xref: /freebsd/sys/kern/subr_smp.c (revision 27c43fe1f3795622c5bd4bbfc465a29a800c0799)
1 /*-
2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * This module holds the global variables and machine independent functions
29  * used for the kernel SMP support.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/proc.h>
40 #include <sys/bus.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/sysctl.h>
47 
48 #include <machine/cpu.h>
49 #include <machine/smp.h>
50 
51 #include "opt_sched.h"
52 
53 #ifdef SMP
54 volatile cpuset_t stopped_cpus;
55 volatile cpuset_t started_cpus;
56 volatile cpuset_t suspended_cpus;
57 cpuset_t hlt_cpus_mask;
58 cpuset_t logical_cpus_mask;
59 
60 void (*cpustop_restartfunc)(void);
61 #endif
62 /* This is used in modules that need to work in both SMP and UP. */
63 cpuset_t all_cpus;
64 
65 int mp_ncpus;
66 /* export this for libkvm consumers. */
67 int mp_maxcpus = MAXCPU;
68 
69 volatile int smp_started;
70 u_int mp_maxid;
71 
72 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
73     "Kernel SMP");
74 
75 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
76     "Max CPU ID.");
77 
78 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
79     0, "Max number of CPUs that the system was compiled for.");
80 
81 int smp_active = 0;	/* are the APs allowed to run? */
82 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
83     "Number of Auxillary Processors (APs) that were successfully started");
84 
85 int smp_disabled = 0;	/* has smp been disabled? */
86 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
87     &smp_disabled, 0, "SMP has been disabled from the loader");
88 TUNABLE_INT("kern.smp.disabled", &smp_disabled);
89 
90 int smp_cpus = 1;	/* how many cpu's running */
91 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
92     "Number of CPUs online");
93 
94 int smp_topology = 0;	/* Which topology we're using. */
95 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
96     "Topology override setting; 0 is default provided by hardware.");
97 TUNABLE_INT("kern.smp.topology", &smp_topology);
98 
99 #ifdef SMP
100 /* Enable forwarding of a signal to a process running on a different CPU */
101 static int forward_signal_enabled = 1;
102 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
103 	   &forward_signal_enabled, 0,
104 	   "Forwarding of a signal to a process on a different CPU");
105 
106 /* Variables needed for SMP rendezvous. */
107 static volatile int smp_rv_ncpus;
108 static void (*volatile smp_rv_setup_func)(void *arg);
109 static void (*volatile smp_rv_action_func)(void *arg);
110 static void (*volatile smp_rv_teardown_func)(void *arg);
111 static void *volatile smp_rv_func_arg;
112 static volatile int smp_rv_waiters[4];
113 
114 /*
115  * Shared mutex to restrict busywaits between smp_rendezvous() and
116  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
117  * functions trigger at once and cause multiple CPUs to busywait with
118  * interrupts disabled.
119  */
120 struct mtx smp_ipi_mtx;
121 
122 /*
123  * Let the MD SMP code initialize mp_maxid very early if it can.
124  */
125 static void
126 mp_setmaxid(void *dummy)
127 {
128 	cpu_mp_setmaxid();
129 }
130 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
131 
132 /*
133  * Call the MD SMP initialization code.
134  */
135 static void
136 mp_start(void *dummy)
137 {
138 
139 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
140 
141 	/* Probe for MP hardware. */
142 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
143 		mp_ncpus = 1;
144 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
145 		return;
146 	}
147 
148 	cpu_mp_start();
149 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
150 	    mp_ncpus);
151 	cpu_mp_announce();
152 }
153 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
154 
155 void
156 forward_signal(struct thread *td)
157 {
158 	int id;
159 
160 	/*
161 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
162 	 * this thread, so all we need to do is poke it if it is currently
163 	 * executing so that it executes ast().
164 	 */
165 	THREAD_LOCK_ASSERT(td, MA_OWNED);
166 	KASSERT(TD_IS_RUNNING(td),
167 	    ("forward_signal: thread is not TDS_RUNNING"));
168 
169 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
170 
171 	if (!smp_started || cold || panicstr)
172 		return;
173 	if (!forward_signal_enabled)
174 		return;
175 
176 	/* No need to IPI ourself. */
177 	if (td == curthread)
178 		return;
179 
180 	id = td->td_oncpu;
181 	if (id == NOCPU)
182 		return;
183 	ipi_cpu(id, IPI_AST);
184 }
185 
186 /*
187  * When called the executing CPU will send an IPI to all other CPUs
188  *  requesting that they halt execution.
189  *
190  * Usually (but not necessarily) called with 'other_cpus' as its arg.
191  *
192  *  - Signals all CPUs in map to stop.
193  *  - Waits for each to stop.
194  *
195  * Returns:
196  *  -1: error
197  *   0: NA
198  *   1: ok
199  *
200  */
201 static int
202 generic_stop_cpus(cpuset_t map, u_int type)
203 {
204 #ifdef KTR
205 	char cpusetbuf[CPUSETBUFSIZ];
206 #endif
207 	static volatile u_int stopping_cpu = NOCPU;
208 	int i;
209 	volatile cpuset_t *cpus;
210 
211 	KASSERT(
212 #if defined(__amd64__) || defined(__i386__)
213 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
214 #else
215 	    type == IPI_STOP || type == IPI_STOP_HARD,
216 #endif
217 	    ("%s: invalid stop type", __func__));
218 
219 	if (!smp_started)
220 		return (0);
221 
222 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
223 	    cpusetobj_strprint(cpusetbuf, &map), type);
224 
225 #if defined(__amd64__) || defined(__i386__)
226 	/*
227 	 * When suspending, ensure there are are no IPIs in progress.
228 	 * IPIs that have been issued, but not yet delivered (e.g.
229 	 * not pending on a vCPU when running under virtualization)
230 	 * will be lost, violating FreeBSD's assumption of reliable
231 	 * IPI delivery.
232 	 */
233 	if (type == IPI_SUSPEND)
234 		mtx_lock_spin(&smp_ipi_mtx);
235 #endif
236 
237 	if (stopping_cpu != PCPU_GET(cpuid))
238 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
239 		    PCPU_GET(cpuid)) == 0)
240 			while (stopping_cpu != NOCPU)
241 				cpu_spinwait(); /* spin */
242 
243 	/* send the stop IPI to all CPUs in map */
244 	ipi_selected(map, type);
245 
246 #if defined(__amd64__) || defined(__i386__)
247 	if (type == IPI_SUSPEND)
248 		cpus = &suspended_cpus;
249 	else
250 #endif
251 		cpus = &stopped_cpus;
252 
253 	i = 0;
254 	while (!CPU_SUBSET(cpus, &map)) {
255 		/* spin */
256 		cpu_spinwait();
257 		i++;
258 		if (i == 100000000) {
259 			printf("timeout stopping cpus\n");
260 			break;
261 		}
262 	}
263 
264 #if defined(__amd64__) || defined(__i386__)
265 	if (type == IPI_SUSPEND)
266 		mtx_unlock_spin(&smp_ipi_mtx);
267 #endif
268 
269 	stopping_cpu = NOCPU;
270 	return (1);
271 }
272 
273 int
274 stop_cpus(cpuset_t map)
275 {
276 
277 	return (generic_stop_cpus(map, IPI_STOP));
278 }
279 
280 int
281 stop_cpus_hard(cpuset_t map)
282 {
283 
284 	return (generic_stop_cpus(map, IPI_STOP_HARD));
285 }
286 
287 #if defined(__amd64__) || defined(__i386__)
288 int
289 suspend_cpus(cpuset_t map)
290 {
291 
292 	return (generic_stop_cpus(map, IPI_SUSPEND));
293 }
294 #endif
295 
296 /*
297  * Called by a CPU to restart stopped CPUs.
298  *
299  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
300  *
301  *  - Signals all CPUs in map to restart.
302  *  - Waits for each to restart.
303  *
304  * Returns:
305  *  -1: error
306  *   0: NA
307  *   1: ok
308  */
309 static int
310 generic_restart_cpus(cpuset_t map, u_int type)
311 {
312 #ifdef KTR
313 	char cpusetbuf[CPUSETBUFSIZ];
314 #endif
315 	volatile cpuset_t *cpus;
316 
317 	KASSERT(
318 #if defined(__amd64__) || defined(__i386__)
319 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
320 #else
321 	    type == IPI_STOP || type == IPI_STOP_HARD,
322 #endif
323 	    ("%s: invalid stop type", __func__));
324 
325 	if (!smp_started)
326 		return 0;
327 
328 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
329 
330 #if defined(__amd64__) || defined(__i386__)
331 	if (type == IPI_SUSPEND)
332 		cpus = &suspended_cpus;
333 	else
334 #endif
335 		cpus = &stopped_cpus;
336 
337 	/* signal other cpus to restart */
338 	CPU_COPY_STORE_REL(&map, &started_cpus);
339 
340 	/* wait for each to clear its bit */
341 	while (CPU_OVERLAP(cpus, &map))
342 		cpu_spinwait();
343 
344 	return 1;
345 }
346 
347 int
348 restart_cpus(cpuset_t map)
349 {
350 
351 	return (generic_restart_cpus(map, IPI_STOP));
352 }
353 
354 #if defined(__amd64__) || defined(__i386__)
355 int
356 resume_cpus(cpuset_t map)
357 {
358 
359 	return (generic_restart_cpus(map, IPI_SUSPEND));
360 }
361 #endif
362 
363 /*
364  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
365  * (if specified), rendezvous, execute the action function (if specified),
366  * rendezvous again, execute the teardown function (if specified), and then
367  * resume.
368  *
369  * Note that the supplied external functions _must_ be reentrant and aware
370  * that they are running in parallel and in an unknown lock context.
371  */
372 void
373 smp_rendezvous_action(void)
374 {
375 	struct thread *td;
376 	void *local_func_arg;
377 	void (*local_setup_func)(void*);
378 	void (*local_action_func)(void*);
379 	void (*local_teardown_func)(void*);
380 #ifdef INVARIANTS
381 	int owepreempt;
382 #endif
383 
384 	/* Ensure we have up-to-date values. */
385 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
386 	while (smp_rv_waiters[0] < smp_rv_ncpus)
387 		cpu_spinwait();
388 
389 	/* Fetch rendezvous parameters after acquire barrier. */
390 	local_func_arg = smp_rv_func_arg;
391 	local_setup_func = smp_rv_setup_func;
392 	local_action_func = smp_rv_action_func;
393 	local_teardown_func = smp_rv_teardown_func;
394 
395 	/*
396 	 * Use a nested critical section to prevent any preemptions
397 	 * from occurring during a rendezvous action routine.
398 	 * Specifically, if a rendezvous handler is invoked via an IPI
399 	 * and the interrupted thread was in the critical_exit()
400 	 * function after setting td_critnest to 0 but before
401 	 * performing a deferred preemption, this routine can be
402 	 * invoked with td_critnest set to 0 and td_owepreempt true.
403 	 * In that case, a critical_exit() during the rendezvous
404 	 * action would trigger a preemption which is not permitted in
405 	 * a rendezvous action.  To fix this, wrap all of the
406 	 * rendezvous action handlers in a critical section.  We
407 	 * cannot use a regular critical section however as having
408 	 * critical_exit() preempt from this routine would also be
409 	 * problematic (the preemption must not occur before the IPI
410 	 * has been acknowledged via an EOI).  Instead, we
411 	 * intentionally ignore td_owepreempt when leaving the
412 	 * critical section.  This should be harmless because we do
413 	 * not permit rendezvous action routines to schedule threads,
414 	 * and thus td_owepreempt should never transition from 0 to 1
415 	 * during this routine.
416 	 */
417 	td = curthread;
418 	td->td_critnest++;
419 #ifdef INVARIANTS
420 	owepreempt = td->td_owepreempt;
421 #endif
422 
423 	/*
424 	 * If requested, run a setup function before the main action
425 	 * function.  Ensure all CPUs have completed the setup
426 	 * function before moving on to the action function.
427 	 */
428 	if (local_setup_func != smp_no_rendevous_barrier) {
429 		if (smp_rv_setup_func != NULL)
430 			smp_rv_setup_func(smp_rv_func_arg);
431 		atomic_add_int(&smp_rv_waiters[1], 1);
432 		while (smp_rv_waiters[1] < smp_rv_ncpus)
433                 	cpu_spinwait();
434 	}
435 
436 	if (local_action_func != NULL)
437 		local_action_func(local_func_arg);
438 
439 	if (local_teardown_func != smp_no_rendevous_barrier) {
440 		/*
441 		 * Signal that the main action has been completed.  If a
442 		 * full exit rendezvous is requested, then all CPUs will
443 		 * wait here until all CPUs have finished the main action.
444 		 */
445 		atomic_add_int(&smp_rv_waiters[2], 1);
446 		while (smp_rv_waiters[2] < smp_rv_ncpus)
447 			cpu_spinwait();
448 
449 		if (local_teardown_func != NULL)
450 			local_teardown_func(local_func_arg);
451 	}
452 
453 	/*
454 	 * Signal that the rendezvous is fully completed by this CPU.
455 	 * This means that no member of smp_rv_* pseudo-structure will be
456 	 * accessed by this target CPU after this point; in particular,
457 	 * memory pointed by smp_rv_func_arg.
458 	 */
459 	atomic_add_int(&smp_rv_waiters[3], 1);
460 
461 	td->td_critnest--;
462 	KASSERT(owepreempt == td->td_owepreempt,
463 	    ("rendezvous action changed td_owepreempt"));
464 }
465 
466 void
467 smp_rendezvous_cpus(cpuset_t map,
468 	void (* setup_func)(void *),
469 	void (* action_func)(void *),
470 	void (* teardown_func)(void *),
471 	void *arg)
472 {
473 	int curcpumap, i, ncpus = 0;
474 
475 	/* Look comments in the !SMP case. */
476 	if (!smp_started) {
477 		spinlock_enter();
478 		if (setup_func != NULL)
479 			setup_func(arg);
480 		if (action_func != NULL)
481 			action_func(arg);
482 		if (teardown_func != NULL)
483 			teardown_func(arg);
484 		spinlock_exit();
485 		return;
486 	}
487 
488 	CPU_FOREACH(i) {
489 		if (CPU_ISSET(i, &map))
490 			ncpus++;
491 	}
492 	if (ncpus == 0)
493 		panic("ncpus is 0 with non-zero map");
494 
495 	mtx_lock_spin(&smp_ipi_mtx);
496 
497 	/* Pass rendezvous parameters via global variables. */
498 	smp_rv_ncpus = ncpus;
499 	smp_rv_setup_func = setup_func;
500 	smp_rv_action_func = action_func;
501 	smp_rv_teardown_func = teardown_func;
502 	smp_rv_func_arg = arg;
503 	smp_rv_waiters[1] = 0;
504 	smp_rv_waiters[2] = 0;
505 	smp_rv_waiters[3] = 0;
506 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
507 
508 	/*
509 	 * Signal other processors, which will enter the IPI with
510 	 * interrupts off.
511 	 */
512 	curcpumap = CPU_ISSET(curcpu, &map);
513 	CPU_CLR(curcpu, &map);
514 	ipi_selected(map, IPI_RENDEZVOUS);
515 
516 	/* Check if the current CPU is in the map */
517 	if (curcpumap != 0)
518 		smp_rendezvous_action();
519 
520 	/*
521 	 * Ensure that the master CPU waits for all the other
522 	 * CPUs to finish the rendezvous, so that smp_rv_*
523 	 * pseudo-structure and the arg are guaranteed to not
524 	 * be in use.
525 	 */
526 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
527 		cpu_spinwait();
528 
529 	mtx_unlock_spin(&smp_ipi_mtx);
530 }
531 
532 void
533 smp_rendezvous(void (* setup_func)(void *),
534 	       void (* action_func)(void *),
535 	       void (* teardown_func)(void *),
536 	       void *arg)
537 {
538 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
539 }
540 
541 static struct cpu_group group[MAXCPU];
542 
543 struct cpu_group *
544 smp_topo(void)
545 {
546 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
547 	struct cpu_group *top;
548 
549 	/*
550 	 * Check for a fake topology request for debugging purposes.
551 	 */
552 	switch (smp_topology) {
553 	case 1:
554 		/* Dual core with no sharing.  */
555 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
556 		break;
557 	case 2:
558 		/* No topology, all cpus are equal. */
559 		top = smp_topo_none();
560 		break;
561 	case 3:
562 		/* Dual core with shared L2.  */
563 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
564 		break;
565 	case 4:
566 		/* quad core, shared l3 among each package, private l2.  */
567 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
568 		break;
569 	case 5:
570 		/* quad core,  2 dualcore parts on each package share l2.  */
571 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
572 		break;
573 	case 6:
574 		/* Single-core 2xHTT */
575 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
576 		break;
577 	case 7:
578 		/* quad core with a shared l3, 8 threads sharing L2.  */
579 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
580 		    CG_FLAG_SMT);
581 		break;
582 	default:
583 		/* Default, ask the system what it wants. */
584 		top = cpu_topo();
585 		break;
586 	}
587 	/*
588 	 * Verify the returned topology.
589 	 */
590 	if (top->cg_count != mp_ncpus)
591 		panic("Built bad topology at %p.  CPU count %d != %d",
592 		    top, top->cg_count, mp_ncpus);
593 	if (CPU_CMP(&top->cg_mask, &all_cpus))
594 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
595 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
596 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
597 	return (top);
598 }
599 
600 struct cpu_group *
601 smp_topo_none(void)
602 {
603 	struct cpu_group *top;
604 
605 	top = &group[0];
606 	top->cg_parent = NULL;
607 	top->cg_child = NULL;
608 	top->cg_mask = all_cpus;
609 	top->cg_count = mp_ncpus;
610 	top->cg_children = 0;
611 	top->cg_level = CG_SHARE_NONE;
612 	top->cg_flags = 0;
613 
614 	return (top);
615 }
616 
617 static int
618 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
619     int count, int flags, int start)
620 {
621 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
622 	cpuset_t mask;
623 	int i;
624 
625 	CPU_ZERO(&mask);
626 	for (i = 0; i < count; i++, start++)
627 		CPU_SET(start, &mask);
628 	child->cg_parent = parent;
629 	child->cg_child = NULL;
630 	child->cg_children = 0;
631 	child->cg_level = share;
632 	child->cg_count = count;
633 	child->cg_flags = flags;
634 	child->cg_mask = mask;
635 	parent->cg_children++;
636 	for (; parent != NULL; parent = parent->cg_parent) {
637 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
638 			panic("Duplicate children in %p.  mask (%s) child (%s)",
639 			    parent,
640 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
641 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
642 		CPU_OR(&parent->cg_mask, &child->cg_mask);
643 		parent->cg_count += child->cg_count;
644 	}
645 
646 	return (start);
647 }
648 
649 struct cpu_group *
650 smp_topo_1level(int share, int count, int flags)
651 {
652 	struct cpu_group *child;
653 	struct cpu_group *top;
654 	int packages;
655 	int cpu;
656 	int i;
657 
658 	cpu = 0;
659 	top = &group[0];
660 	packages = mp_ncpus / count;
661 	top->cg_child = child = &group[1];
662 	top->cg_level = CG_SHARE_NONE;
663 	for (i = 0; i < packages; i++, child++)
664 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
665 	return (top);
666 }
667 
668 struct cpu_group *
669 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
670     int l1flags)
671 {
672 	struct cpu_group *top;
673 	struct cpu_group *l1g;
674 	struct cpu_group *l2g;
675 	int cpu;
676 	int i;
677 	int j;
678 
679 	cpu = 0;
680 	top = &group[0];
681 	l2g = &group[1];
682 	top->cg_child = l2g;
683 	top->cg_level = CG_SHARE_NONE;
684 	top->cg_children = mp_ncpus / (l2count * l1count);
685 	l1g = l2g + top->cg_children;
686 	for (i = 0; i < top->cg_children; i++, l2g++) {
687 		l2g->cg_parent = top;
688 		l2g->cg_child = l1g;
689 		l2g->cg_level = l2share;
690 		for (j = 0; j < l2count; j++, l1g++)
691 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
692 			    l1flags, cpu);
693 	}
694 	return (top);
695 }
696 
697 
698 struct cpu_group *
699 smp_topo_find(struct cpu_group *top, int cpu)
700 {
701 	struct cpu_group *cg;
702 	cpuset_t mask;
703 	int children;
704 	int i;
705 
706 	CPU_SETOF(cpu, &mask);
707 	cg = top;
708 	for (;;) {
709 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
710 			return (NULL);
711 		if (cg->cg_children == 0)
712 			return (cg);
713 		children = cg->cg_children;
714 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
715 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
716 				break;
717 	}
718 	return (NULL);
719 }
720 #else /* !SMP */
721 
722 void
723 smp_rendezvous_cpus(cpuset_t map,
724 	void (*setup_func)(void *),
725 	void (*action_func)(void *),
726 	void (*teardown_func)(void *),
727 	void *arg)
728 {
729 	/*
730 	 * In the !SMP case we just need to ensure the same initial conditions
731 	 * as the SMP case.
732 	 */
733 	spinlock_enter();
734 	if (setup_func != NULL)
735 		setup_func(arg);
736 	if (action_func != NULL)
737 		action_func(arg);
738 	if (teardown_func != NULL)
739 		teardown_func(arg);
740 	spinlock_exit();
741 }
742 
743 void
744 smp_rendezvous(void (*setup_func)(void *),
745 	       void (*action_func)(void *),
746 	       void (*teardown_func)(void *),
747 	       void *arg)
748 {
749 
750 	/* Look comments in the smp_rendezvous_cpus() case. */
751 	spinlock_enter();
752 	if (setup_func != NULL)
753 		setup_func(arg);
754 	if (action_func != NULL)
755 		action_func(arg);
756 	if (teardown_func != NULL)
757 		teardown_func(arg);
758 	spinlock_exit();
759 }
760 
761 /*
762  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
763  * APIs will still work using this dummy support.
764  */
765 static void
766 mp_setvariables_for_up(void *dummy)
767 {
768 	mp_ncpus = 1;
769 	mp_maxid = PCPU_GET(cpuid);
770 	CPU_SETOF(mp_maxid, &all_cpus);
771 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
772 }
773 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
774     mp_setvariables_for_up, NULL);
775 #endif /* SMP */
776 
777 void
778 smp_no_rendevous_barrier(void *dummy)
779 {
780 #ifdef SMP
781 	KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
782 #endif
783 }
784 
785 /*
786  * Wait specified idle threads to switch once.  This ensures that even
787  * preempted threads have cycled through the switch function once,
788  * exiting their codepaths.  This allows us to change global pointers
789  * with no other synchronization.
790  */
791 int
792 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
793 {
794 	struct pcpu *pcpu;
795 	u_int gen[MAXCPU];
796 	int error;
797 	int cpu;
798 
799 	error = 0;
800 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
801 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
802 			continue;
803 		pcpu = pcpu_find(cpu);
804 		gen[cpu] = pcpu->pc_idlethread->td_generation;
805 	}
806 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
807 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
808 			continue;
809 		pcpu = pcpu_find(cpu);
810 		thread_lock(curthread);
811 		sched_bind(curthread, cpu);
812 		thread_unlock(curthread);
813 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
814 			error = tsleep(quiesce_cpus, prio, wmesg, 1);
815 			if (error != EWOULDBLOCK)
816 				goto out;
817 			error = 0;
818 		}
819 	}
820 out:
821 	thread_lock(curthread);
822 	sched_unbind(curthread);
823 	thread_unlock(curthread);
824 
825 	return (error);
826 }
827 
828 int
829 quiesce_all_cpus(const char *wmesg, int prio)
830 {
831 
832 	return quiesce_cpus(all_cpus, wmesg, prio);
833 }
834