xref: /freebsd/sys/kern/subr_smp.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * This module holds the global variables and machine independent functions
31  * used for the kernel SMP support.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/ktr.h>
41 #include <sys/proc.h>
42 #include <sys/bus.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/pcpu.h>
47 #include <sys/sched.h>
48 #include <sys/smp.h>
49 #include <sys/sysctl.h>
50 
51 #include <machine/cpu.h>
52 #include <machine/smp.h>
53 
54 #include "opt_sched.h"
55 
56 #ifdef SMP
57 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
58 
59 volatile cpuset_t stopped_cpus;
60 volatile cpuset_t started_cpus;
61 volatile cpuset_t suspended_cpus;
62 cpuset_t hlt_cpus_mask;
63 cpuset_t logical_cpus_mask;
64 
65 void (*cpustop_restartfunc)(void);
66 #endif
67 
68 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
69 
70 /* This is used in modules that need to work in both SMP and UP. */
71 cpuset_t all_cpus;
72 
73 int mp_ncpus;
74 /* export this for libkvm consumers. */
75 int mp_maxcpus = MAXCPU;
76 
77 volatile int smp_started;
78 u_int mp_maxid;
79 
80 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
81     "Kernel SMP");
82 
83 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
84     "Max CPU ID.");
85 
86 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
87     0, "Max number of CPUs that the system was compiled for.");
88 
89 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
90     NULL, 0, sysctl_kern_smp_active, "I",
91     "Indicates system is running in SMP mode");
92 
93 int smp_disabled = 0;	/* has smp been disabled? */
94 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
95     &smp_disabled, 0, "SMP has been disabled from the loader");
96 
97 int smp_cpus = 1;	/* how many cpu's running */
98 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
99     "Number of CPUs online");
100 
101 int smp_threads_per_core = 1;	/* how many SMT threads are running per core */
102 SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
103     &smp_threads_per_core, 0, "Number of SMT threads online per core");
104 
105 int mp_ncores = -1;	/* how many physical cores running */
106 SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
107     "Number of CPUs online");
108 
109 int smp_topology = 0;	/* Which topology we're using. */
110 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
111     "Topology override setting; 0 is default provided by hardware.");
112 
113 #ifdef SMP
114 /* Enable forwarding of a signal to a process running on a different CPU */
115 static int forward_signal_enabled = 1;
116 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
117 	   &forward_signal_enabled, 0,
118 	   "Forwarding of a signal to a process on a different CPU");
119 
120 /* Variables needed for SMP rendezvous. */
121 static volatile int smp_rv_ncpus;
122 static void (*volatile smp_rv_setup_func)(void *arg);
123 static void (*volatile smp_rv_action_func)(void *arg);
124 static void (*volatile smp_rv_teardown_func)(void *arg);
125 static void *volatile smp_rv_func_arg;
126 static volatile int smp_rv_waiters[4];
127 
128 /*
129  * Shared mutex to restrict busywaits between smp_rendezvous() and
130  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
131  * functions trigger at once and cause multiple CPUs to busywait with
132  * interrupts disabled.
133  */
134 struct mtx smp_ipi_mtx;
135 
136 /*
137  * Let the MD SMP code initialize mp_maxid very early if it can.
138  */
139 static void
140 mp_setmaxid(void *dummy)
141 {
142 
143 	cpu_mp_setmaxid();
144 
145 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
146 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
147 	    ("%s: one CPU but mp_maxid is not zero", __func__));
148 	KASSERT(mp_maxid >= mp_ncpus - 1,
149 	    ("%s: counters out of sync: max %d, count %d", __func__,
150 		mp_maxid, mp_ncpus));
151 }
152 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
153 
154 /*
155  * Call the MD SMP initialization code.
156  */
157 static void
158 mp_start(void *dummy)
159 {
160 
161 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
162 
163 	/* Probe for MP hardware. */
164 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
165 		mp_ncores = 1;
166 		mp_ncpus = 1;
167 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
168 		return;
169 	}
170 
171 	cpu_mp_start();
172 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
173 	    mp_ncpus);
174 
175 	/* Provide a default for most architectures that don't have SMT/HTT. */
176 	if (mp_ncores < 0)
177 		mp_ncores = mp_ncpus;
178 
179 	cpu_mp_announce();
180 }
181 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
182 
183 void
184 forward_signal(struct thread *td)
185 {
186 	int id;
187 
188 	/*
189 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
190 	 * this thread, so all we need to do is poke it if it is currently
191 	 * executing so that it executes ast().
192 	 */
193 	THREAD_LOCK_ASSERT(td, MA_OWNED);
194 	KASSERT(TD_IS_RUNNING(td),
195 	    ("forward_signal: thread is not TDS_RUNNING"));
196 
197 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
198 
199 	if (!smp_started || cold || panicstr)
200 		return;
201 	if (!forward_signal_enabled)
202 		return;
203 
204 	/* No need to IPI ourself. */
205 	if (td == curthread)
206 		return;
207 
208 	id = td->td_oncpu;
209 	if (id == NOCPU)
210 		return;
211 	ipi_cpu(id, IPI_AST);
212 }
213 
214 /*
215  * When called the executing CPU will send an IPI to all other CPUs
216  *  requesting that they halt execution.
217  *
218  * Usually (but not necessarily) called with 'other_cpus' as its arg.
219  *
220  *  - Signals all CPUs in map to stop.
221  *  - Waits for each to stop.
222  *
223  * Returns:
224  *  -1: error
225  *   0: NA
226  *   1: ok
227  *
228  */
229 #if defined(__amd64__) || defined(__i386__)
230 #define	X86	1
231 #else
232 #define	X86	0
233 #endif
234 static int
235 generic_stop_cpus(cpuset_t map, u_int type)
236 {
237 #ifdef KTR
238 	char cpusetbuf[CPUSETBUFSIZ];
239 #endif
240 	static volatile u_int stopping_cpu = NOCPU;
241 	int i;
242 	volatile cpuset_t *cpus;
243 
244 	KASSERT(
245 	    type == IPI_STOP || type == IPI_STOP_HARD
246 #if X86
247 	    || type == IPI_SUSPEND
248 #endif
249 	    , ("%s: invalid stop type", __func__));
250 
251 	if (!smp_started)
252 		return (0);
253 
254 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
255 	    cpusetobj_strprint(cpusetbuf, &map), type);
256 
257 #if X86
258 	/*
259 	 * When suspending, ensure there are are no IPIs in progress.
260 	 * IPIs that have been issued, but not yet delivered (e.g.
261 	 * not pending on a vCPU when running under virtualization)
262 	 * will be lost, violating FreeBSD's assumption of reliable
263 	 * IPI delivery.
264 	 */
265 	if (type == IPI_SUSPEND)
266 		mtx_lock_spin(&smp_ipi_mtx);
267 #endif
268 
269 #if X86
270 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
271 #endif
272 	if (stopping_cpu != PCPU_GET(cpuid))
273 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
274 		    PCPU_GET(cpuid)) == 0)
275 			while (stopping_cpu != NOCPU)
276 				cpu_spinwait(); /* spin */
277 
278 	/* send the stop IPI to all CPUs in map */
279 	ipi_selected(map, type);
280 #if X86
281 	}
282 #endif
283 
284 #if X86
285 	if (type == IPI_SUSPEND)
286 		cpus = &suspended_cpus;
287 	else
288 #endif
289 		cpus = &stopped_cpus;
290 
291 	i = 0;
292 	while (!CPU_SUBSET(cpus, &map)) {
293 		/* spin */
294 		cpu_spinwait();
295 		i++;
296 		if (i == 100000000) {
297 			printf("timeout stopping cpus\n");
298 			break;
299 		}
300 	}
301 
302 #if X86
303 	if (type == IPI_SUSPEND)
304 		mtx_unlock_spin(&smp_ipi_mtx);
305 #endif
306 
307 	stopping_cpu = NOCPU;
308 	return (1);
309 }
310 
311 int
312 stop_cpus(cpuset_t map)
313 {
314 
315 	return (generic_stop_cpus(map, IPI_STOP));
316 }
317 
318 int
319 stop_cpus_hard(cpuset_t map)
320 {
321 
322 	return (generic_stop_cpus(map, IPI_STOP_HARD));
323 }
324 
325 #if X86
326 int
327 suspend_cpus(cpuset_t map)
328 {
329 
330 	return (generic_stop_cpus(map, IPI_SUSPEND));
331 }
332 #endif
333 
334 /*
335  * Called by a CPU to restart stopped CPUs.
336  *
337  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
338  *
339  *  - Signals all CPUs in map to restart.
340  *  - Waits for each to restart.
341  *
342  * Returns:
343  *  -1: error
344  *   0: NA
345  *   1: ok
346  */
347 static int
348 generic_restart_cpus(cpuset_t map, u_int type)
349 {
350 #ifdef KTR
351 	char cpusetbuf[CPUSETBUFSIZ];
352 #endif
353 	volatile cpuset_t *cpus;
354 
355 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
356 #if X86
357 	    || type == IPI_SUSPEND
358 #endif
359 	    , ("%s: invalid stop type", __func__));
360 
361 	if (!smp_started)
362 		return (0);
363 
364 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
365 
366 #if X86
367 	if (type == IPI_SUSPEND)
368 		cpus = &resuming_cpus;
369 	else
370 #endif
371 		cpus = &stopped_cpus;
372 
373 	/* signal other cpus to restart */
374 #if X86
375 	if (type == IPI_SUSPEND)
376 		CPU_COPY_STORE_REL(&map, &toresume_cpus);
377 	else
378 #endif
379 		CPU_COPY_STORE_REL(&map, &started_cpus);
380 
381 #if X86
382 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
383 #endif
384 	/* wait for each to clear its bit */
385 	while (CPU_OVERLAP(cpus, &map))
386 		cpu_spinwait();
387 #if X86
388 	}
389 #endif
390 
391 	return (1);
392 }
393 
394 int
395 restart_cpus(cpuset_t map)
396 {
397 
398 	return (generic_restart_cpus(map, IPI_STOP));
399 }
400 
401 #if X86
402 int
403 resume_cpus(cpuset_t map)
404 {
405 
406 	return (generic_restart_cpus(map, IPI_SUSPEND));
407 }
408 #endif
409 #undef X86
410 
411 /*
412  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
413  * (if specified), rendezvous, execute the action function (if specified),
414  * rendezvous again, execute the teardown function (if specified), and then
415  * resume.
416  *
417  * Note that the supplied external functions _must_ be reentrant and aware
418  * that they are running in parallel and in an unknown lock context.
419  */
420 void
421 smp_rendezvous_action(void)
422 {
423 	struct thread *td;
424 	void *local_func_arg;
425 	void (*local_setup_func)(void*);
426 	void (*local_action_func)(void*);
427 	void (*local_teardown_func)(void*);
428 #ifdef INVARIANTS
429 	int owepreempt;
430 #endif
431 
432 	/* Ensure we have up-to-date values. */
433 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
434 	while (smp_rv_waiters[0] < smp_rv_ncpus)
435 		cpu_spinwait();
436 
437 	/* Fetch rendezvous parameters after acquire barrier. */
438 	local_func_arg = smp_rv_func_arg;
439 	local_setup_func = smp_rv_setup_func;
440 	local_action_func = smp_rv_action_func;
441 	local_teardown_func = smp_rv_teardown_func;
442 
443 	/*
444 	 * Use a nested critical section to prevent any preemptions
445 	 * from occurring during a rendezvous action routine.
446 	 * Specifically, if a rendezvous handler is invoked via an IPI
447 	 * and the interrupted thread was in the critical_exit()
448 	 * function after setting td_critnest to 0 but before
449 	 * performing a deferred preemption, this routine can be
450 	 * invoked with td_critnest set to 0 and td_owepreempt true.
451 	 * In that case, a critical_exit() during the rendezvous
452 	 * action would trigger a preemption which is not permitted in
453 	 * a rendezvous action.  To fix this, wrap all of the
454 	 * rendezvous action handlers in a critical section.  We
455 	 * cannot use a regular critical section however as having
456 	 * critical_exit() preempt from this routine would also be
457 	 * problematic (the preemption must not occur before the IPI
458 	 * has been acknowledged via an EOI).  Instead, we
459 	 * intentionally ignore td_owepreempt when leaving the
460 	 * critical section.  This should be harmless because we do
461 	 * not permit rendezvous action routines to schedule threads,
462 	 * and thus td_owepreempt should never transition from 0 to 1
463 	 * during this routine.
464 	 */
465 	td = curthread;
466 	td->td_critnest++;
467 #ifdef INVARIANTS
468 	owepreempt = td->td_owepreempt;
469 #endif
470 
471 	/*
472 	 * If requested, run a setup function before the main action
473 	 * function.  Ensure all CPUs have completed the setup
474 	 * function before moving on to the action function.
475 	 */
476 	if (local_setup_func != smp_no_rendezvous_barrier) {
477 		if (smp_rv_setup_func != NULL)
478 			smp_rv_setup_func(smp_rv_func_arg);
479 		atomic_add_int(&smp_rv_waiters[1], 1);
480 		while (smp_rv_waiters[1] < smp_rv_ncpus)
481                 	cpu_spinwait();
482 	}
483 
484 	if (local_action_func != NULL)
485 		local_action_func(local_func_arg);
486 
487 	if (local_teardown_func != smp_no_rendezvous_barrier) {
488 		/*
489 		 * Signal that the main action has been completed.  If a
490 		 * full exit rendezvous is requested, then all CPUs will
491 		 * wait here until all CPUs have finished the main action.
492 		 */
493 		atomic_add_int(&smp_rv_waiters[2], 1);
494 		while (smp_rv_waiters[2] < smp_rv_ncpus)
495 			cpu_spinwait();
496 
497 		if (local_teardown_func != NULL)
498 			local_teardown_func(local_func_arg);
499 	}
500 
501 	/*
502 	 * Signal that the rendezvous is fully completed by this CPU.
503 	 * This means that no member of smp_rv_* pseudo-structure will be
504 	 * accessed by this target CPU after this point; in particular,
505 	 * memory pointed by smp_rv_func_arg.
506 	 *
507 	 * The release semantic ensures that all accesses performed by
508 	 * the current CPU are visible when smp_rendezvous_cpus()
509 	 * returns, by synchronizing with the
510 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
511 	 */
512 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
513 
514 	td->td_critnest--;
515 	KASSERT(owepreempt == td->td_owepreempt,
516 	    ("rendezvous action changed td_owepreempt"));
517 }
518 
519 void
520 smp_rendezvous_cpus(cpuset_t map,
521 	void (* setup_func)(void *),
522 	void (* action_func)(void *),
523 	void (* teardown_func)(void *),
524 	void *arg)
525 {
526 	int curcpumap, i, ncpus = 0;
527 
528 	/* Look comments in the !SMP case. */
529 	if (!smp_started) {
530 		spinlock_enter();
531 		if (setup_func != NULL)
532 			setup_func(arg);
533 		if (action_func != NULL)
534 			action_func(arg);
535 		if (teardown_func != NULL)
536 			teardown_func(arg);
537 		spinlock_exit();
538 		return;
539 	}
540 
541 	CPU_FOREACH(i) {
542 		if (CPU_ISSET(i, &map))
543 			ncpus++;
544 	}
545 	if (ncpus == 0)
546 		panic("ncpus is 0 with non-zero map");
547 
548 	mtx_lock_spin(&smp_ipi_mtx);
549 
550 	/* Pass rendezvous parameters via global variables. */
551 	smp_rv_ncpus = ncpus;
552 	smp_rv_setup_func = setup_func;
553 	smp_rv_action_func = action_func;
554 	smp_rv_teardown_func = teardown_func;
555 	smp_rv_func_arg = arg;
556 	smp_rv_waiters[1] = 0;
557 	smp_rv_waiters[2] = 0;
558 	smp_rv_waiters[3] = 0;
559 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
560 
561 	/*
562 	 * Signal other processors, which will enter the IPI with
563 	 * interrupts off.
564 	 */
565 	curcpumap = CPU_ISSET(curcpu, &map);
566 	CPU_CLR(curcpu, &map);
567 	ipi_selected(map, IPI_RENDEZVOUS);
568 
569 	/* Check if the current CPU is in the map */
570 	if (curcpumap != 0)
571 		smp_rendezvous_action();
572 
573 	/*
574 	 * Ensure that the master CPU waits for all the other
575 	 * CPUs to finish the rendezvous, so that smp_rv_*
576 	 * pseudo-structure and the arg are guaranteed to not
577 	 * be in use.
578 	 *
579 	 * Load acquire synchronizes with the release add in
580 	 * smp_rendezvous_action(), which ensures that our caller sees
581 	 * all memory actions done by the called functions on other
582 	 * CPUs.
583 	 */
584 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
585 		cpu_spinwait();
586 
587 	mtx_unlock_spin(&smp_ipi_mtx);
588 }
589 
590 void
591 smp_rendezvous(void (* setup_func)(void *),
592 	       void (* action_func)(void *),
593 	       void (* teardown_func)(void *),
594 	       void *arg)
595 {
596 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
597 }
598 
599 static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1];
600 
601 struct cpu_group *
602 smp_topo(void)
603 {
604 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
605 	struct cpu_group *top;
606 
607 	/*
608 	 * Check for a fake topology request for debugging purposes.
609 	 */
610 	switch (smp_topology) {
611 	case 1:
612 		/* Dual core with no sharing.  */
613 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
614 		break;
615 	case 2:
616 		/* No topology, all cpus are equal. */
617 		top = smp_topo_none();
618 		break;
619 	case 3:
620 		/* Dual core with shared L2.  */
621 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
622 		break;
623 	case 4:
624 		/* quad core, shared l3 among each package, private l2.  */
625 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
626 		break;
627 	case 5:
628 		/* quad core,  2 dualcore parts on each package share l2.  */
629 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
630 		break;
631 	case 6:
632 		/* Single-core 2xHTT */
633 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
634 		break;
635 	case 7:
636 		/* quad core with a shared l3, 8 threads sharing L2.  */
637 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
638 		    CG_FLAG_SMT);
639 		break;
640 	default:
641 		/* Default, ask the system what it wants. */
642 		top = cpu_topo();
643 		break;
644 	}
645 	/*
646 	 * Verify the returned topology.
647 	 */
648 	if (top->cg_count != mp_ncpus)
649 		panic("Built bad topology at %p.  CPU count %d != %d",
650 		    top, top->cg_count, mp_ncpus);
651 	if (CPU_CMP(&top->cg_mask, &all_cpus))
652 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
653 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
654 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
655 
656 	/*
657 	 * Collapse nonsense levels that may be created out of convenience by
658 	 * the MD layers.  They cause extra work in the search functions.
659 	 */
660 	while (top->cg_children == 1) {
661 		top = &top->cg_child[0];
662 		top->cg_parent = NULL;
663 	}
664 	return (top);
665 }
666 
667 struct cpu_group *
668 smp_topo_alloc(u_int count)
669 {
670 	static u_int index;
671 	u_int curr;
672 
673 	curr = index;
674 	index += count;
675 	return (&group[curr]);
676 }
677 
678 struct cpu_group *
679 smp_topo_none(void)
680 {
681 	struct cpu_group *top;
682 
683 	top = &group[0];
684 	top->cg_parent = NULL;
685 	top->cg_child = NULL;
686 	top->cg_mask = all_cpus;
687 	top->cg_count = mp_ncpus;
688 	top->cg_children = 0;
689 	top->cg_level = CG_SHARE_NONE;
690 	top->cg_flags = 0;
691 
692 	return (top);
693 }
694 
695 static int
696 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
697     int count, int flags, int start)
698 {
699 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
700 	cpuset_t mask;
701 	int i;
702 
703 	CPU_ZERO(&mask);
704 	for (i = 0; i < count; i++, start++)
705 		CPU_SET(start, &mask);
706 	child->cg_parent = parent;
707 	child->cg_child = NULL;
708 	child->cg_children = 0;
709 	child->cg_level = share;
710 	child->cg_count = count;
711 	child->cg_flags = flags;
712 	child->cg_mask = mask;
713 	parent->cg_children++;
714 	for (; parent != NULL; parent = parent->cg_parent) {
715 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
716 			panic("Duplicate children in %p.  mask (%s) child (%s)",
717 			    parent,
718 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
719 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
720 		CPU_OR(&parent->cg_mask, &child->cg_mask);
721 		parent->cg_count += child->cg_count;
722 	}
723 
724 	return (start);
725 }
726 
727 struct cpu_group *
728 smp_topo_1level(int share, int count, int flags)
729 {
730 	struct cpu_group *child;
731 	struct cpu_group *top;
732 	int packages;
733 	int cpu;
734 	int i;
735 
736 	cpu = 0;
737 	top = &group[0];
738 	packages = mp_ncpus / count;
739 	top->cg_child = child = &group[1];
740 	top->cg_level = CG_SHARE_NONE;
741 	for (i = 0; i < packages; i++, child++)
742 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
743 	return (top);
744 }
745 
746 struct cpu_group *
747 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
748     int l1flags)
749 {
750 	struct cpu_group *top;
751 	struct cpu_group *l1g;
752 	struct cpu_group *l2g;
753 	int cpu;
754 	int i;
755 	int j;
756 
757 	cpu = 0;
758 	top = &group[0];
759 	l2g = &group[1];
760 	top->cg_child = l2g;
761 	top->cg_level = CG_SHARE_NONE;
762 	top->cg_children = mp_ncpus / (l2count * l1count);
763 	l1g = l2g + top->cg_children;
764 	for (i = 0; i < top->cg_children; i++, l2g++) {
765 		l2g->cg_parent = top;
766 		l2g->cg_child = l1g;
767 		l2g->cg_level = l2share;
768 		for (j = 0; j < l2count; j++, l1g++)
769 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
770 			    l1flags, cpu);
771 	}
772 	return (top);
773 }
774 
775 
776 struct cpu_group *
777 smp_topo_find(struct cpu_group *top, int cpu)
778 {
779 	struct cpu_group *cg;
780 	cpuset_t mask;
781 	int children;
782 	int i;
783 
784 	CPU_SETOF(cpu, &mask);
785 	cg = top;
786 	for (;;) {
787 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
788 			return (NULL);
789 		if (cg->cg_children == 0)
790 			return (cg);
791 		children = cg->cg_children;
792 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
793 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
794 				break;
795 	}
796 	return (NULL);
797 }
798 #else /* !SMP */
799 
800 void
801 smp_rendezvous_cpus(cpuset_t map,
802 	void (*setup_func)(void *),
803 	void (*action_func)(void *),
804 	void (*teardown_func)(void *),
805 	void *arg)
806 {
807 	/*
808 	 * In the !SMP case we just need to ensure the same initial conditions
809 	 * as the SMP case.
810 	 */
811 	spinlock_enter();
812 	if (setup_func != NULL)
813 		setup_func(arg);
814 	if (action_func != NULL)
815 		action_func(arg);
816 	if (teardown_func != NULL)
817 		teardown_func(arg);
818 	spinlock_exit();
819 }
820 
821 void
822 smp_rendezvous(void (*setup_func)(void *),
823 	       void (*action_func)(void *),
824 	       void (*teardown_func)(void *),
825 	       void *arg)
826 {
827 
828 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
829 	    arg);
830 }
831 
832 /*
833  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
834  * APIs will still work using this dummy support.
835  */
836 static void
837 mp_setvariables_for_up(void *dummy)
838 {
839 	mp_ncpus = 1;
840 	mp_ncores = 1;
841 	mp_maxid = PCPU_GET(cpuid);
842 	CPU_SETOF(mp_maxid, &all_cpus);
843 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
844 }
845 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
846     mp_setvariables_for_up, NULL);
847 #endif /* SMP */
848 
849 void
850 smp_no_rendezvous_barrier(void *dummy)
851 {
852 #ifdef SMP
853 	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
854 #endif
855 }
856 
857 /*
858  * Wait for specified idle threads to switch once.  This ensures that even
859  * preempted threads have cycled through the switch function once,
860  * exiting their codepaths.  This allows us to change global pointers
861  * with no other synchronization.
862  */
863 int
864 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
865 {
866 	struct pcpu *pcpu;
867 	u_int gen[MAXCPU];
868 	int error;
869 	int cpu;
870 
871 	error = 0;
872 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
873 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
874 			continue;
875 		pcpu = pcpu_find(cpu);
876 		gen[cpu] = pcpu->pc_idlethread->td_generation;
877 	}
878 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
879 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
880 			continue;
881 		pcpu = pcpu_find(cpu);
882 		thread_lock(curthread);
883 		sched_bind(curthread, cpu);
884 		thread_unlock(curthread);
885 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
886 			error = tsleep(quiesce_cpus, prio, wmesg, 1);
887 			if (error != EWOULDBLOCK)
888 				goto out;
889 			error = 0;
890 		}
891 	}
892 out:
893 	thread_lock(curthread);
894 	sched_unbind(curthread);
895 	thread_unlock(curthread);
896 
897 	return (error);
898 }
899 
900 int
901 quiesce_all_cpus(const char *wmesg, int prio)
902 {
903 
904 	return quiesce_cpus(all_cpus, wmesg, prio);
905 }
906 
907 /* Extra care is taken with this sysctl because the data type is volatile */
908 static int
909 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
910 {
911 	int error, active;
912 
913 	active = smp_started;
914 	error = SYSCTL_OUT(req, &active, sizeof(active));
915 	return (error);
916 }
917 
918 
919 #ifdef SMP
920 void
921 topo_init_node(struct topo_node *node)
922 {
923 
924 	bzero(node, sizeof(*node));
925 	TAILQ_INIT(&node->children);
926 }
927 
928 void
929 topo_init_root(struct topo_node *root)
930 {
931 
932 	topo_init_node(root);
933 	root->type = TOPO_TYPE_SYSTEM;
934 }
935 
936 /*
937  * Add a child node with the given ID under the given parent.
938  * Do nothing if there is already a child with that ID.
939  */
940 struct topo_node *
941 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
942     topo_node_type type, uintptr_t subtype)
943 {
944 	struct topo_node *node;
945 
946 	TAILQ_FOREACH_REVERSE(node, &parent->children,
947 	    topo_children, siblings) {
948 		if (node->hwid == hwid
949 		    && node->type == type && node->subtype == subtype) {
950 			return (node);
951 		}
952 	}
953 
954 	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
955 	topo_init_node(node);
956 	node->parent = parent;
957 	node->hwid = hwid;
958 	node->type = type;
959 	node->subtype = subtype;
960 	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
961 	parent->nchildren++;
962 
963 	return (node);
964 }
965 
966 /*
967  * Find a child node with the given ID under the given parent.
968  */
969 struct topo_node *
970 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
971     topo_node_type type, uintptr_t subtype)
972 {
973 
974 	struct topo_node *node;
975 
976 	TAILQ_FOREACH(node, &parent->children, siblings) {
977 		if (node->hwid == hwid
978 		    && node->type == type && node->subtype == subtype) {
979 			return (node);
980 		}
981 	}
982 
983 	return (NULL);
984 }
985 
986 /*
987  * Given a node change the order of its parent's child nodes such
988  * that the node becomes the firt child while preserving the cyclic
989  * order of the children.  In other words, the given node is promoted
990  * by rotation.
991  */
992 void
993 topo_promote_child(struct topo_node *child)
994 {
995 	struct topo_node *next;
996 	struct topo_node *node;
997 	struct topo_node *parent;
998 
999 	parent = child->parent;
1000 	next = TAILQ_NEXT(child, siblings);
1001 	TAILQ_REMOVE(&parent->children, child, siblings);
1002 	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1003 
1004 	while (next != NULL) {
1005 		node = next;
1006 		next = TAILQ_NEXT(node, siblings);
1007 		TAILQ_REMOVE(&parent->children, node, siblings);
1008 		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1009 		child = node;
1010 	}
1011 }
1012 
1013 /*
1014  * Iterate to the next node in the depth-first search (traversal) of
1015  * the topology tree.
1016  */
1017 struct topo_node *
1018 topo_next_node(struct topo_node *top, struct topo_node *node)
1019 {
1020 	struct topo_node *next;
1021 
1022 	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1023 		return (next);
1024 
1025 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1026 		return (next);
1027 
1028 	while (node != top && (node = node->parent) != top)
1029 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1030 			return (next);
1031 
1032 	return (NULL);
1033 }
1034 
1035 /*
1036  * Iterate to the next node in the depth-first search of the topology tree,
1037  * but without descending below the current node.
1038  */
1039 struct topo_node *
1040 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1041 {
1042 	struct topo_node *next;
1043 
1044 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1045 		return (next);
1046 
1047 	while (node != top && (node = node->parent) != top)
1048 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1049 			return (next);
1050 
1051 	return (NULL);
1052 }
1053 
1054 /*
1055  * Assign the given ID to the given topology node that represents a logical
1056  * processor.
1057  */
1058 void
1059 topo_set_pu_id(struct topo_node *node, cpuid_t id)
1060 {
1061 
1062 	KASSERT(node->type == TOPO_TYPE_PU,
1063 	    ("topo_set_pu_id: wrong node type: %u", node->type));
1064 	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1065 	    ("topo_set_pu_id: cpuset already not empty"));
1066 	node->id = id;
1067 	CPU_SET(id, &node->cpuset);
1068 	node->cpu_count = 1;
1069 	node->subtype = 1;
1070 
1071 	while ((node = node->parent) != NULL) {
1072 		KASSERT(!CPU_ISSET(id, &node->cpuset),
1073 		    ("logical ID %u is already set in node %p", id, node));
1074 		CPU_SET(id, &node->cpuset);
1075 		node->cpu_count++;
1076 	}
1077 }
1078 
1079 static struct topology_spec {
1080 	topo_node_type	type;
1081 	bool		match_subtype;
1082 	uintptr_t	subtype;
1083 } topology_level_table[TOPO_LEVEL_COUNT] = {
1084 	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1085 	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1086 	[TOPO_LEVEL_CACHEGROUP] = {
1087 		.type = TOPO_TYPE_CACHE,
1088 		.match_subtype = true,
1089 		.subtype = CG_SHARE_L3,
1090 	},
1091 	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1092 	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1093 };
1094 
1095 static bool
1096 topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1097     struct topo_analysis *results)
1098 {
1099 	struct topology_spec *spec;
1100 	struct topo_node *node;
1101 	int count;
1102 
1103 	if (level >= TOPO_LEVEL_COUNT)
1104 		return (true);
1105 
1106 	spec = &topology_level_table[level];
1107 	count = 0;
1108 	node = topo_next_node(root, root);
1109 
1110 	while (node != NULL) {
1111 		if (node->type != spec->type ||
1112 		    (spec->match_subtype && node->subtype != spec->subtype)) {
1113 			node = topo_next_node(root, node);
1114 			continue;
1115 		}
1116 		if (!all && CPU_EMPTY(&node->cpuset)) {
1117 			node = topo_next_nonchild_node(root, node);
1118 			continue;
1119 		}
1120 
1121 		count++;
1122 
1123 		if (!topo_analyze_table(node, all, level + 1, results))
1124 			return (false);
1125 
1126 		node = topo_next_nonchild_node(root, node);
1127 	}
1128 
1129 	/* No explicit subgroups is essentially one subgroup. */
1130 	if (count == 0) {
1131 		count = 1;
1132 
1133 		if (!topo_analyze_table(root, all, level + 1, results))
1134 			return (false);
1135 	}
1136 
1137 	if (results->entities[level] == -1)
1138 		results->entities[level] = count;
1139 	else if (results->entities[level] != count)
1140 		return (false);
1141 
1142 	return (true);
1143 }
1144 
1145 /*
1146  * Check if the topology is uniform, that is, each package has the same number
1147  * of cores in it and each core has the same number of threads (logical
1148  * processors) in it.  If so, calculate the number of packages, the number of
1149  * groups per package, the number of cachegroups per group, and the number of
1150  * logical processors per cachegroup.  'all' parameter tells whether to include
1151  * administratively disabled logical processors into the analysis.
1152  */
1153 int
1154 topo_analyze(struct topo_node *topo_root, int all,
1155     struct topo_analysis *results)
1156 {
1157 
1158 	results->entities[TOPO_LEVEL_PKG] = -1;
1159 	results->entities[TOPO_LEVEL_CORE] = -1;
1160 	results->entities[TOPO_LEVEL_THREAD] = -1;
1161 	results->entities[TOPO_LEVEL_GROUP] = -1;
1162 	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1163 
1164 	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1165 		return (0);
1166 
1167 	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1168 		("bug in topology or analysis"));
1169 
1170 	return (1);
1171 }
1172 
1173 #endif /* SMP */
1174 
1175