xref: /freebsd/sys/kern/subr_smp.c (revision 2f02600abfddfc4e9f20dd384a2e729b451e16bd)
1 /*-
2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * This module holds the global variables and machine independent functions
32  * used for the kernel SMP support.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/proc.h>
43 #include <sys/bus.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/pcpu.h>
47 #include <sys/sched.h>
48 #include <sys/smp.h>
49 #include <sys/sysctl.h>
50 
51 #include <machine/cpu.h>
52 #include <machine/smp.h>
53 
54 #include "opt_sched.h"
55 
56 #ifdef SMP
57 volatile cpuset_t stopped_cpus;
58 volatile cpuset_t started_cpus;
59 volatile cpuset_t suspended_cpus;
60 cpuset_t hlt_cpus_mask;
61 cpuset_t logical_cpus_mask;
62 
63 void (*cpustop_restartfunc)(void);
64 #endif
65 /* This is used in modules that need to work in both SMP and UP. */
66 cpuset_t all_cpus;
67 
68 int mp_ncpus;
69 /* export this for libkvm consumers. */
70 int mp_maxcpus = MAXCPU;
71 
72 volatile int smp_started;
73 u_int mp_maxid;
74 
75 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
76     "Kernel SMP");
77 
78 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
79     "Max CPU ID.");
80 
81 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
82     0, "Max number of CPUs that the system was compiled for.");
83 
84 int smp_active = 0;	/* are the APs allowed to run? */
85 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
86     "Number of Auxillary Processors (APs) that were successfully started");
87 
88 int smp_disabled = 0;	/* has smp been disabled? */
89 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
90     &smp_disabled, 0, "SMP has been disabled from the loader");
91 TUNABLE_INT("kern.smp.disabled", &smp_disabled);
92 
93 int smp_cpus = 1;	/* how many cpu's running */
94 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
95     "Number of CPUs online");
96 
97 int smp_topology = 0;	/* Which topology we're using. */
98 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
99     "Topology override setting; 0 is default provided by hardware.");
100 TUNABLE_INT("kern.smp.topology", &smp_topology);
101 
102 #ifdef SMP
103 /* Enable forwarding of a signal to a process running on a different CPU */
104 static int forward_signal_enabled = 1;
105 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
106 	   &forward_signal_enabled, 0,
107 	   "Forwarding of a signal to a process on a different CPU");
108 
109 /* Variables needed for SMP rendezvous. */
110 static volatile int smp_rv_ncpus;
111 static void (*volatile smp_rv_setup_func)(void *arg);
112 static void (*volatile smp_rv_action_func)(void *arg);
113 static void (*volatile smp_rv_teardown_func)(void *arg);
114 static void *volatile smp_rv_func_arg;
115 static volatile int smp_rv_waiters[4];
116 
117 /*
118  * Shared mutex to restrict busywaits between smp_rendezvous() and
119  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
120  * functions trigger at once and cause multiple CPUs to busywait with
121  * interrupts disabled.
122  */
123 struct mtx smp_ipi_mtx;
124 
125 /*
126  * Let the MD SMP code initialize mp_maxid very early if it can.
127  */
128 static void
129 mp_setmaxid(void *dummy)
130 {
131 	cpu_mp_setmaxid();
132 }
133 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
134 
135 /*
136  * Call the MD SMP initialization code.
137  */
138 static void
139 mp_start(void *dummy)
140 {
141 
142 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
143 
144 	/* Probe for MP hardware. */
145 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
146 		mp_ncpus = 1;
147 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
148 		return;
149 	}
150 
151 	cpu_mp_start();
152 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
153 	    mp_ncpus);
154 	cpu_mp_announce();
155 }
156 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
157 
158 void
159 forward_signal(struct thread *td)
160 {
161 	int id;
162 
163 	/*
164 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
165 	 * this thread, so all we need to do is poke it if it is currently
166 	 * executing so that it executes ast().
167 	 */
168 	THREAD_LOCK_ASSERT(td, MA_OWNED);
169 	KASSERT(TD_IS_RUNNING(td),
170 	    ("forward_signal: thread is not TDS_RUNNING"));
171 
172 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
173 
174 	if (!smp_started || cold || panicstr)
175 		return;
176 	if (!forward_signal_enabled)
177 		return;
178 
179 	/* No need to IPI ourself. */
180 	if (td == curthread)
181 		return;
182 
183 	id = td->td_oncpu;
184 	if (id == NOCPU)
185 		return;
186 	ipi_cpu(id, IPI_AST);
187 }
188 
189 /*
190  * When called the executing CPU will send an IPI to all other CPUs
191  *  requesting that they halt execution.
192  *
193  * Usually (but not necessarily) called with 'other_cpus' as its arg.
194  *
195  *  - Signals all CPUs in map to stop.
196  *  - Waits for each to stop.
197  *
198  * Returns:
199  *  -1: error
200  *   0: NA
201  *   1: ok
202  *
203  */
204 static int
205 generic_stop_cpus(cpuset_t map, u_int type)
206 {
207 #ifdef KTR
208 	char cpusetbuf[CPUSETBUFSIZ];
209 #endif
210 	static volatile u_int stopping_cpu = NOCPU;
211 	int i;
212 	volatile cpuset_t *cpus;
213 
214 	KASSERT(
215 #if defined(__amd64__) || defined(__i386__)
216 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
217 #else
218 	    type == IPI_STOP || type == IPI_STOP_HARD,
219 #endif
220 	    ("%s: invalid stop type", __func__));
221 
222 	if (!smp_started)
223 		return (0);
224 
225 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
226 	    cpusetobj_strprint(cpusetbuf, &map), type);
227 
228 #if defined(__amd64__) || defined(__i386__)
229 	/*
230 	 * When suspending, ensure there are are no IPIs in progress.
231 	 * IPIs that have been issued, but not yet delivered (e.g.
232 	 * not pending on a vCPU when running under virtualization)
233 	 * will be lost, violating FreeBSD's assumption of reliable
234 	 * IPI delivery.
235 	 */
236 	if (type == IPI_SUSPEND)
237 		mtx_lock_spin(&smp_ipi_mtx);
238 #endif
239 
240 	if (stopping_cpu != PCPU_GET(cpuid))
241 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
242 		    PCPU_GET(cpuid)) == 0)
243 			while (stopping_cpu != NOCPU)
244 				cpu_spinwait(); /* spin */
245 
246 	/* send the stop IPI to all CPUs in map */
247 	ipi_selected(map, type);
248 
249 #if defined(__amd64__) || defined(__i386__)
250 	if (type == IPI_SUSPEND)
251 		cpus = &suspended_cpus;
252 	else
253 #endif
254 		cpus = &stopped_cpus;
255 
256 	i = 0;
257 	while (!CPU_SUBSET(cpus, &map)) {
258 		/* spin */
259 		cpu_spinwait();
260 		i++;
261 		if (i == 100000000) {
262 			printf("timeout stopping cpus\n");
263 			break;
264 		}
265 	}
266 
267 #if defined(__amd64__) || defined(__i386__)
268 	if (type == IPI_SUSPEND)
269 		mtx_unlock_spin(&smp_ipi_mtx);
270 #endif
271 
272 	stopping_cpu = NOCPU;
273 	return (1);
274 }
275 
276 int
277 stop_cpus(cpuset_t map)
278 {
279 
280 	return (generic_stop_cpus(map, IPI_STOP));
281 }
282 
283 int
284 stop_cpus_hard(cpuset_t map)
285 {
286 
287 	return (generic_stop_cpus(map, IPI_STOP_HARD));
288 }
289 
290 #if defined(__amd64__) || defined(__i386__)
291 int
292 suspend_cpus(cpuset_t map)
293 {
294 
295 	return (generic_stop_cpus(map, IPI_SUSPEND));
296 }
297 #endif
298 
299 /*
300  * Called by a CPU to restart stopped CPUs.
301  *
302  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
303  *
304  *  - Signals all CPUs in map to restart.
305  *  - Waits for each to restart.
306  *
307  * Returns:
308  *  -1: error
309  *   0: NA
310  *   1: ok
311  */
312 static int
313 generic_restart_cpus(cpuset_t map, u_int type)
314 {
315 #ifdef KTR
316 	char cpusetbuf[CPUSETBUFSIZ];
317 #endif
318 	volatile cpuset_t *cpus;
319 
320 	KASSERT(
321 #if defined(__amd64__) || defined(__i386__)
322 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
323 #else
324 	    type == IPI_STOP || type == IPI_STOP_HARD,
325 #endif
326 	    ("%s: invalid stop type", __func__));
327 
328 	if (!smp_started)
329 		return 0;
330 
331 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
332 
333 #if defined(__amd64__) || defined(__i386__)
334 	if (type == IPI_SUSPEND)
335 		cpus = &suspended_cpus;
336 	else
337 #endif
338 		cpus = &stopped_cpus;
339 
340 	/* signal other cpus to restart */
341 	CPU_COPY_STORE_REL(&map, &started_cpus);
342 
343 	/* wait for each to clear its bit */
344 	while (CPU_OVERLAP(cpus, &map))
345 		cpu_spinwait();
346 
347 	return 1;
348 }
349 
350 int
351 restart_cpus(cpuset_t map)
352 {
353 
354 	return (generic_restart_cpus(map, IPI_STOP));
355 }
356 
357 #if defined(__amd64__) || defined(__i386__)
358 int
359 resume_cpus(cpuset_t map)
360 {
361 
362 	return (generic_restart_cpus(map, IPI_SUSPEND));
363 }
364 #endif
365 
366 /*
367  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
368  * (if specified), rendezvous, execute the action function (if specified),
369  * rendezvous again, execute the teardown function (if specified), and then
370  * resume.
371  *
372  * Note that the supplied external functions _must_ be reentrant and aware
373  * that they are running in parallel and in an unknown lock context.
374  */
375 void
376 smp_rendezvous_action(void)
377 {
378 	struct thread *td;
379 	void *local_func_arg;
380 	void (*local_setup_func)(void*);
381 	void (*local_action_func)(void*);
382 	void (*local_teardown_func)(void*);
383 #ifdef INVARIANTS
384 	int owepreempt;
385 #endif
386 
387 	/* Ensure we have up-to-date values. */
388 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
389 	while (smp_rv_waiters[0] < smp_rv_ncpus)
390 		cpu_spinwait();
391 
392 	/* Fetch rendezvous parameters after acquire barrier. */
393 	local_func_arg = smp_rv_func_arg;
394 	local_setup_func = smp_rv_setup_func;
395 	local_action_func = smp_rv_action_func;
396 	local_teardown_func = smp_rv_teardown_func;
397 
398 	/*
399 	 * Use a nested critical section to prevent any preemptions
400 	 * from occurring during a rendezvous action routine.
401 	 * Specifically, if a rendezvous handler is invoked via an IPI
402 	 * and the interrupted thread was in the critical_exit()
403 	 * function after setting td_critnest to 0 but before
404 	 * performing a deferred preemption, this routine can be
405 	 * invoked with td_critnest set to 0 and td_owepreempt true.
406 	 * In that case, a critical_exit() during the rendezvous
407 	 * action would trigger a preemption which is not permitted in
408 	 * a rendezvous action.  To fix this, wrap all of the
409 	 * rendezvous action handlers in a critical section.  We
410 	 * cannot use a regular critical section however as having
411 	 * critical_exit() preempt from this routine would also be
412 	 * problematic (the preemption must not occur before the IPI
413 	 * has been acknowledged via an EOI).  Instead, we
414 	 * intentionally ignore td_owepreempt when leaving the
415 	 * critical section.  This should be harmless because we do
416 	 * not permit rendezvous action routines to schedule threads,
417 	 * and thus td_owepreempt should never transition from 0 to 1
418 	 * during this routine.
419 	 */
420 	td = curthread;
421 	td->td_critnest++;
422 #ifdef INVARIANTS
423 	owepreempt = td->td_owepreempt;
424 #endif
425 
426 	/*
427 	 * If requested, run a setup function before the main action
428 	 * function.  Ensure all CPUs have completed the setup
429 	 * function before moving on to the action function.
430 	 */
431 	if (local_setup_func != smp_no_rendevous_barrier) {
432 		if (smp_rv_setup_func != NULL)
433 			smp_rv_setup_func(smp_rv_func_arg);
434 		atomic_add_int(&smp_rv_waiters[1], 1);
435 		while (smp_rv_waiters[1] < smp_rv_ncpus)
436                 	cpu_spinwait();
437 	}
438 
439 	if (local_action_func != NULL)
440 		local_action_func(local_func_arg);
441 
442 	if (local_teardown_func != smp_no_rendevous_barrier) {
443 		/*
444 		 * Signal that the main action has been completed.  If a
445 		 * full exit rendezvous is requested, then all CPUs will
446 		 * wait here until all CPUs have finished the main action.
447 		 */
448 		atomic_add_int(&smp_rv_waiters[2], 1);
449 		while (smp_rv_waiters[2] < smp_rv_ncpus)
450 			cpu_spinwait();
451 
452 		if (local_teardown_func != NULL)
453 			local_teardown_func(local_func_arg);
454 	}
455 
456 	/*
457 	 * Signal that the rendezvous is fully completed by this CPU.
458 	 * This means that no member of smp_rv_* pseudo-structure will be
459 	 * accessed by this target CPU after this point; in particular,
460 	 * memory pointed by smp_rv_func_arg.
461 	 */
462 	atomic_add_int(&smp_rv_waiters[3], 1);
463 
464 	td->td_critnest--;
465 	KASSERT(owepreempt == td->td_owepreempt,
466 	    ("rendezvous action changed td_owepreempt"));
467 }
468 
469 void
470 smp_rendezvous_cpus(cpuset_t map,
471 	void (* setup_func)(void *),
472 	void (* action_func)(void *),
473 	void (* teardown_func)(void *),
474 	void *arg)
475 {
476 	int curcpumap, i, ncpus = 0;
477 
478 	/* Look comments in the !SMP case. */
479 	if (!smp_started) {
480 		spinlock_enter();
481 		if (setup_func != NULL)
482 			setup_func(arg);
483 		if (action_func != NULL)
484 			action_func(arg);
485 		if (teardown_func != NULL)
486 			teardown_func(arg);
487 		spinlock_exit();
488 		return;
489 	}
490 
491 	CPU_FOREACH(i) {
492 		if (CPU_ISSET(i, &map))
493 			ncpus++;
494 	}
495 	if (ncpus == 0)
496 		panic("ncpus is 0 with non-zero map");
497 
498 	mtx_lock_spin(&smp_ipi_mtx);
499 
500 	/* Pass rendezvous parameters via global variables. */
501 	smp_rv_ncpus = ncpus;
502 	smp_rv_setup_func = setup_func;
503 	smp_rv_action_func = action_func;
504 	smp_rv_teardown_func = teardown_func;
505 	smp_rv_func_arg = arg;
506 	smp_rv_waiters[1] = 0;
507 	smp_rv_waiters[2] = 0;
508 	smp_rv_waiters[3] = 0;
509 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
510 
511 	/*
512 	 * Signal other processors, which will enter the IPI with
513 	 * interrupts off.
514 	 */
515 	curcpumap = CPU_ISSET(curcpu, &map);
516 	CPU_CLR(curcpu, &map);
517 	ipi_selected(map, IPI_RENDEZVOUS);
518 
519 	/* Check if the current CPU is in the map */
520 	if (curcpumap != 0)
521 		smp_rendezvous_action();
522 
523 	/*
524 	 * Ensure that the master CPU waits for all the other
525 	 * CPUs to finish the rendezvous, so that smp_rv_*
526 	 * pseudo-structure and the arg are guaranteed to not
527 	 * be in use.
528 	 */
529 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
530 		cpu_spinwait();
531 
532 	mtx_unlock_spin(&smp_ipi_mtx);
533 }
534 
535 void
536 smp_rendezvous(void (* setup_func)(void *),
537 	       void (* action_func)(void *),
538 	       void (* teardown_func)(void *),
539 	       void *arg)
540 {
541 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
542 }
543 
544 static struct cpu_group group[MAXCPU];
545 
546 struct cpu_group *
547 smp_topo(void)
548 {
549 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
550 	struct cpu_group *top;
551 
552 	/*
553 	 * Check for a fake topology request for debugging purposes.
554 	 */
555 	switch (smp_topology) {
556 	case 1:
557 		/* Dual core with no sharing.  */
558 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
559 		break;
560 	case 2:
561 		/* No topology, all cpus are equal. */
562 		top = smp_topo_none();
563 		break;
564 	case 3:
565 		/* Dual core with shared L2.  */
566 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
567 		break;
568 	case 4:
569 		/* quad core, shared l3 among each package, private l2.  */
570 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
571 		break;
572 	case 5:
573 		/* quad core,  2 dualcore parts on each package share l2.  */
574 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
575 		break;
576 	case 6:
577 		/* Single-core 2xHTT */
578 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
579 		break;
580 	case 7:
581 		/* quad core with a shared l3, 8 threads sharing L2.  */
582 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
583 		    CG_FLAG_SMT);
584 		break;
585 	default:
586 		/* Default, ask the system what it wants. */
587 		top = cpu_topo();
588 		break;
589 	}
590 	/*
591 	 * Verify the returned topology.
592 	 */
593 	if (top->cg_count != mp_ncpus)
594 		panic("Built bad topology at %p.  CPU count %d != %d",
595 		    top, top->cg_count, mp_ncpus);
596 	if (CPU_CMP(&top->cg_mask, &all_cpus))
597 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
598 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
599 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
600 	return (top);
601 }
602 
603 struct cpu_group *
604 smp_topo_none(void)
605 {
606 	struct cpu_group *top;
607 
608 	top = &group[0];
609 	top->cg_parent = NULL;
610 	top->cg_child = NULL;
611 	top->cg_mask = all_cpus;
612 	top->cg_count = mp_ncpus;
613 	top->cg_children = 0;
614 	top->cg_level = CG_SHARE_NONE;
615 	top->cg_flags = 0;
616 
617 	return (top);
618 }
619 
620 static int
621 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
622     int count, int flags, int start)
623 {
624 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
625 	cpuset_t mask;
626 	int i;
627 
628 	CPU_ZERO(&mask);
629 	for (i = 0; i < count; i++, start++)
630 		CPU_SET(start, &mask);
631 	child->cg_parent = parent;
632 	child->cg_child = NULL;
633 	child->cg_children = 0;
634 	child->cg_level = share;
635 	child->cg_count = count;
636 	child->cg_flags = flags;
637 	child->cg_mask = mask;
638 	parent->cg_children++;
639 	for (; parent != NULL; parent = parent->cg_parent) {
640 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
641 			panic("Duplicate children in %p.  mask (%s) child (%s)",
642 			    parent,
643 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
644 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
645 		CPU_OR(&parent->cg_mask, &child->cg_mask);
646 		parent->cg_count += child->cg_count;
647 	}
648 
649 	return (start);
650 }
651 
652 struct cpu_group *
653 smp_topo_1level(int share, int count, int flags)
654 {
655 	struct cpu_group *child;
656 	struct cpu_group *top;
657 	int packages;
658 	int cpu;
659 	int i;
660 
661 	cpu = 0;
662 	top = &group[0];
663 	packages = mp_ncpus / count;
664 	top->cg_child = child = &group[1];
665 	top->cg_level = CG_SHARE_NONE;
666 	for (i = 0; i < packages; i++, child++)
667 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
668 	return (top);
669 }
670 
671 struct cpu_group *
672 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
673     int l1flags)
674 {
675 	struct cpu_group *top;
676 	struct cpu_group *l1g;
677 	struct cpu_group *l2g;
678 	int cpu;
679 	int i;
680 	int j;
681 
682 	cpu = 0;
683 	top = &group[0];
684 	l2g = &group[1];
685 	top->cg_child = l2g;
686 	top->cg_level = CG_SHARE_NONE;
687 	top->cg_children = mp_ncpus / (l2count * l1count);
688 	l1g = l2g + top->cg_children;
689 	for (i = 0; i < top->cg_children; i++, l2g++) {
690 		l2g->cg_parent = top;
691 		l2g->cg_child = l1g;
692 		l2g->cg_level = l2share;
693 		for (j = 0; j < l2count; j++, l1g++)
694 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
695 			    l1flags, cpu);
696 	}
697 	return (top);
698 }
699 
700 
701 struct cpu_group *
702 smp_topo_find(struct cpu_group *top, int cpu)
703 {
704 	struct cpu_group *cg;
705 	cpuset_t mask;
706 	int children;
707 	int i;
708 
709 	CPU_SETOF(cpu, &mask);
710 	cg = top;
711 	for (;;) {
712 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
713 			return (NULL);
714 		if (cg->cg_children == 0)
715 			return (cg);
716 		children = cg->cg_children;
717 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
718 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
719 				break;
720 	}
721 	return (NULL);
722 }
723 #else /* !SMP */
724 
725 void
726 smp_rendezvous_cpus(cpuset_t map,
727 	void (*setup_func)(void *),
728 	void (*action_func)(void *),
729 	void (*teardown_func)(void *),
730 	void *arg)
731 {
732 	/*
733 	 * In the !SMP case we just need to ensure the same initial conditions
734 	 * as the SMP case.
735 	 */
736 	spinlock_enter();
737 	if (setup_func != NULL)
738 		setup_func(arg);
739 	if (action_func != NULL)
740 		action_func(arg);
741 	if (teardown_func != NULL)
742 		teardown_func(arg);
743 	spinlock_exit();
744 }
745 
746 void
747 smp_rendezvous(void (*setup_func)(void *),
748 	       void (*action_func)(void *),
749 	       void (*teardown_func)(void *),
750 	       void *arg)
751 {
752 
753 	/* Look comments in the smp_rendezvous_cpus() case. */
754 	spinlock_enter();
755 	if (setup_func != NULL)
756 		setup_func(arg);
757 	if (action_func != NULL)
758 		action_func(arg);
759 	if (teardown_func != NULL)
760 		teardown_func(arg);
761 	spinlock_exit();
762 }
763 
764 /*
765  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
766  * APIs will still work using this dummy support.
767  */
768 static void
769 mp_setvariables_for_up(void *dummy)
770 {
771 	mp_ncpus = 1;
772 	mp_maxid = PCPU_GET(cpuid);
773 	CPU_SETOF(mp_maxid, &all_cpus);
774 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
775 }
776 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
777     mp_setvariables_for_up, NULL);
778 #endif /* SMP */
779 
780 void
781 smp_no_rendevous_barrier(void *dummy)
782 {
783 #ifdef SMP
784 	KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
785 #endif
786 }
787 
788 /*
789  * Wait specified idle threads to switch once.  This ensures that even
790  * preempted threads have cycled through the switch function once,
791  * exiting their codepaths.  This allows us to change global pointers
792  * with no other synchronization.
793  */
794 int
795 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
796 {
797 	struct pcpu *pcpu;
798 	u_int gen[MAXCPU];
799 	int error;
800 	int cpu;
801 
802 	error = 0;
803 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
804 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
805 			continue;
806 		pcpu = pcpu_find(cpu);
807 		gen[cpu] = pcpu->pc_idlethread->td_generation;
808 	}
809 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
810 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
811 			continue;
812 		pcpu = pcpu_find(cpu);
813 		thread_lock(curthread);
814 		sched_bind(curthread, cpu);
815 		thread_unlock(curthread);
816 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
817 			error = tsleep(quiesce_cpus, prio, wmesg, 1);
818 			if (error != EWOULDBLOCK)
819 				goto out;
820 			error = 0;
821 		}
822 	}
823 out:
824 	thread_lock(curthread);
825 	sched_unbind(curthread);
826 	thread_unlock(curthread);
827 
828 	return (error);
829 }
830 
831 int
832 quiesce_all_cpus(const char *wmesg, int prio)
833 {
834 
835 	return quiesce_cpus(all_cpus, wmesg, prio);
836 }
837