u_long pc;
2286 
2287 	pc = checkstate_pc[id];
2288 	prof = &p->p_stats->p_prof;
2289 	if (pc >= prof->pr_off &&
2290 	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2291 		if ((p->p_flag & P_OWEUPC) == 0) {
2292 			prof->pr_addr = pc;
2293 			prof->pr_ticks = 1;
2294 			p->p_flag |= P_OWEUPC;
2295 		}
2296 		*astmap |= (1 << id);
2297 	}
2298 }
2299 
2300 static void
2301 forwarded_statclock(int id, int pscnt, int *astmap)
2302 {
2303 	struct pstats *pstats;
2304 	long rss;
2305 	struct rusage *ru;
2306 	struct vmspace *vm;
2307 	int cpustate;
2308 	struct proc *p;
2309 #ifdef GPROF
2310 	register struct gmonparam *g;
2311 	int i;
2312 #endif
2313 
2314 	p = checkstate_curproc[id];
2315 	cpustate = checkstate_cpustate[id];
2316 
2317 	switch (cpustate) {
2318 	case CHECKSTATE_USER:
2319 		if (p->p_flag & P_PROFIL)
2320 			addupc_intr_forwarded(p, id, astmap);
2321 		if (pscnt > 1)
2322 			return;
2323 		p->p_uticks++;
2324 		if (p->p_nice > NZERO)
2325 			cp_time[CP_NICE]++;
2326 		else
2327 			cp_time[CP_USER]++;
2328 		break;
2329 	case CHECKSTATE_SYS:
2330 #ifdef GPROF
2331 		/*
2332 		 * Kernel statistics are just like addupc_intr, only easier.
2333 		 */
2334 		g = &_gmonparam;
2335 		if (g->state == GMON_PROF_ON) {
2336 			i = checkstate_pc[id] - g->lowpc;
2337 			if (i < g->textsize) {
2338 				i /= HISTFRACTION * sizeof(*g->kcount);
2339 				g->kcount[i]++;
2340 			}
2341 		}
2342 #endif
2343 		if (pscnt > 1)
2344 			return;
2345 
2346 		if (!p)
2347 			cp_time[CP_IDLE]++;
2348 		else {
2349 			p->p_sticks++;
2350 			cp_time[CP_SYS]++;
2351 		}
2352 		break;
2353 	case CHECKSTATE_INTR:
2354 	default:
2355 #ifdef GPROF
2356 		/*
2357 		 * Kernel statistics are just like addupc_intr, only easier.
2358 		 */
2359 		g = &_gmonparam;
2360 		if (g->state == GMON_PROF_ON) {
2361 			i = checkstate_pc[id] - g->lowpc;
2362 			if (i < g->textsize) {
2363 				i /= HISTFRACTION * sizeof(*g->kcount);
2364 				g->kcount[i]++;
2365 			}
2366 		}
2367 #endif
2368 		if (pscnt > 1)
2369 			return;
2370 		if (p)
2371 			p->p_iticks++;
2372 		cp_time[CP_INTR]++;
2373 	}
2374 	if (p != NULL) {
2375 		p->p_cpticks++;
2376 		if (++p->p_estcpu == 0)
2377 			p->p_estcpu--;
2378 		if ((p->p_estcpu & 3) == 0) {
2379 			resetpriority(p);
2380 			if (p->p_priority >= PUSER)
2381 				p->p_priority = p->p_usrpri;
2382 		}
2383 
2384 		/* Update resource usage integrals and maximums. */
2385 		if ((pstats = p->p_stats) != NULL &&
2386 		    (ru = &pstats->p_ru) != NULL &&
2387 		    (vm = p->p_vmspace) != NULL) {
2388 			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
2389 			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
2390 			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
2391 			rss = vm->vm_pmap.pm_stats.resident_count *
2392 				PAGE_SIZE / 1024;
2393 			if (ru->ru_maxrss < rss)
2394 				ru->ru_maxrss = rss;
2395         	}
2396 	}
2397 }
2398 
2399 void
2400 forward_statclock(int pscnt)
2401 {
2402 	int map;
2403 	int id;
2404 	int i;
2405 
2406 	/* Kludge. We don't yet have separate locks for the interrupts
2407 	 * and the kernel. This means that we cannot let the other processors
2408 	 * handle complex interrupts while inhibiting them from entering
2409 	 * the kernel in a non-interrupt context.
2410 	 *
2411 	 * What we can do, without changing the locking mechanisms yet,
2412 	 * is letting the other processors handle a very simple interrupt
2413 	 * (wich determines the processor states), and do the main
2414 	 * work ourself.
2415 	 */
2416 
2417 	if (!smp_started || !invltlb_ok || cold || panicstr)
2418 		return;
2419 
2420 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2421 
2422 	map = other_cpus & ~stopped_cpus ;
2423 	checkstate_probed_cpus = 0;
2424 	if (map != 0)
2425 		selected_apic_ipi(map,
2426 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2427 
2428 	i = 0;
2429 	while (checkstate_probed_cpus != map) {
2430 		/* spin */
2431 		i++;
2432 		if (i == 100000) {
2433 #ifdef BETTER_CLOCK_DIAGNOSTIC
2434 			printf("forward_statclock: checkstate %x\n",
2435 			       checkstate_probed_cpus);
2436 #endif
2437 			break;
2438 		}
2439 	}
2440 
2441 	/*
2442 	 * Step 2: walk through other processors processes, update ticks and
2443 	 * profiling info.
2444 	 */
2445 
2446 	map = 0;
2447 	for (id = 0; id < mp_ncpus; id++) {
2448 		if (id == cpuid)
2449 			continue;
2450 		if (((1 << id) & checkstate_probed_cpus) == 0)
2451 			continue;
2452 		forwarded_statclock(id, pscnt, &map);
2453 	}
2454 	if (map != 0) {
2455 		checkstate_need_ast |= map;
2456 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2457 		i = 0;
2458 		while ((checkstate_need_ast & map) != 0) {
2459 			/* spin */
2460 			i++;
2461 			if (i > 100000) {
2462 #ifdef BETTER_CLOCK_DIAGNOSTIC
2463 				printf("forward_statclock: dropped ast 0x%x\n",
2464 				       checkstate_need_ast & map);
2465 #endif
2466 				break;
2467 			}
2468 		}
2469 	}
2470 }
2471 
2472 void
2473 forward_hardclock(int pscnt)
2474 {
2475 	int map;
2476 	int id;
2477 	struct proc *p;
2478 	struct pstats *pstats;
2479 	int i;
2480 
2481 	/* Kludge. We don't yet have separate locks for the interrupts
2482 	 * and the kernel. This means that we cannot let the other processors
2483 	 * handle complex interrupts while inhibiting them from entering
2484 	 * the kernel in a non-interrupt context.
2485 	 *
2486 	 * What we can do, without changing the locking mechanisms yet,
2487 	 * is letting the other processors handle a very simple interrupt
2488 	 * (wich determines the processor states), and do the main
2489 	 * work ourself.
2490 	 */
2491 
2492 	if (!smp_started || !invltlb_ok || cold || panicstr)
2493 		return;
2494 
2495 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2496 
2497 	map = other_cpus & ~stopped_cpus ;
2498 	checkstate_probed_cpus = 0;
2499 	if (map != 0)
2500 		selected_apic_ipi(map,
2501 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2502 
2503 	i = 0;
2504 	while (checkstate_probed_cpus != map) {
2505 		/* spin */
2506 		i++;
2507 		if (i == 100000) {
2508 #ifdef BETTER_CLOCK_DIAGNOSTIC
2509 			printf("forward_hardclock: checkstate %x\n",
2510 			       checkstate_probed_cpus);
2511 #endif
2512 			break;
2513 		}
2514 	}
2515 
2516 	/*
2517 	 * Step 2: walk through other processors processes, update virtual
2518 	 * timer and profiling timer. If stathz == 0, also update ticks and
2519 	 * profiling info.
2520 	 */
2521 
2522 	map = 0;
2523 	for (id = 0; id < mp_ncpus; id++) {
2524 		if (id == cpuid)
2525 			continue;
2526 		if (((1 << id) & checkstate_probed_cpus) == 0)
2527 			continue;
2528 		p = checkstate_curproc[id];
2529 		if (p) {
2530 			pstats = p->p_stats;
2531 			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2532 			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2533 			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2534 				psignal(p, SIGVTALRM);
2535 				map |= (1 << id);
2536 			}
2537 			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2538 			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2539 				psignal(p, SIGPROF);
2540 				map |= (1 << id);
2541 			}
2542 		}
2543 		if (stathz == 0) {
2544 			forwarded_statclock( id, pscnt, &map);
2545 		}
2546 	}
2547 	if (map != 0) {
2548 		checkstate_need_ast |= map;
2549 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2550 		i = 0;
2551 		while ((checkstate_need_ast & map) != 0) {
2552 			/* spin */
2553 			i++;
2554 			if (i > 100000) {
2555 #ifdef BETTER_CLOCK_DIAGNOSTIC
2556 				printf("forward_hardclock: dropped ast 0x%x\n",
2557 				       checkstate_need_ast & map);
2558 #endif
2559 				break;
2560 			}
2561 		}
2562 	}
2563 }
2564 
2565 #endif /* BETTER_CLOCK */
2566 
2567 void
2568 forward_signal(struct proc *p)
2569 {
2570 	int map;
2571 	int id;
2572 	int i;
2573 
2574 	/* Kludge. We don't yet have separate locks for the interrupts
2575 	 * and the kernel. This means that we cannot let the other processors
2576 	 * handle complex interrupts while inhibiting them from entering
2577 	 * the kernel in a non-interrupt context.
2578 	 *
2579 	 * What we can do, without changing the locking mechanisms yet,
2580 	 * is letting the other processors handle a very simple interrupt
2581 	 * (wich determines the processor states), and do the main
2582 	 * work ourself.
2583 	 */
2584 
2585 	if (!smp_started || !invltlb_ok || cold || panicstr)
2586 		return;
2587 	if (!forward_signal_enabled)
2588 		return;
2589 	while (1) {
2590 		if (p->p_stat != SRUN)
2591 			return;
2592 		id = (u_char) p->p_oncpu;
2593 		if (id == 0xff)
2594 			return;
2595 		map = (1<<id);
2596 		checkstate_need_ast |= map;
2597 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2598 		i = 0;
2599 		while ((checkstate_need_ast & map) != 0) {
2600 			/* spin */
2601 			i++;
2602 			if (i > 100000) {
2603 #if 0
2604 				printf("forward_signal: dropped ast 0x%x\n",
2605 				       checkstate_need_ast & map);
2606 #endif
2607 				break;
2608 			}
2609 		}
2610 		if (id == (u_char) p->p_oncpu)
2611 			return;
2612 	}
2613 }
2614 
2615 void
2616 forward_roundrobin(void)
2617 {
2618 	u_int map;
2619 	int i;
2620 
2621 	if (!smp_started || !invltlb_ok || cold || panicstr)
2622 		return;
2623 	if (!forward_roundrobin_enabled)
2624 		return;
2625 	resched_cpus |= other_cpus;
2626 	map = other_cpus & ~stopped_cpus ;
2627 #if 1
2628 	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2629 #else
2630 	(void) all_but_self_ipi(XCPUAST_OFFSET);
2631 #endif
2632 	i = 0;
2633 	while ((checkstate_need_ast & map) != 0) {
2634 		/* spin */
2635 		i++;
2636 		if (i > 100000) {
2637 #if 0
2638 			printf("forward_roundrobin: dropped ast 0x%x\n",
2639 			       checkstate_need_ast & map);
2640 #endif
2641 			break;
2642 		}
2643 	}
2644 }
2645 
2646 
2647 #ifdef APIC_INTR_REORDER
2648 /*
2649  *	Maintain mapping from softintr vector to isr bit in local apic.
2650  */
2651 void
2652 set_lapic_isrloc(int intr, int vector)
2653 {
2654 	if (intr < 0 || intr > 32)
2655 		panic("set_apic_isrloc: bad intr argument: %d",intr);
2656 	if (vector < ICU_OFFSET || vector > 255)
2657 		panic("set_apic_isrloc: bad vector argument: %d",vector);
2658 	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2659 	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2660 }
2661 #endif
2662