1 /* 2 * Copyright (c) 1996, by Steve Passe 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. The name of the developer may NOT be used to endorse or promote products 11 * derived from this software without specific prior written permission. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 * $FreeBSD$ 26 */ 27 28 #include "opt_smp.h" 29 #include "opt_cpu.h" 30 #include "opt_user_ldt.h" 31 32 #ifdef SMP 33 #include <machine/smptests.h> 34 #else 35 #error 36 #endif 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/proc.h> 42 #include <sys/sysctl.h> 43 #include <sys/malloc.h> 44 #include <sys/memrange.h> 45 #ifdef BETTER_CLOCK 46 #include <sys/dkstat.h> 47 #endif 48 #include <sys/cons.h> /* cngetc() */ 49 50 #include <vm/vm.h> 51 #include <vm/vm_param.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_kern.h> 54 #include <vm/vm_extern.h> 55 #ifdef BETTER_CLOCK 56 #include <sys/lock.h> 57 #include <vm/vm_map.h> 58 #include <sys/user.h> 59 #ifdef GPROF 60 #include <sys/gmon.h> 61 #endif 62 #endif 63 64 #include <machine/smp.h> 65 #include <machine/apic.h> 66 #include <machine/atomic.h> 67 #include <machine/cpufunc.h> 68 #include <machine/mpapic.h> 69 #include <machine/psl.h> 70 #include <machine/segments.h> 71 #include <machine/smptests.h> /** TEST_DEFAULT_CONFIG, TEST_TEST1 */ 72 #include <machine/tss.h> 73 #include <machine/specialreg.h> 74 #include <machine/globaldata.h> 75 76 #if defined(APIC_IO) 77 #include <machine/md_var.h> /* setidt() */ 78 #include <i386/isa/icu.h> /* IPIs */ 79 #include <i386/isa/intr_machdep.h> /* IPIs */ 80 #endif /* APIC_IO */ 81 82 #if defined(TEST_DEFAULT_CONFIG) 83 #define MPFPS_MPFB1 TEST_DEFAULT_CONFIG 84 #else 85 #define MPFPS_MPFB1 mpfps->mpfb1 86 #endif /* TEST_DEFAULT_CONFIG */ 87 88 #define WARMBOOT_TARGET 0 89 #define WARMBOOT_OFF (KERNBASE + 0x0467) 90 #define WARMBOOT_SEG (KERNBASE + 0x0469) 91 92 #ifdef PC98 93 #define BIOS_BASE (0xe8000) 94 #define BIOS_SIZE (0x18000) 95 #else 96 #define BIOS_BASE (0xf0000) 97 #define BIOS_SIZE (0x10000) 98 #endif 99 #define BIOS_COUNT (BIOS_SIZE/4) 100 101 #define CMOS_REG (0x70) 102 #define CMOS_DATA (0x71) 103 #define BIOS_RESET (0x0f) 104 #define BIOS_WARM (0x0a) 105 106 #define PROCENTRY_FLAG_EN 0x01 107 #define PROCENTRY_FLAG_BP 0x02 108 #define IOAPICENTRY_FLAG_EN 0x01 109 110 111 /* MP Floating Pointer Structure */ 112 typedef struct MPFPS { 113 char signature[4]; 114 void *pap; 115 u_char length; 116 u_char spec_rev; 117 u_char checksum; 118 u_char mpfb1; 119 u_char mpfb2; 120 u_char mpfb3; 121 u_char mpfb4; 122 u_char mpfb5; 123 } *mpfps_t; 124 125 /* MP Configuration Table Header */ 126 typedef struct MPCTH { 127 char signature[4]; 128 u_short base_table_length; 129 u_char spec_rev; 130 u_char checksum; 131 u_char oem_id[8]; 132 u_char product_id[12]; 133 void *oem_table_pointer; 134 u_short oem_table_size; 135 u_short entry_count; 136 void *apic_address; 137 u_short extended_table_length; 138 u_char extended_table_checksum; 139 u_char reserved; 140 } *mpcth_t; 141 142 143 typedef struct PROCENTRY { 144 u_char type; 145 u_char apic_id; 146 u_char apic_version; 147 u_char cpu_flags; 148 u_long cpu_signature; 149 u_long feature_flags; 150 u_long reserved1; 151 u_long reserved2; 152 } *proc_entry_ptr; 153 154 typedef struct BUSENTRY { 155 u_char type; 156 u_char bus_id; 157 char bus_type[6]; 158 } *bus_entry_ptr; 159 160 typedef struct IOAPICENTRY { 161 u_char type; 162 u_char apic_id; 163 u_char apic_version; 164 u_char apic_flags; 165 void *apic_address; 166 } *io_apic_entry_ptr; 167 168 typedef struct INTENTRY { 169 u_char type; 170 u_char int_type; 171 u_short int_flags; 172 u_char src_bus_id; 173 u_char src_bus_irq; 174 u_char dst_apic_id; 175 u_char dst_apic_int; 176 } *int_entry_ptr; 177 178 /* descriptions of MP basetable entries */ 179 typedef struct BASETABLE_ENTRY { 180 u_char type; 181 u_char length; 182 char name[16]; 183 } basetable_entry; 184 185 /* 186 * this code MUST be enabled here and in mpboot.s. 187 * it follows the very early stages of AP boot by placing values in CMOS ram. 188 * it NORMALLY will never be needed and thus the primitive method for enabling. 189 * 190 #define CHECK_POINTS 191 */ 192 193 #if defined(CHECK_POINTS) && !defined(PC98) 194 #define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA)) 195 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D))) 196 197 #define CHECK_INIT(D); \ 198 CHECK_WRITE(0x34, (D)); \ 199 CHECK_WRITE(0x35, (D)); \ 200 CHECK_WRITE(0x36, (D)); \ 201 CHECK_WRITE(0x37, (D)); \ 202 CHECK_WRITE(0x38, (D)); \ 203 CHECK_WRITE(0x39, (D)); 204 205 #define CHECK_PRINT(S); \ 206 printf("%s: %d, %d, %d, %d, %d, %d\n", \ 207 (S), \ 208 CHECK_READ(0x34), \ 209 CHECK_READ(0x35), \ 210 CHECK_READ(0x36), \ 211 CHECK_READ(0x37), \ 212 CHECK_READ(0x38), \ 213 CHECK_READ(0x39)); 214 215 #else /* CHECK_POINTS */ 216 217 #define CHECK_INIT(D) 218 #define CHECK_PRINT(S) 219 220 #endif /* CHECK_POINTS */ 221 222 /* 223 * Values to send to the POST hardware. 224 */ 225 #define MP_BOOTADDRESS_POST 0x10 226 #define MP_PROBE_POST 0x11 227 #define MPTABLE_PASS1_POST 0x12 228 229 #define MP_START_POST 0x13 230 #define MP_ENABLE_POST 0x14 231 #define MPTABLE_PASS2_POST 0x15 232 233 #define START_ALL_APS_POST 0x16 234 #define INSTALL_AP_TRAMP_POST 0x17 235 #define START_AP_POST 0x18 236 237 #define MP_ANNOUNCE_POST 0x19 238 239 240 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */ 241 int current_postcode; 242 243 /** XXX FIXME: what system files declare these??? */ 244 extern struct region_descriptor r_gdt, r_idt; 245 246 int bsp_apic_ready = 0; /* flags useability of BSP apic */ 247 int mp_ncpus; /* # of CPUs, including BSP */ 248 int mp_naps; /* # of Applications processors */ 249 int mp_nbusses; /* # of busses */ 250 int mp_napics; /* # of IO APICs */ 251 int boot_cpu_id; /* designated BSP */ 252 vm_offset_t cpu_apic_address; 253 vm_offset_t io_apic_address[NAPICID]; /* NAPICID is more than enough */ 254 extern int nkpt; 255 256 u_int32_t cpu_apic_versions[NCPU]; 257 u_int32_t io_apic_versions[NAPIC]; 258 259 #ifdef APIC_INTR_DIAGNOSTIC 260 int apic_itrace_enter[32]; 261 int apic_itrace_tryisrlock[32]; 262 int apic_itrace_gotisrlock[32]; 263 int apic_itrace_active[32]; 264 int apic_itrace_masked[32]; 265 int apic_itrace_noisrlock[32]; 266 int apic_itrace_masked2[32]; 267 int apic_itrace_unmask[32]; 268 int apic_itrace_noforward[32]; 269 int apic_itrace_leave[32]; 270 int apic_itrace_enter2[32]; 271 int apic_itrace_doreti[32]; 272 int apic_itrace_splz[32]; 273 int apic_itrace_eoi[32]; 274 #ifdef APIC_INTR_DIAGNOSTIC_IRQ 275 unsigned short apic_itrace_debugbuffer[32768]; 276 int apic_itrace_debugbuffer_idx; 277 struct simplelock apic_itrace_debuglock; 278 #endif 279 #endif 280 281 #ifdef APIC_INTR_REORDER 282 struct { 283 volatile int *location; 284 int bit; 285 } apic_isrbit_location[32]; 286 #endif 287 288 struct apic_intmapinfo int_to_apicintpin[APIC_INTMAPSIZE]; 289 290 /* 291 * APIC ID logical/physical mapping structures. 292 * We oversize these to simplify boot-time config. 293 */ 294 int cpu_num_to_apic_id[NAPICID]; 295 int io_num_to_apic_id[NAPICID]; 296 int apic_id_to_logical[NAPICID]; 297 298 299 /* Bitmap of all available CPUs */ 300 u_int all_cpus; 301 302 /* AP uses this during bootstrap. Do not staticize. */ 303 char *bootSTK; 304 static int bootAP; 305 306 /* Hotwire a 0->4MB V==P mapping */ 307 extern pt_entry_t *KPTphys; 308 309 /* SMP page table page */ 310 extern pt_entry_t *SMPpt; 311 312 struct pcb stoppcbs[NCPU]; 313 314 int smp_started; /* has the system started? */ 315 316 /* 317 * Local data and functions. 318 */ 319 320 static int mp_capable; 321 static u_int boot_address; 322 static u_int base_memory; 323 324 static int picmode; /* 0: virtual wire mode, 1: PIC mode */ 325 static mpfps_t mpfps; 326 static int search_for_sig(u_int32_t target, int count); 327 static void mp_enable(u_int boot_addr); 328 329 static int mptable_pass1(void); 330 static int mptable_pass2(void); 331 static void default_mp_table(int type); 332 static void fix_mp_table(void); 333 static void setup_apic_irq_mapping(void); 334 static void init_locks(void); 335 static int start_all_aps(u_int boot_addr); 336 static void install_ap_tramp(u_int boot_addr); 337 static int start_ap(int logicalCpu, u_int boot_addr); 338 static int apic_int_is_bus_type(int intr, int bus_type); 339 340 /* 341 * Calculate usable address in base memory for AP trampoline code. 342 */ 343 u_int 344 mp_bootaddress(u_int basemem) 345 { 346 POSTCODE(MP_BOOTADDRESS_POST); 347 348 base_memory = basemem * 1024; /* convert to bytes */ 349 350 boot_address = base_memory & ~0xfff; /* round down to 4k boundary */ 351 if ((base_memory - boot_address) < bootMP_size) 352 boot_address -= 4096; /* not enough, lower by 4k */ 353 354 return boot_address; 355 } 356 357 358 /* 359 * Look for an Intel MP spec table (ie, SMP capable hardware). 360 */ 361 int 362 mp_probe(void) 363 { 364 int x; 365 u_long segment; 366 u_int32_t target; 367 368 POSTCODE(MP_PROBE_POST); 369 370 /* see if EBDA exists */ 371 if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) { 372 /* search first 1K of EBDA */ 373 target = (u_int32_t) (segment << 4); 374 if ((x = search_for_sig(target, 1024 / 4)) >= 0) 375 goto found; 376 } else { 377 /* last 1K of base memory, effective 'top of base' passed in */ 378 target = (u_int32_t) (base_memory - 0x400); 379 if ((x = search_for_sig(target, 1024 / 4)) >= 0) 380 goto found; 381 } 382 383 /* search the BIOS */ 384 target = (u_int32_t) BIOS_BASE; 385 if ((x = search_for_sig(target, BIOS_COUNT)) >= 0) 386 goto found; 387 388 /* nothing found */ 389 mpfps = (mpfps_t)0; 390 mp_capable = 0; 391 return 0; 392 393 found: 394 /* calculate needed resources */ 395 mpfps = (mpfps_t)x; 396 if (mptable_pass1()) 397 panic("you must reconfigure your kernel"); 398 399 /* flag fact that we are running multiple processors */ 400 mp_capable = 1; 401 return 1; 402 } 403 404 405 /* 406 * Startup the SMP processors. 407 */ 408 void 409 mp_start(void) 410 { 411 POSTCODE(MP_START_POST); 412 413 /* look for MP capable motherboard */ 414 if (mp_capable) 415 mp_enable(boot_address); 416 else 417 panic("MP hardware not found!"); 418 } 419 420 421 /* 422 * Print various information about the SMP system hardware and setup. 423 */ 424 void 425 mp_announce(void) 426 { 427 int x; 428 429 POSTCODE(MP_ANNOUNCE_POST); 430 431 printf("FreeBSD/SMP: Multiprocessor motherboard\n"); 432 printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0)); 433 printf(", version: 0x%08x", cpu_apic_versions[0]); 434 printf(", at 0x%08x\n", cpu_apic_address); 435 for (x = 1; x <= mp_naps; ++x) { 436 printf(" cpu%d (AP): apic id: %2d", x, CPU_TO_ID(x)); 437 printf(", version: 0x%08x", cpu_apic_versions[x]); 438 printf(", at 0x%08x\n", cpu_apic_address); 439 } 440 441 #if defined(APIC_IO) 442 for (x = 0; x < mp_napics; ++x) { 443 printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x)); 444 printf(", version: 0x%08x", io_apic_versions[x]); 445 printf(", at 0x%08x\n", io_apic_address[x]); 446 } 447 #else 448 printf(" Warning: APIC I/O disabled\n"); 449 #endif /* APIC_IO */ 450 } 451 452 /* 453 * AP cpu's call this to sync up protected mode. 454 */ 455 void 456 init_secondary(void) 457 { 458 int gsel_tss; 459 int x, myid = bootAP; 460 461 gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid]; 462 gdt_segs[GPROC0_SEL].ssd_base = 463 (int) &SMP_prvspace[myid].globaldata.gd_common_tss; 464 SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid]; 465 466 for (x = 0; x < NGDT; x++) { 467 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd); 468 } 469 470 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; 471 r_gdt.rd_base = (int) &gdt[myid * NGDT]; 472 lgdt(&r_gdt); /* does magic intra-segment return */ 473 474 lidt(&r_idt); 475 476 lldt(_default_ldt); 477 #ifdef USER_LDT 478 currentldt = _default_ldt; 479 #endif 480 481 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); 482 gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS; 483 common_tss.tss_esp0 = 0; /* not used until after switch */ 484 common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL); 485 common_tss.tss_ioopt = (sizeof common_tss) << 16; 486 tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd; 487 common_tssd = *tss_gdt; 488 ltr(gsel_tss); 489 490 load_cr0(0x8005003b); /* XXX! */ 491 492 pmap_set_opt(); 493 } 494 495 496 #if defined(APIC_IO) 497 /* 498 * Final configuration of the BSP's local APIC: 499 * - disable 'pic mode'. 500 * - disable 'virtual wire mode'. 501 * - enable NMI. 502 */ 503 void 504 bsp_apic_configure(void) 505 { 506 u_char byte; 507 u_int32_t temp; 508 509 /* leave 'pic mode' if necessary */ 510 if (picmode) { 511 outb(0x22, 0x70); /* select IMCR */ 512 byte = inb(0x23); /* current contents */ 513 byte |= 0x01; /* mask external INTR */ 514 outb(0x23, byte); /* disconnect 8259s/NMI */ 515 } 516 517 /* mask lint0 (the 8259 'virtual wire' connection) */ 518 temp = lapic.lvt_lint0; 519 temp |= APIC_LVT_M; /* set the mask */ 520 lapic.lvt_lint0 = temp; 521 522 /* setup lint1 to handle NMI */ 523 temp = lapic.lvt_lint1; 524 temp &= ~APIC_LVT_M; /* clear the mask */ 525 lapic.lvt_lint1 = temp; 526 527 if (bootverbose) 528 apic_dump("bsp_apic_configure()"); 529 } 530 #endif /* APIC_IO */ 531 532 533 /******************************************************************* 534 * local functions and data 535 */ 536 537 /* 538 * start the SMP system 539 */ 540 static void 541 mp_enable(u_int boot_addr) 542 { 543 int x; 544 #if defined(APIC_IO) 545 int apic; 546 u_int ux; 547 #endif /* APIC_IO */ 548 549 POSTCODE(MP_ENABLE_POST); 550 551 /* turn on 4MB of V == P addressing so we can get to MP table */ 552 *(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME); 553 invltlb(); 554 555 /* examine the MP table for needed info, uses physical addresses */ 556 x = mptable_pass2(); 557 558 *(int *)PTD = 0; 559 invltlb(); 560 561 /* can't process default configs till the CPU APIC is pmapped */ 562 if (x) 563 default_mp_table(x); 564 565 /* post scan cleanup */ 566 fix_mp_table(); 567 setup_apic_irq_mapping(); 568 569 #if defined(APIC_IO) 570 571 /* fill the LOGICAL io_apic_versions table */ 572 for (apic = 0; apic < mp_napics; ++apic) { 573 ux = io_apic_read(apic, IOAPIC_VER); 574 io_apic_versions[apic] = ux; 575 } 576 577 /* program each IO APIC in the system */ 578 for (apic = 0; apic < mp_napics; ++apic) 579 if (io_apic_setup(apic) < 0) 580 panic("IO APIC setup failure"); 581 582 /* install a 'Spurious INTerrupt' vector */ 583 setidt(XSPURIOUSINT_OFFSET, Xspuriousint, 584 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); 585 586 /* install an inter-CPU IPI for TLB invalidation */ 587 setidt(XINVLTLB_OFFSET, Xinvltlb, 588 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); 589 590 #ifdef BETTER_CLOCK 591 /* install an inter-CPU IPI for reading processor state */ 592 setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate, 593 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); 594 #endif 595 596 /* install an inter-CPU IPI for all-CPU rendezvous */ 597 setidt(XRENDEZVOUS_OFFSET, Xrendezvous, 598 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); 599 600 /* install an inter-CPU IPI for forcing an additional software trap */ 601 setidt(XCPUAST_OFFSET, Xcpuast, 602 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); 603 604 /* install an inter-CPU IPI for interrupt forwarding */ 605 setidt(XFORWARD_IRQ_OFFSET, Xforward_irq, 606 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); 607 608 /* install an inter-CPU IPI for CPU stop/restart */ 609 setidt(XCPUSTOP_OFFSET, Xcpustop, 610 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); 611 612 #if defined(TEST_TEST1) 613 /* install a "fake hardware INTerrupt" vector */ 614 setidt(XTEST1_OFFSET, Xtest1, 615 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); 616 #endif /** TEST_TEST1 */ 617 618 #endif /* APIC_IO */ 619 620 /* initialize all SMP locks */ 621 init_locks(); 622 623 /* start each Application Processor */ 624 start_all_aps(boot_addr); 625 626 /* 627 * The init process might be started on a different CPU now, 628 * and the boot CPU might not call prepare_usermode to get 629 * cr0 correctly configured. Thus we initialize cr0 here. 630 */ 631 load_cr0(rcr0() | CR0_WP | CR0_AM); 632 } 633 634 635 /* 636 * look for the MP spec signature 637 */ 638 639 /* string defined by the Intel MP Spec as identifying the MP table */ 640 #define MP_SIG 0x5f504d5f /* _MP_ */ 641 #define NEXT(X) ((X) += 4) 642 static int 643 search_for_sig(u_int32_t target, int count) 644 { 645 int x; 646 u_int32_t *addr = (u_int32_t *) (KERNBASE + target); 647 648 for (x = 0; x < count; NEXT(x)) 649 if (addr[x] == MP_SIG) 650 /* make array index a byte index */ 651 return (target + (x * sizeof(u_int32_t))); 652 653 return -1; 654 } 655 656 657 static basetable_entry basetable_entry_types[] = 658 { 659 {0, 20, "Processor"}, 660 {1, 8, "Bus"}, 661 {2, 8, "I/O APIC"}, 662 {3, 8, "I/O INT"}, 663 {4, 8, "Local INT"} 664 }; 665 666 typedef struct BUSDATA { 667 u_char bus_id; 668 enum busTypes bus_type; 669 } bus_datum; 670 671 typedef struct INTDATA { 672 u_char int_type; 673 u_short int_flags; 674 u_char src_bus_id; 675 u_char src_bus_irq; 676 u_char dst_apic_id; 677 u_char dst_apic_int; 678 u_char int_vector; 679 } io_int, local_int; 680 681 typedef struct BUSTYPENAME { 682 u_char type; 683 char name[7]; 684 } bus_type_name; 685 686 static bus_type_name bus_type_table[] = 687 { 688 {CBUS, "CBUS"}, 689 {CBUSII, "CBUSII"}, 690 {EISA, "EISA"}, 691 {MCA, "MCA"}, 692 {UNKNOWN_BUSTYPE, "---"}, 693 {ISA, "ISA"}, 694 {MCA, "MCA"}, 695 {UNKNOWN_BUSTYPE, "---"}, 696 {UNKNOWN_BUSTYPE, "---"}, 697 {UNKNOWN_BUSTYPE, "---"}, 698 {UNKNOWN_BUSTYPE, "---"}, 699 {UNKNOWN_BUSTYPE, "---"}, 700 {PCI, "PCI"}, 701 {UNKNOWN_BUSTYPE, "---"}, 702 {UNKNOWN_BUSTYPE, "---"}, 703 {UNKNOWN_BUSTYPE, "---"}, 704 {UNKNOWN_BUSTYPE, "---"}, 705 {XPRESS, "XPRESS"}, 706 {UNKNOWN_BUSTYPE, "---"} 707 }; 708 /* from MP spec v1.4, table 5-1 */ 709 static int default_data[7][5] = 710 { 711 /* nbus, id0, type0, id1, type1 */ 712 {1, 0, ISA, 255, 255}, 713 {1, 0, EISA, 255, 255}, 714 {1, 0, EISA, 255, 255}, 715 {1, 0, MCA, 255, 255}, 716 {2, 0, ISA, 1, PCI}, 717 {2, 0, EISA, 1, PCI}, 718 {2, 0, MCA, 1, PCI} 719 }; 720 721 722 /* the bus data */ 723 static bus_datum bus_data[NBUS]; 724 725 /* the IO INT data, one entry per possible APIC INTerrupt */ 726 static io_int io_apic_ints[NINTR]; 727 728 static int nintrs; 729 730 static int processor_entry __P((proc_entry_ptr entry, int cpu)); 731 static int bus_entry __P((bus_entry_ptr entry, int bus)); 732 static int io_apic_entry __P((io_apic_entry_ptr entry, int apic)); 733 static int int_entry __P((int_entry_ptr entry, int intr)); 734 static int lookup_bus_type __P((char *name)); 735 736 737 /* 738 * 1st pass on motherboard's Intel MP specification table. 739 * 740 * initializes: 741 * mp_ncpus = 1 742 * 743 * determines: 744 * cpu_apic_address (common to all CPUs) 745 * io_apic_address[N] 746 * mp_naps 747 * mp_nbusses 748 * mp_napics 749 * nintrs 750 */ 751 static int 752 mptable_pass1(void) 753 { 754 int x; 755 mpcth_t cth; 756 int totalSize; 757 void* position; 758 int count; 759 int type; 760 int mustpanic; 761 762 POSTCODE(MPTABLE_PASS1_POST); 763 764 mustpanic = 0; 765 766 /* clear various tables */ 767 for (x = 0; x < NAPICID; ++x) { 768 io_apic_address[x] = ~0; /* IO APIC address table */ 769 } 770 771 /* init everything to empty */ 772 mp_naps = 0; 773 mp_nbusses = 0; 774 mp_napics = 0; 775 nintrs = 0; 776 777 /* check for use of 'default' configuration */ 778 if (MPFPS_MPFB1 != 0) { 779 /* use default addresses */ 780 cpu_apic_address = DEFAULT_APIC_BASE; 781 io_apic_address[0] = DEFAULT_IO_APIC_BASE; 782 783 /* fill in with defaults */ 784 mp_naps = 2; /* includes BSP */ 785 mp_nbusses = default_data[MPFPS_MPFB1 - 1][0]; 786 #if defined(APIC_IO) 787 mp_napics = 1; 788 nintrs = 16; 789 #endif /* APIC_IO */ 790 } 791 else { 792 if ((cth = mpfps->pap) == 0) 793 panic("MP Configuration Table Header MISSING!"); 794 795 cpu_apic_address = (vm_offset_t) cth->apic_address; 796 797 /* walk the table, recording info of interest */ 798 totalSize = cth->base_table_length - sizeof(struct MPCTH); 799 position = (u_char *) cth + sizeof(struct MPCTH); 800 count = cth->entry_count; 801 802 while (count--) { 803 switch (type = *(u_char *) position) { 804 case 0: /* processor_entry */ 805 if (((proc_entry_ptr)position)->cpu_flags 806 & PROCENTRY_FLAG_EN) 807 ++mp_naps; 808 break; 809 case 1: /* bus_entry */ 810 ++mp_nbusses; 811 break; 812 case 2: /* io_apic_entry */ 813 if (((io_apic_entry_ptr)position)->apic_flags 814 & IOAPICENTRY_FLAG_EN) 815 io_apic_address[mp_napics++] = 816 (vm_offset_t)((io_apic_entry_ptr) 817 position)->apic_address; 818 break; 819 case 3: /* int_entry */ 820 ++nintrs; 821 break; 822 case 4: /* int_entry */ 823 break; 824 default: 825 panic("mpfps Base Table HOSED!"); 826 /* NOTREACHED */ 827 } 828 829 totalSize -= basetable_entry_types[type].length; 830 (u_char*)position += basetable_entry_types[type].length; 831 } 832 } 833 834 /* qualify the numbers */ 835 if (mp_naps > NCPU) { 836 printf("Warning: only using %d of %d available CPUs!\n", 837 NCPU, mp_naps); 838 mp_naps = NCPU; 839 } 840 if (mp_nbusses > NBUS) { 841 printf("found %d busses, increase NBUS\n", mp_nbusses); 842 mustpanic = 1; 843 } 844 if (mp_napics > NAPIC) { 845 printf("found %d apics, increase NAPIC\n", mp_napics); 846 mustpanic = 1; 847 } 848 if (nintrs > NINTR) { 849 printf("found %d intrs, increase NINTR\n", nintrs); 850 mustpanic = 1; 851 } 852 853 /* 854 * Count the BSP. 855 * This is also used as a counter while starting the APs. 856 */ 857 mp_ncpus = 1; 858 859 --mp_naps; /* subtract the BSP */ 860 861 return mustpanic; 862 } 863 864 865 /* 866 * 2nd pass on motherboard's Intel MP specification table. 867 * 868 * sets: 869 * boot_cpu_id 870 * ID_TO_IO(N), phy APIC ID to log CPU/IO table 871 * CPU_TO_ID(N), logical CPU to APIC ID table 872 * IO_TO_ID(N), logical IO to APIC ID table 873 * bus_data[N] 874 * io_apic_ints[N] 875 */ 876 static int 877 mptable_pass2(void) 878 { 879 int x; 880 mpcth_t cth; 881 int totalSize; 882 void* position; 883 int count; 884 int type; 885 int apic, bus, cpu, intr; 886 887 POSTCODE(MPTABLE_PASS2_POST); 888 889 /* clear various tables */ 890 for (x = 0; x < NAPICID; ++x) { 891 ID_TO_IO(x) = -1; /* phy APIC ID to log CPU/IO table */ 892 CPU_TO_ID(x) = -1; /* logical CPU to APIC ID table */ 893 IO_TO_ID(x) = -1; /* logical IO to APIC ID table */ 894 } 895 896 /* clear bus data table */ 897 for (x = 0; x < NBUS; ++x) 898 bus_data[x].bus_id = 0xff; 899 900 /* clear IO APIC INT table */ 901 for (x = 0; x < NINTR; ++x) { 902 io_apic_ints[x].int_type = 0xff; 903 io_apic_ints[x].int_vector = 0xff; 904 } 905 906 /* setup the cpu/apic mapping arrays */ 907 boot_cpu_id = -1; 908 909 /* record whether PIC or virtual-wire mode */ 910 picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0; 911 912 /* check for use of 'default' configuration */ 913 if (MPFPS_MPFB1 != 0) 914 return MPFPS_MPFB1; /* return default configuration type */ 915 916 if ((cth = mpfps->pap) == 0) 917 panic("MP Configuration Table Header MISSING!"); 918 919 /* walk the table, recording info of interest */ 920 totalSize = cth->base_table_length - sizeof(struct MPCTH); 921 position = (u_char *) cth + sizeof(struct MPCTH); 922 count = cth->entry_count; 923 apic = bus = intr = 0; 924 cpu = 1; /* pre-count the BSP */ 925 926 while (count--) { 927 switch (type = *(u_char *) position) { 928 case 0: 929 if (processor_entry(position, cpu)) 930 ++cpu; 931 break; 932 case 1: 933 if (bus_entry(position, bus)) 934 ++bus; 935 break; 936 case 2: 937 if (io_apic_entry(position, apic)) 938 ++apic; 939 break; 940 case 3: 941 if (int_entry(position, intr)) 942 ++intr; 943 break; 944 case 4: 945 /* int_entry(position); */ 946 break; 947 default: 948 panic("mpfps Base Table HOSED!"); 949 /* NOTREACHED */ 950 } 951 952 totalSize -= basetable_entry_types[type].length; 953 (u_char *) position += basetable_entry_types[type].length; 954 } 955 956 if (boot_cpu_id == -1) 957 panic("NO BSP found!"); 958 959 /* report fact that its NOT a default configuration */ 960 return 0; 961 } 962 963 964 void 965 assign_apic_irq(int apic, int intpin, int irq) 966 { 967 int x; 968 969 if (int_to_apicintpin[irq].ioapic != -1) 970 panic("assign_apic_irq: inconsistent table"); 971 972 int_to_apicintpin[irq].ioapic = apic; 973 int_to_apicintpin[irq].int_pin = intpin; 974 int_to_apicintpin[irq].apic_address = ioapic[apic]; 975 int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin; 976 977 for (x = 0; x < nintrs; x++) { 978 if ((io_apic_ints[x].int_type == 0 || 979 io_apic_ints[x].int_type == 3) && 980 io_apic_ints[x].int_vector == 0xff && 981 io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) && 982 io_apic_ints[x].dst_apic_int == intpin) 983 io_apic_ints[x].int_vector = irq; 984 } 985 } 986 987 void 988 revoke_apic_irq(int irq) 989 { 990 int x; 991 int oldapic; 992 int oldintpin; 993 994 if (int_to_apicintpin[irq].ioapic == -1) 995 panic("assign_apic_irq: inconsistent table"); 996 997 oldapic = int_to_apicintpin[irq].ioapic; 998 oldintpin = int_to_apicintpin[irq].int_pin; 999 1000 int_to_apicintpin[irq].ioapic = -1; 1001 int_to_apicintpin[irq].int_pin = 0; 1002 int_to_apicintpin[irq].apic_address = NULL; 1003 int_to_apicintpin[irq].redirindex = 0; 1004 1005 for (x = 0; x < nintrs; x++) { 1006 if ((io_apic_ints[x].int_type == 0 || 1007 io_apic_ints[x].int_type == 3) && 1008 io_apic_ints[x].int_vector == 0xff && 1009 io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) && 1010 io_apic_ints[x].dst_apic_int == oldintpin) 1011 io_apic_ints[x].int_vector = 0xff; 1012 } 1013 } 1014 1015 /* 1016 * parse an Intel MP specification table 1017 */ 1018 static void 1019 fix_mp_table(void) 1020 { 1021 int x; 1022 int id; 1023 int bus_0 = 0; /* Stop GCC warning */ 1024 int bus_pci = 0; /* Stop GCC warning */ 1025 int num_pci_bus; 1026 1027 /* 1028 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS 1029 * did it wrong. The MP spec says that when more than 1 PCI bus 1030 * exists the BIOS must begin with bus entries for the PCI bus and use 1031 * actual PCI bus numbering. This implies that when only 1 PCI bus 1032 * exists the BIOS can choose to ignore this ordering, and indeed many 1033 * MP motherboards do ignore it. This causes a problem when the PCI 1034 * sub-system makes requests of the MP sub-system based on PCI bus 1035 * numbers. So here we look for the situation and renumber the 1036 * busses and associated INTs in an effort to "make it right". 1037 */ 1038 1039 /* find bus 0, PCI bus, count the number of PCI busses */ 1040 for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) { 1041 if (bus_data[x].bus_id == 0) { 1042 bus_0 = x; 1043 } 1044 if (bus_data[x].bus_type == PCI) { 1045 ++num_pci_bus; 1046 bus_pci = x; 1047 } 1048 } 1049 /* 1050 * bus_0 == slot of bus with ID of 0 1051 * bus_pci == slot of last PCI bus encountered 1052 */ 1053 1054 /* check the 1 PCI bus case for sanity */ 1055 if (num_pci_bus == 1) { 1056 1057 /* if it is number 0 all is well */ 1058 if (bus_data[bus_pci].bus_id == 0) 1059 return; 1060 1061 /* mis-numbered, swap with whichever bus uses slot 0 */ 1062 1063 /* swap the bus entry types */ 1064 bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type; 1065 bus_data[bus_0].bus_type = PCI; 1066 1067 /* swap each relavant INTerrupt entry */ 1068 id = bus_data[bus_pci].bus_id; 1069 for (x = 0; x < nintrs; ++x) { 1070 if (io_apic_ints[x].src_bus_id == id) { 1071 io_apic_ints[x].src_bus_id = 0; 1072 } 1073 else if (io_apic_ints[x].src_bus_id == 0) { 1074 io_apic_ints[x].src_bus_id = id; 1075 } 1076 } 1077 } 1078 } 1079 1080 1081 /* Assign low level interrupt handlers */ 1082 static void 1083 setup_apic_irq_mapping(void) 1084 { 1085 int x; 1086 int int_vector; 1087 1088 /* Clear array */ 1089 for (x = 0; x < APIC_INTMAPSIZE; x++) { 1090 int_to_apicintpin[x].ioapic = -1; 1091 int_to_apicintpin[x].int_pin = 0; 1092 int_to_apicintpin[x].apic_address = NULL; 1093 int_to_apicintpin[x].redirindex = 0; 1094 } 1095 1096 /* First assign ISA/EISA interrupts */ 1097 for (x = 0; x < nintrs; x++) { 1098 int_vector = io_apic_ints[x].src_bus_irq; 1099 if (int_vector < APIC_INTMAPSIZE && 1100 io_apic_ints[x].int_vector == 0xff && 1101 int_to_apicintpin[int_vector].ioapic == -1 && 1102 (apic_int_is_bus_type(x, ISA) || 1103 apic_int_is_bus_type(x, EISA)) && 1104 io_apic_ints[x].int_type == 0) { 1105 assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id), 1106 io_apic_ints[x].dst_apic_int, 1107 int_vector); 1108 } 1109 } 1110 1111 /* Assign interrupts on first 24 intpins on IOAPIC #0 */ 1112 for (x = 0; x < nintrs; x++) { 1113 int_vector = io_apic_ints[x].dst_apic_int; 1114 if (int_vector < APIC_INTMAPSIZE && 1115 io_apic_ints[x].dst_apic_id == IO_TO_ID(0) && 1116 io_apic_ints[x].int_vector == 0xff && 1117 int_to_apicintpin[int_vector].ioapic == -1 && 1118 (io_apic_ints[x].int_type == 0 || 1119 io_apic_ints[x].int_type == 3)) { 1120 assign_apic_irq(0, 1121 io_apic_ints[x].dst_apic_int, 1122 int_vector); 1123 } 1124 } 1125 /* 1126 * Assign interrupts for remaining intpins. 1127 * Skip IOAPIC #0 intpin 0 if the type is ExtInt, since this indicates 1128 * that an entry for ISA/EISA irq 0 exist, and a fallback to mixed mode 1129 * due to 8254 interrupts not being delivered can reuse that low level 1130 * interrupt handler. 1131 */ 1132 int_vector = 0; 1133 while (int_vector < APIC_INTMAPSIZE && 1134 int_to_apicintpin[int_vector].ioapic != -1) 1135 int_vector++; 1136 for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) { 1137 if ((io_apic_ints[x].int_type == 0 || 1138 (io_apic_ints[x].int_type == 3 && 1139 (io_apic_ints[x].dst_apic_id != IO_TO_ID(0) || 1140 io_apic_ints[x].dst_apic_int != 0))) && 1141 io_apic_ints[x].int_vector == 0xff) { 1142 assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id), 1143 io_apic_ints[x].dst_apic_int, 1144 int_vector); 1145 int_vector++; 1146 while (int_vector < APIC_INTMAPSIZE && 1147 int_to_apicintpin[int_vector].ioapic != -1) 1148 int_vector++; 1149 } 1150 } 1151 } 1152 1153 1154 static int 1155 processor_entry(proc_entry_ptr entry, int cpu) 1156 { 1157 /* check for usability */ 1158 if (!(entry->cpu_flags & PROCENTRY_FLAG_EN)) 1159 return 0; 1160 1161 /* check for BSP flag */ 1162 if (entry->cpu_flags & PROCENTRY_FLAG_BP) { 1163 boot_cpu_id = entry->apic_id; 1164 CPU_TO_ID(0) = entry->apic_id; 1165 ID_TO_CPU(entry->apic_id) = 0; 1166 return 0; /* its already been counted */ 1167 } 1168 1169 /* add another AP to list, if less than max number of CPUs */ 1170 else if (cpu < NCPU) { 1171 CPU_TO_ID(cpu) = entry->apic_id; 1172 ID_TO_CPU(entry->apic_id) = cpu; 1173 return 1; 1174 } 1175 1176 return 0; 1177 } 1178 1179 1180 static int 1181 bus_entry(bus_entry_ptr entry, int bus) 1182 { 1183 int x; 1184 char c, name[8]; 1185 1186 /* encode the name into an index */ 1187 for (x = 0; x < 6; ++x) { 1188 if ((c = entry->bus_type[x]) == ' ') 1189 break; 1190 name[x] = c; 1191 } 1192 name[x] = '\0'; 1193 1194 if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE) 1195 panic("unknown bus type: '%s'", name); 1196 1197 bus_data[bus].bus_id = entry->bus_id; 1198 bus_data[bus].bus_type = x; 1199 1200 return 1; 1201 } 1202 1203 1204 static int 1205 io_apic_entry(io_apic_entry_ptr entry, int apic) 1206 { 1207 if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN)) 1208 return 0; 1209 1210 IO_TO_ID(apic) = entry->apic_id; 1211 ID_TO_IO(entry->apic_id) = apic; 1212 1213 return 1; 1214 } 1215 1216 1217 static int 1218 lookup_bus_type(char *name) 1219 { 1220 int x; 1221 1222 for (x = 0; x < MAX_BUSTYPE; ++x) 1223 if (strcmp(bus_type_table[x].name, name) == 0) 1224 return bus_type_table[x].type; 1225 1226 return UNKNOWN_BUSTYPE; 1227 } 1228 1229 1230 static int 1231 int_entry(int_entry_ptr entry, int intr) 1232 { 1233 int apic; 1234 1235 io_apic_ints[intr].int_type = entry->int_type; 1236 io_apic_ints[intr].int_flags = entry->int_flags; 1237 io_apic_ints[intr].src_bus_id = entry->src_bus_id; 1238 io_apic_ints[intr].src_bus_irq = entry->src_bus_irq; 1239 if (entry->dst_apic_id == 255) { 1240 /* This signal goes to all IO APICS. Select an IO APIC 1241 with sufficient number of interrupt pins */ 1242 for (apic = 0; apic < mp_napics; apic++) 1243 if (((io_apic_read(apic, IOAPIC_VER) & 1244 IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >= 1245 entry->dst_apic_int) 1246 break; 1247 if (apic < mp_napics) 1248 io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic); 1249 else 1250 io_apic_ints[intr].dst_apic_id = entry->dst_apic_id; 1251 } else 1252 io_apic_ints[intr].dst_apic_id = entry->dst_apic_id; 1253 io_apic_ints[intr].dst_apic_int = entry->dst_apic_int; 1254 1255 return 1; 1256 } 1257 1258 1259 static int 1260 apic_int_is_bus_type(int intr, int bus_type) 1261 { 1262 int bus; 1263 1264 for (bus = 0; bus < mp_nbusses; ++bus) 1265 if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id) 1266 && ((int) bus_data[bus].bus_type == bus_type)) 1267 return 1; 1268 1269 return 0; 1270 } 1271 1272 1273 /* 1274 * Given a traditional ISA INT mask, return an APIC mask. 1275 */ 1276 u_int 1277 isa_apic_mask(u_int isa_mask) 1278 { 1279 int isa_irq; 1280 int apic_pin; 1281 1282 #if defined(SKIP_IRQ15_REDIRECT) 1283 if (isa_mask == (1 << 15)) { 1284 printf("skipping ISA IRQ15 redirect\n"); 1285 return isa_mask; 1286 } 1287 #endif /* SKIP_IRQ15_REDIRECT */ 1288 1289 isa_irq = ffs(isa_mask); /* find its bit position */ 1290 if (isa_irq == 0) /* doesn't exist */ 1291 return 0; 1292 --isa_irq; /* make it zero based */ 1293 1294 apic_pin = isa_apic_irq(isa_irq); /* look for APIC connection */ 1295 if (apic_pin == -1) 1296 return 0; 1297 1298 return (1 << apic_pin); /* convert pin# to a mask */ 1299 } 1300 1301 1302 /* 1303 * Determine which APIC pin an ISA/EISA INT is attached to. 1304 */ 1305 #define INTTYPE(I) (io_apic_ints[(I)].int_type) 1306 #define INTPIN(I) (io_apic_ints[(I)].dst_apic_int) 1307 #define INTIRQ(I) (io_apic_ints[(I)].int_vector) 1308 #define INTAPIC(I) (ID_TO_IO(io_apic_ints[(I)].dst_apic_id)) 1309 1310 #define SRCBUSIRQ(I) (io_apic_ints[(I)].src_bus_irq) 1311 int 1312 isa_apic_irq(int isa_irq) 1313 { 1314 int intr; 1315 1316 for (intr = 0; intr < nintrs; ++intr) { /* check each record */ 1317 if (INTTYPE(intr) == 0) { /* standard INT */ 1318 if (SRCBUSIRQ(intr) == isa_irq) { 1319 if (apic_int_is_bus_type(intr, ISA) || 1320 apic_int_is_bus_type(intr, EISA)) 1321 return INTIRQ(intr); /* found */ 1322 } 1323 } 1324 } 1325 return -1; /* NOT found */ 1326 } 1327 1328 1329 /* 1330 * Determine which APIC pin a PCI INT is attached to. 1331 */ 1332 #define SRCBUSID(I) (io_apic_ints[(I)].src_bus_id) 1333 #define SRCBUSDEVICE(I) ((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f) 1334 #define SRCBUSLINE(I) (io_apic_ints[(I)].src_bus_irq & 0x03) 1335 int 1336 pci_apic_irq(int pciBus, int pciDevice, int pciInt) 1337 { 1338 int intr; 1339 1340 --pciInt; /* zero based */ 1341 1342 for (intr = 0; intr < nintrs; ++intr) /* check each record */ 1343 if ((INTTYPE(intr) == 0) /* standard INT */ 1344 && (SRCBUSID(intr) == pciBus) 1345 && (SRCBUSDEVICE(intr) == pciDevice) 1346 && (SRCBUSLINE(intr) == pciInt)) /* a candidate IRQ */ 1347 if (apic_int_is_bus_type(intr, PCI)) 1348 return INTIRQ(intr); /* exact match */ 1349 1350 return -1; /* NOT found */ 1351 } 1352 1353 int 1354 next_apic_irq(int irq) 1355 { 1356 int intr, ointr; 1357 int bus, bustype; 1358 1359 bus = 0; 1360 bustype = 0; 1361 for (intr = 0; intr < nintrs; intr++) { 1362 if (INTIRQ(intr) != irq || INTTYPE(intr) != 0) 1363 continue; 1364 bus = SRCBUSID(intr); 1365 bustype = apic_bus_type(bus); 1366 if (bustype != ISA && 1367 bustype != EISA && 1368 bustype != PCI) 1369 continue; 1370 break; 1371 } 1372 if (intr >= nintrs) { 1373 return -1; 1374 } 1375 for (ointr = intr + 1; ointr < nintrs; ointr++) { 1376 if (INTTYPE(ointr) != 0) 1377 continue; 1378 if (bus != SRCBUSID(ointr)) 1379 continue; 1380 if (bustype == PCI) { 1381 if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr)) 1382 continue; 1383 if (SRCBUSLINE(intr) != SRCBUSLINE(ointr)) 1384 continue; 1385 } 1386 if (bustype == ISA || bustype == EISA) { 1387 if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr)) 1388 continue; 1389 } 1390 if (INTPIN(intr) == INTPIN(ointr)) 1391 continue; 1392 break; 1393 } 1394 if (ointr >= nintrs) { 1395 return -1; 1396 } 1397 return INTIRQ(ointr); 1398 } 1399 #undef SRCBUSLINE 1400 #undef SRCBUSDEVICE 1401 #undef SRCBUSID 1402 #undef SRCBUSIRQ 1403 1404 #undef INTPIN 1405 #undef INTIRQ 1406 #undef INTAPIC 1407 #undef INTTYPE 1408 1409 1410 /* 1411 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt. 1412 * 1413 * XXX FIXME: 1414 * Exactly what this means is unclear at this point. It is a solution 1415 * for motherboards that redirect the MBIRQ0 pin. Generically a motherboard 1416 * could route any of the ISA INTs to upper (>15) IRQ values. But most would 1417 * NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an 1418 * option. 1419 */ 1420 int 1421 undirect_isa_irq(int rirq) 1422 { 1423 #if defined(READY) 1424 if (bootverbose) 1425 printf("Freeing redirected ISA irq %d.\n", rirq); 1426 /** FIXME: tickle the MB redirector chip */ 1427 return ???; 1428 #else 1429 if (bootverbose) 1430 printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq); 1431 return 0; 1432 #endif /* READY */ 1433 } 1434 1435 1436 /* 1437 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt 1438 */ 1439 int 1440 undirect_pci_irq(int rirq) 1441 { 1442 #if defined(READY) 1443 if (bootverbose) 1444 printf("Freeing redirected PCI irq %d.\n", rirq); 1445 1446 /** FIXME: tickle the MB redirector chip */ 1447 return ???; 1448 #else 1449 if (bootverbose) 1450 printf("Freeing (NOT implemented) redirected PCI irq %d.\n", 1451 rirq); 1452 return 0; 1453 #endif /* READY */ 1454 } 1455 1456 1457 /* 1458 * given a bus ID, return: 1459 * the bus type if found 1460 * -1 if NOT found 1461 */ 1462 int 1463 apic_bus_type(int id) 1464 { 1465 int x; 1466 1467 for (x = 0; x < mp_nbusses; ++x) 1468 if (bus_data[x].bus_id == id) 1469 return bus_data[x].bus_type; 1470 1471 return -1; 1472 } 1473 1474 1475 /* 1476 * given a LOGICAL APIC# and pin#, return: 1477 * the associated src bus ID if found 1478 * -1 if NOT found 1479 */ 1480 int 1481 apic_src_bus_id(int apic, int pin) 1482 { 1483 int x; 1484 1485 /* search each of the possible INTerrupt sources */ 1486 for (x = 0; x < nintrs; ++x) 1487 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && 1488 (pin == io_apic_ints[x].dst_apic_int)) 1489 return (io_apic_ints[x].src_bus_id); 1490 1491 return -1; /* NOT found */ 1492 } 1493 1494 1495 /* 1496 * given a LOGICAL APIC# and pin#, return: 1497 * the associated src bus IRQ if found 1498 * -1 if NOT found 1499 */ 1500 int 1501 apic_src_bus_irq(int apic, int pin) 1502 { 1503 int x; 1504 1505 for (x = 0; x < nintrs; x++) 1506 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && 1507 (pin == io_apic_ints[x].dst_apic_int)) 1508 return (io_apic_ints[x].src_bus_irq); 1509 1510 return -1; /* NOT found */ 1511 } 1512 1513 1514 /* 1515 * given a LOGICAL APIC# and pin#, return: 1516 * the associated INTerrupt type if found 1517 * -1 if NOT found 1518 */ 1519 int 1520 apic_int_type(int apic, int pin) 1521 { 1522 int x; 1523 1524 /* search each of the possible INTerrupt sources */ 1525 for (x = 0; x < nintrs; ++x) 1526 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && 1527 (pin == io_apic_ints[x].dst_apic_int)) 1528 return (io_apic_ints[x].int_type); 1529 1530 return -1; /* NOT found */ 1531 } 1532 1533 int 1534 apic_irq(int apic, int pin) 1535 { 1536 int x; 1537 int res; 1538 1539 for (x = 0; x < nintrs; ++x) 1540 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && 1541 (pin == io_apic_ints[x].dst_apic_int)) { 1542 res = io_apic_ints[x].int_vector; 1543 if (res == 0xff) 1544 return -1; 1545 if (apic != int_to_apicintpin[res].ioapic) 1546 panic("apic_irq: inconsistent table"); 1547 if (pin != int_to_apicintpin[res].int_pin) 1548 panic("apic_irq inconsistent table (2)"); 1549 return res; 1550 } 1551 return -1; 1552 } 1553 1554 1555 /* 1556 * given a LOGICAL APIC# and pin#, return: 1557 * the associated trigger mode if found 1558 * -1 if NOT found 1559 */ 1560 int 1561 apic_trigger(int apic, int pin) 1562 { 1563 int x; 1564 1565 /* search each of the possible INTerrupt sources */ 1566 for (x = 0; x < nintrs; ++x) 1567 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && 1568 (pin == io_apic_ints[x].dst_apic_int)) 1569 return ((io_apic_ints[x].int_flags >> 2) & 0x03); 1570 1571 return -1; /* NOT found */ 1572 } 1573 1574 1575 /* 1576 * given a LOGICAL APIC# and pin#, return: 1577 * the associated 'active' level if found 1578 * -1 if NOT found 1579 */ 1580 int 1581 apic_polarity(int apic, int pin) 1582 { 1583 int x; 1584 1585 /* search each of the possible INTerrupt sources */ 1586 for (x = 0; x < nintrs; ++x) 1587 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && 1588 (pin == io_apic_ints[x].dst_apic_int)) 1589 return (io_apic_ints[x].int_flags & 0x03); 1590 1591 return -1; /* NOT found */ 1592 } 1593 1594 1595 /* 1596 * set data according to MP defaults 1597 * FIXME: probably not complete yet... 1598 */ 1599 static void 1600 default_mp_table(int type) 1601 { 1602 int ap_cpu_id; 1603 #if defined(APIC_IO) 1604 u_int32_t ux; 1605 int io_apic_id; 1606 int pin; 1607 #endif /* APIC_IO */ 1608 1609 #if 0 1610 printf(" MP default config type: %d\n", type); 1611 switch (type) { 1612 case 1: 1613 printf(" bus: ISA, APIC: 82489DX\n"); 1614 break; 1615 case 2: 1616 printf(" bus: EISA, APIC: 82489DX\n"); 1617 break; 1618 case 3: 1619 printf(" bus: EISA, APIC: 82489DX\n"); 1620 break; 1621 case 4: 1622 printf(" bus: MCA, APIC: 82489DX\n"); 1623 break; 1624 case 5: 1625 printf(" bus: ISA+PCI, APIC: Integrated\n"); 1626 break; 1627 case 6: 1628 printf(" bus: EISA+PCI, APIC: Integrated\n"); 1629 break; 1630 case 7: 1631 printf(" bus: MCA+PCI, APIC: Integrated\n"); 1632 break; 1633 default: 1634 printf(" future type\n"); 1635 break; 1636 /* NOTREACHED */ 1637 } 1638 #endif /* 0 */ 1639 1640 boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24; 1641 ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0; 1642 1643 /* BSP */ 1644 CPU_TO_ID(0) = boot_cpu_id; 1645 ID_TO_CPU(boot_cpu_id) = 0; 1646 1647 /* one and only AP */ 1648 CPU_TO_ID(1) = ap_cpu_id; 1649 ID_TO_CPU(ap_cpu_id) = 1; 1650 1651 #if defined(APIC_IO) 1652 /* one and only IO APIC */ 1653 io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24; 1654 1655 /* 1656 * sanity check, refer to MP spec section 3.6.6, last paragraph 1657 * necessary as some hardware isn't properly setting up the IO APIC 1658 */ 1659 #if defined(REALLY_ANAL_IOAPICID_VALUE) 1660 if (io_apic_id != 2) { 1661 #else 1662 if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) { 1663 #endif /* REALLY_ANAL_IOAPICID_VALUE */ 1664 ux = io_apic_read(0, IOAPIC_ID); /* get current contents */ 1665 ux &= ~APIC_ID_MASK; /* clear the ID field */ 1666 ux |= 0x02000000; /* set it to '2' */ 1667 io_apic_write(0, IOAPIC_ID, ux); /* write new value */ 1668 ux = io_apic_read(0, IOAPIC_ID); /* re-read && test */ 1669 if ((ux & APIC_ID_MASK) != 0x02000000) 1670 panic("can't control IO APIC ID, reg: 0x%08x", ux); 1671 io_apic_id = 2; 1672 } 1673 IO_TO_ID(0) = io_apic_id; 1674 ID_TO_IO(io_apic_id) = 0; 1675 #endif /* APIC_IO */ 1676 1677 /* fill out bus entries */ 1678 switch (type) { 1679 case 1: 1680 case 2: 1681 case 3: 1682 case 4: 1683 case 5: 1684 case 6: 1685 case 7: 1686 bus_data[0].bus_id = default_data[type - 1][1]; 1687 bus_data[0].bus_type = default_data[type - 1][2]; 1688 bus_data[1].bus_id = default_data[type - 1][3]; 1689 bus_data[1].bus_type = default_data[type - 1][4]; 1690 break; 1691 1692 /* case 4: case 7: MCA NOT supported */ 1693 default: /* illegal/reserved */ 1694 panic("BAD default MP config: %d", type); 1695 /* NOTREACHED */ 1696 } 1697 1698 #if defined(APIC_IO) 1699 /* general cases from MP v1.4, table 5-2 */ 1700 for (pin = 0; pin < 16; ++pin) { 1701 io_apic_ints[pin].int_type = 0; 1702 io_apic_ints[pin].int_flags = 0x05; /* edge/active-hi */ 1703 io_apic_ints[pin].src_bus_id = 0; 1704 io_apic_ints[pin].src_bus_irq = pin; /* IRQ2 caught below */ 1705 io_apic_ints[pin].dst_apic_id = io_apic_id; 1706 io_apic_ints[pin].dst_apic_int = pin; /* 1-to-1 */ 1707 } 1708 1709 /* special cases from MP v1.4, table 5-2 */ 1710 if (type == 2) { 1711 io_apic_ints[2].int_type = 0xff; /* N/C */ 1712 io_apic_ints[13].int_type = 0xff; /* N/C */ 1713 #if !defined(APIC_MIXED_MODE) 1714 /** FIXME: ??? */ 1715 panic("sorry, can't support type 2 default yet"); 1716 #endif /* APIC_MIXED_MODE */ 1717 } 1718 else 1719 io_apic_ints[2].src_bus_irq = 0; /* ISA IRQ0 is on APIC INT 2 */ 1720 1721 if (type == 7) 1722 io_apic_ints[0].int_type = 0xff; /* N/C */ 1723 else 1724 io_apic_ints[0].int_type = 3; /* vectored 8259 */ 1725 #endif /* APIC_IO */ 1726 } 1727 1728 1729 /* 1730 * initialize all the SMP locks 1731 */ 1732 1733 /* critical region around IO APIC, apic_imen */ 1734 struct simplelock imen_lock; 1735 1736 /* critical region around splxx(), cpl, cml, cil, ipending */ 1737 struct simplelock cpl_lock; 1738 1739 /* Make FAST_INTR() routines sequential */ 1740 struct simplelock fast_intr_lock; 1741 1742 /* critical region around INTR() routines */ 1743 struct simplelock intr_lock; 1744 1745 /* lock regions protected in UP kernel via cli/sti */ 1746 struct simplelock mpintr_lock; 1747 1748 /* lock region used by kernel profiling */ 1749 struct simplelock mcount_lock; 1750 1751 #ifdef USE_COMLOCK 1752 /* locks com (tty) data/hardware accesses: a FASTINTR() */ 1753 struct simplelock com_lock; 1754 #endif /* USE_COMLOCK */ 1755 1756 #ifdef USE_CLOCKLOCK 1757 /* lock regions around the clock hardware */ 1758 struct simplelock clock_lock; 1759 #endif /* USE_CLOCKLOCK */ 1760 1761 /* lock around the MP rendezvous */ 1762 static struct simplelock smp_rv_lock; 1763 1764 static void 1765 init_locks(void) 1766 { 1767 /* 1768 * Get the initial mp_lock with a count of 1 for the BSP. 1769 * This uses a LOGICAL cpu ID, ie BSP == 0. 1770 */ 1771 mp_lock = 0x00000001; 1772 1773 #if 0 1774 /* ISR uses its own "giant lock" */ 1775 isr_lock = FREE_LOCK; 1776 #endif 1777 1778 #if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ) 1779 s_lock_init((struct simplelock*)&apic_itrace_debuglock); 1780 #endif 1781 1782 s_lock_init((struct simplelock*)&mpintr_lock); 1783 1784 s_lock_init((struct simplelock*)&mcount_lock); 1785 1786 s_lock_init((struct simplelock*)&fast_intr_lock); 1787 s_lock_init((struct simplelock*)&intr_lock); 1788 s_lock_init((struct simplelock*)&imen_lock); 1789 s_lock_init((struct simplelock*)&cpl_lock); 1790 s_lock_init(&smp_rv_lock); 1791 1792 #ifdef USE_COMLOCK 1793 s_lock_init((struct simplelock*)&com_lock); 1794 #endif /* USE_COMLOCK */ 1795 #ifdef USE_CLOCKLOCK 1796 s_lock_init((struct simplelock*)&clock_lock); 1797 #endif /* USE_CLOCKLOCK */ 1798 } 1799 1800 1801 /* Wait for all APs to be fully initialized */ 1802 extern int wait_ap(unsigned int); 1803 1804 /* 1805 * start each AP in our list 1806 */ 1807 static int 1808 start_all_aps(u_int boot_addr) 1809 { 1810 int x, i, pg; 1811 u_char mpbiosreason; 1812 u_long mpbioswarmvec; 1813 struct globaldata *gd; 1814 char *stack; 1815 1816 POSTCODE(START_ALL_APS_POST); 1817 1818 /* initialize BSP's local APIC */ 1819 apic_initialize(); 1820 bsp_apic_ready = 1; 1821 1822 /* install the AP 1st level boot code */ 1823 install_ap_tramp(boot_addr); 1824 1825 1826 /* save the current value of the warm-start vector */ 1827 mpbioswarmvec = *((u_long *) WARMBOOT_OFF); 1828 #ifndef PC98 1829 outb(CMOS_REG, BIOS_RESET); 1830 mpbiosreason = inb(CMOS_DATA); 1831 #endif 1832 1833 /* record BSP in CPU map */ 1834 all_cpus = 1; 1835 1836 /* set up 0 -> 4MB P==V mapping for AP boot */ 1837 *(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME); 1838 invltlb(); 1839 1840 /* start each AP */ 1841 for (x = 1; x <= mp_naps; ++x) { 1842 1843 /* This is a bit verbose, it will go away soon. */ 1844 1845 /* first page of AP's private space */ 1846 pg = x * i386_btop(sizeof(struct privatespace)); 1847 1848 /* allocate a new private data page */ 1849 gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE); 1850 1851 /* wire it into the private page table page */ 1852 SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd)); 1853 1854 /* allocate and set up an idle stack data page */ 1855 stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE); 1856 for (i = 0; i < UPAGES; i++) 1857 SMPpt[pg + 5 + i] = (pt_entry_t) 1858 (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack)); 1859 1860 SMPpt[pg + 1] = 0; /* *prv_CMAP1 */ 1861 SMPpt[pg + 2] = 0; /* *prv_CMAP2 */ 1862 SMPpt[pg + 3] = 0; /* *prv_CMAP3 */ 1863 SMPpt[pg + 4] = 0; /* *prv_PMAP1 */ 1864 1865 /* prime data page for it to use */ 1866 gd->gd_cpuid = x; 1867 gd->gd_cpu_lockid = x << 24; 1868 gd->gd_prv_CMAP1 = &SMPpt[pg + 1]; 1869 gd->gd_prv_CMAP2 = &SMPpt[pg + 2]; 1870 gd->gd_prv_CMAP3 = &SMPpt[pg + 3]; 1871 gd->gd_prv_PMAP1 = &SMPpt[pg + 4]; 1872 gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1; 1873 gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2; 1874 gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3; 1875 gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1; 1876 1877 /* setup a vector to our boot code */ 1878 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET; 1879 *((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4); 1880 #ifndef PC98 1881 outb(CMOS_REG, BIOS_RESET); 1882 outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */ 1883 #endif 1884 1885 bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE]; 1886 bootAP = x; 1887 1888 /* attempt to start the Application Processor */ 1889 CHECK_INIT(99); /* setup checkpoints */ 1890 if (!start_ap(x, boot_addr)) { 1891 printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x)); 1892 CHECK_PRINT("trace"); /* show checkpoints */ 1893 /* better panic as the AP may be running loose */ 1894 printf("panic y/n? [y] "); 1895 if (cngetc() != 'n') 1896 panic("bye-bye"); 1897 } 1898 CHECK_PRINT("trace"); /* show checkpoints */ 1899 1900 /* record its version info */ 1901 cpu_apic_versions[x] = cpu_apic_versions[0]; 1902 1903 all_cpus |= (1 << x); /* record AP in CPU map */ 1904 } 1905 1906 /* build our map of 'other' CPUs */ 1907 other_cpus = all_cpus & ~(1 << cpuid); 1908 1909 /* fill in our (BSP) APIC version */ 1910 cpu_apic_versions[0] = lapic.version; 1911 1912 /* restore the warmstart vector */ 1913 *(u_long *) WARMBOOT_OFF = mpbioswarmvec; 1914 #ifndef PC98 1915 outb(CMOS_REG, BIOS_RESET); 1916 outb(CMOS_DATA, mpbiosreason); 1917 #endif 1918 1919 /* 1920 * Set up the idle context for the BSP. Similar to above except 1921 * that some was done by locore, some by pmap.c and some is implicit 1922 * because the BSP is cpu#0 and the page is initially zero, and also 1923 * because we can refer to variables by name on the BSP.. 1924 */ 1925 1926 /* Allocate and setup BSP idle stack */ 1927 stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE); 1928 for (i = 0; i < UPAGES; i++) 1929 SMPpt[5 + i] = (pt_entry_t) 1930 (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack)); 1931 1932 *(int *)PTD = 0; 1933 pmap_set_opt(); 1934 1935 /* number of APs actually started */ 1936 return mp_ncpus - 1; 1937 } 1938 1939 1940 /* 1941 * load the 1st level AP boot code into base memory. 1942 */ 1943 1944 /* targets for relocation */ 1945 extern void bigJump(void); 1946 extern void bootCodeSeg(void); 1947 extern void bootDataSeg(void); 1948 extern void MPentry(void); 1949 extern u_int MP_GDT; 1950 extern u_int mp_gdtbase; 1951 1952 static void 1953 install_ap_tramp(u_int boot_addr) 1954 { 1955 int x; 1956 int size = *(int *) ((u_long) & bootMP_size); 1957 u_char *src = (u_char *) ((u_long) bootMP); 1958 u_char *dst = (u_char *) boot_addr + KERNBASE; 1959 u_int boot_base = (u_int) bootMP; 1960 u_int8_t *dst8; 1961 u_int16_t *dst16; 1962 u_int32_t *dst32; 1963 1964 POSTCODE(INSTALL_AP_TRAMP_POST); 1965 1966 for (x = 0; x < size; ++x) 1967 *dst++ = *src++; 1968 1969 /* 1970 * modify addresses in code we just moved to basemem. unfortunately we 1971 * need fairly detailed info about mpboot.s for this to work. changes 1972 * to mpboot.s might require changes here. 1973 */ 1974 1975 /* boot code is located in KERNEL space */ 1976 dst = (u_char *) boot_addr + KERNBASE; 1977 1978 /* modify the lgdt arg */ 1979 dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base)); 1980 *dst32 = boot_addr + ((u_int) & MP_GDT - boot_base); 1981 1982 /* modify the ljmp target for MPentry() */ 1983 dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1); 1984 *dst32 = ((u_int) MPentry - KERNBASE); 1985 1986 /* modify the target for boot code segment */ 1987 dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base)); 1988 dst8 = (u_int8_t *) (dst16 + 1); 1989 *dst16 = (u_int) boot_addr & 0xffff; 1990 *dst8 = ((u_int) boot_addr >> 16) & 0xff; 1991 1992 /* modify the target for boot data segment */ 1993 dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base)); 1994 dst8 = (u_int8_t *) (dst16 + 1); 1995 *dst16 = (u_int) boot_addr & 0xffff; 1996 *dst8 = ((u_int) boot_addr >> 16) & 0xff; 1997 } 1998 1999 2000 /* 2001 * this function starts the AP (application processor) identified 2002 * by the APIC ID 'physicalCpu'. It does quite a "song and dance" 2003 * to accomplish this. This is necessary because of the nuances 2004 * of the different hardware we might encounter. It ain't pretty, 2005 * but it seems to work. 2006 */ 2007 static int 2008 start_ap(int logical_cpu, u_int boot_addr) 2009 { 2010 int physical_cpu; 2011 int vector; 2012 int cpus; 2013 u_long icr_lo, icr_hi; 2014 2015 POSTCODE(START_AP_POST); 2016 2017 /* get the PHYSICAL APIC ID# */ 2018 physical_cpu = CPU_TO_ID(logical_cpu); 2019 2020 /* calculate the vector */ 2021 vector = (boot_addr >> 12) & 0xff; 2022 2023 /* used as a watchpoint to signal AP startup */ 2024 cpus = mp_ncpus; 2025 2026 /* 2027 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting 2028 * and running the target CPU. OR this INIT IPI might be latched (P5 2029 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be 2030 * ignored. 2031 */ 2032 2033 /* setup the address for the target AP */ 2034 icr_hi = lapic.icr_hi & ~APIC_ID_MASK; 2035 icr_hi |= (physical_cpu << 24); 2036 lapic.icr_hi = icr_hi; 2037 2038 /* do an INIT IPI: assert RESET */ 2039 icr_lo = lapic.icr_lo & 0xfff00000; 2040 lapic.icr_lo = icr_lo | 0x0000c500; 2041 2042 /* wait for pending status end */ 2043 while (lapic.icr_lo & APIC_DELSTAT_MASK) 2044 /* spin */ ; 2045 2046 /* do an INIT IPI: deassert RESET */ 2047 lapic.icr_lo = icr_lo | 0x00008500; 2048 2049 /* wait for pending status end */ 2050 u_sleep(10000); /* wait ~10mS */ 2051 while (lapic.icr_lo & APIC_DELSTAT_MASK) 2052 /* spin */ ; 2053 2054 /* 2055 * next we do a STARTUP IPI: the previous INIT IPI might still be 2056 * latched, (P5 bug) this 1st STARTUP would then terminate 2057 * immediately, and the previously started INIT IPI would continue. OR 2058 * the previous INIT IPI has already run. and this STARTUP IPI will 2059 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI 2060 * will run. 2061 */ 2062 2063 /* do a STARTUP IPI */ 2064 lapic.icr_lo = icr_lo | 0x00000600 | vector; 2065 while (lapic.icr_lo & APIC_DELSTAT_MASK) 2066 /* spin */ ; 2067 u_sleep(200); /* wait ~200uS */ 2068 2069 /* 2070 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF 2071 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR 2072 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is 2073 * recognized after hardware RESET or INIT IPI. 2074 */ 2075 2076 lapic.icr_lo = icr_lo | 0x00000600 | vector; 2077 while (lapic.icr_lo & APIC_DELSTAT_MASK) 2078 /* spin */ ; 2079 u_sleep(200); /* wait ~200uS */ 2080 2081 /* wait for it to start */ 2082 set_apic_timer(5000000);/* == 5 seconds */ 2083 while (read_apic_timer()) 2084 if (mp_ncpus > cpus) 2085 return 1; /* return SUCCESS */ 2086 2087 return 0; /* return FAILURE */ 2088 } 2089 2090 2091 /* 2092 * Flush the TLB on all other CPU's 2093 * 2094 * XXX: Needs to handshake and wait for completion before proceding. 2095 */ 2096 void 2097 smp_invltlb(void) 2098 { 2099 #if defined(APIC_IO) 2100 if (smp_started && invltlb_ok) 2101 all_but_self_ipi(XINVLTLB_OFFSET); 2102 #endif /* APIC_IO */ 2103 } 2104 2105 void 2106 invlpg(u_int addr) 2107 { 2108 __asm __volatile("invlpg (%0)"::"r"(addr):"memory"); 2109 2110 /* send a message to the other CPUs */ 2111 smp_invltlb(); 2112 } 2113 2114 void 2115 invltlb(void) 2116 { 2117 u_long temp; 2118 2119 /* 2120 * This should be implemented as load_cr3(rcr3()) when load_cr3() is 2121 * inlined. 2122 */ 2123 __asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory"); 2124 2125 /* send a message to the other CPUs */ 2126 smp_invltlb(); 2127 } 2128 2129 2130 /* 2131 * When called the executing CPU will send an IPI to all other CPUs 2132 * requesting that they halt execution. 2133 * 2134 * Usually (but not necessarily) called with 'other_cpus' as its arg. 2135 * 2136 * - Signals all CPUs in map to stop. 2137 * - Waits for each to stop. 2138 * 2139 * Returns: 2140 * -1: error 2141 * 0: NA 2142 * 1: ok 2143 * 2144 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs 2145 * from executing at same time. 2146 */ 2147 int 2148 stop_cpus(u_int map) 2149 { 2150 if (!smp_started) 2151 return 0; 2152 2153 /* send the Xcpustop IPI to all CPUs in map */ 2154 selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED); 2155 2156 while ((stopped_cpus & map) != map) 2157 /* spin */ ; 2158 2159 return 1; 2160 } 2161 2162 2163 /* 2164 * Called by a CPU to restart stopped CPUs. 2165 * 2166 * Usually (but not necessarily) called with 'stopped_cpus' as its arg. 2167 * 2168 * - Signals all CPUs in map to restart. 2169 * - Waits for each to restart. 2170 * 2171 * Returns: 2172 * -1: error 2173 * 0: NA 2174 * 1: ok 2175 */ 2176 int 2177 restart_cpus(u_int map) 2178 { 2179 if (!smp_started) 2180 return 0; 2181 2182 started_cpus = map; /* signal other cpus to restart */ 2183 2184 while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */ 2185 /* spin */ ; 2186 2187 return 1; 2188 } 2189 2190 int smp_active = 0; /* are the APs allowed to run? */ 2191 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, ""); 2192 2193 /* XXX maybe should be hw.ncpu */ 2194 static int smp_cpus = 1; /* how many cpu's running */ 2195 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, ""); 2196 2197 int invltlb_ok = 0; /* throttle smp_invltlb() till safe */ 2198 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, ""); 2199 2200 /* Warning: Do not staticize. Used from swtch.s */ 2201 int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */ 2202 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW, 2203 &do_page_zero_idle, 0, ""); 2204 2205 /* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */ 2206 int forward_irq_enabled = 1; 2207 SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW, 2208 &forward_irq_enabled, 0, ""); 2209 2210 /* Enable forwarding of a signal to a process running on a different CPU */ 2211 static int forward_signal_enabled = 1; 2212 SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW, 2213 &forward_signal_enabled, 0, ""); 2214 2215 /* Enable forwarding of roundrobin to all other cpus */ 2216 static int forward_roundrobin_enabled = 1; 2217 SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW, 2218 &forward_roundrobin_enabled, 0, ""); 2219 2220 /* 2221 * This is called once the rest of the system is up and running and we're 2222 * ready to let the AP's out of the pen. 2223 */ 2224 void ap_init(void); 2225 2226 void 2227 ap_init() 2228 { 2229 u_int apic_id; 2230 2231 /* BSP may have changed PTD while we're waiting for the lock */ 2232 cpu_invltlb(); 2233 2234 smp_cpus++; 2235 2236 #if defined(I586_CPU) && !defined(NO_F00F_HACK) 2237 lidt(&r_idt); 2238 #endif 2239 2240 /* Build our map of 'other' CPUs. */ 2241 other_cpus = all_cpus & ~(1 << cpuid); 2242 2243 printf("SMP: AP CPU #%d Launched!\n", cpuid); 2244 2245 /* XXX FIXME: i386 specific, and redundant: Setup the FPU. */ 2246 load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS); 2247 2248 /* set up FPU state on the AP */ 2249 npxinit(__INITIAL_NPXCW__); 2250 2251 /* A quick check from sanity claus */ 2252 apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]); 2253 if (cpuid != apic_id) { 2254 printf("SMP: cpuid = %d\n", cpuid); 2255 printf("SMP: apic_id = %d\n", apic_id); 2256 printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]); 2257 panic("cpuid mismatch! boom!!"); 2258 } 2259 2260 /* Init local apic for irq's */ 2261 apic_initialize(); 2262 2263 /* Set memory range attributes for this CPU to match the BSP */ 2264 mem_range_AP_init(); 2265 2266 /* 2267 * Activate smp_invltlb, although strictly speaking, this isn't 2268 * quite correct yet. We should have a bitfield for cpus willing 2269 * to accept TLB flush IPI's or something and sync them. 2270 */ 2271 if (smp_cpus == mp_ncpus) { 2272 invltlb_ok = 1; 2273 smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */ 2274 smp_active = 1; /* historic */ 2275 } 2276 } 2277 2278 #ifdef BETTER_CLOCK 2279 2280 #define CHECKSTATE_USER 0 2281 #define CHECKSTATE_SYS 1 2282 #define CHECKSTATE_INTR 2 2283 2284 /* Do not staticize. Used from apic_vector.s */ 2285 struct proc* checkstate_curproc[NCPU]; 2286 int checkstate_cpustate[NCPU]; 2287 u_long checkstate_pc[NCPU]; 2288 2289 extern long cp_time[CPUSTATES]; 2290 2291 #define PC_TO_INDEX(pc, prof) \ 2292 ((int)(((u_quad_t)((pc) - (prof)->pr_off) * \ 2293 (u_quad_t)((prof)->pr_scale)) >> 16) & ~1) 2294 2295 static void 2296 addupc_intr_forwarded(struct proc *p, int id, int *astmap) 2297 { 2298 int i; 2299 struct uprof *prof; 2300 u_long pc; 2301 2302 pc = checkstate_pc[id]; 2303 prof = &p->p_stats->p_prof; 2304 if (pc >= prof->pr_off && 2305 (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) { 2306 if ((p->p_flag & P_OWEUPC) == 0) { 2307 prof->pr_addr = pc; 2308 prof->pr_ticks = 1; 2309 p->p_flag |= P_OWEUPC; 2310 } 2311 *astmap |= (1 << id); 2312 } 2313 } 2314 2315 static void 2316 forwarded_statclock(int id, int pscnt, int *astmap) 2317 { 2318 struct pstats *pstats; 2319 long rss; 2320 struct rusage *ru; 2321 struct vmspace *vm; 2322 int cpustate; 2323 struct proc *p; 2324 #ifdef GPROF 2325 register struct gmonparam *g; 2326 int i; 2327 #endif 2328 2329 p = checkstate_curproc[id]; 2330 cpustate = checkstate_cpustate[id]; 2331 2332 switch (cpustate) { 2333 case CHECKSTATE_USER: 2334 if (p->p_flag & P_PROFIL) 2335 addupc_intr_forwarded(p, id, astmap); 2336 if (pscnt > 1) 2337 return; 2338 p->p_uticks++; 2339 if (p->p_nice > NZERO) 2340 cp_time[CP_NICE]++; 2341 else 2342 cp_time[CP_USER]++; 2343 break; 2344 case CHECKSTATE_SYS: 2345 #ifdef GPROF 2346 /* 2347 * Kernel statistics are just like addupc_intr, only easier. 2348 */ 2349 g = &_gmonparam; 2350 if (g->state == GMON_PROF_ON) { 2351 i = checkstate_pc[id] - g->lowpc; 2352 if (i < g->textsize) { 2353 i /= HISTFRACTION * sizeof(*g->kcount); 2354 g->kcount[i]++; 2355 } 2356 } 2357 #endif 2358 if (pscnt > 1) 2359 return; 2360 2361 if (!p) 2362 cp_time[CP_IDLE]++; 2363 else { 2364 p->p_sticks++; 2365 cp_time[CP_SYS]++; 2366 } 2367 break; 2368 case CHECKSTATE_INTR: 2369 default: 2370 #ifdef GPROF 2371 /* 2372 * Kernel statistics are just like addupc_intr, only easier. 2373 */ 2374 g = &_gmonparam; 2375 if (g->state == GMON_PROF_ON) { 2376 i = checkstate_pc[id] - g->lowpc; 2377 if (i < g->textsize) { 2378 i /= HISTFRACTION * sizeof(*g->kcount); 2379 g->kcount[i]++; 2380 } 2381 } 2382 #endif 2383 if (pscnt > 1) 2384 return; 2385 if (p) 2386 p->p_iticks++; 2387 cp_time[CP_INTR]++; 2388 } 2389 if (p != NULL) { 2390 schedclock(p); 2391 2392 /* Update resource usage integrals and maximums. */ 2393 if ((pstats = p->p_stats) != NULL && 2394 (ru = &pstats->p_ru) != NULL && 2395 (vm = p->p_vmspace) != NULL) { 2396 ru->ru_ixrss += pgtok(vm->vm_tsize); 2397 ru->ru_idrss += pgtok(vm->vm_dsize); 2398 ru->ru_isrss += pgtok(vm->vm_ssize); 2399 rss = pgtok(vmspace_resident_count(vm)); 2400 if (ru->ru_maxrss < rss) 2401 ru->ru_maxrss = rss; 2402 } 2403 } 2404 } 2405 2406 void 2407 forward_statclock(int pscnt) 2408 { 2409 int map; 2410 int id; 2411 int i; 2412 2413 /* Kludge. We don't yet have separate locks for the interrupts 2414 * and the kernel. This means that we cannot let the other processors 2415 * handle complex interrupts while inhibiting them from entering 2416 * the kernel in a non-interrupt context. 2417 * 2418 * What we can do, without changing the locking mechanisms yet, 2419 * is letting the other processors handle a very simple interrupt 2420 * (wich determines the processor states), and do the main 2421 * work ourself. 2422 */ 2423 2424 if (!smp_started || !invltlb_ok || cold || panicstr) 2425 return; 2426 2427 /* Step 1: Probe state (user, cpu, interrupt, spinlock, idle ) */ 2428 2429 map = other_cpus & ~stopped_cpus ; 2430 checkstate_probed_cpus = 0; 2431 if (map != 0) 2432 selected_apic_ipi(map, 2433 XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED); 2434 2435 i = 0; 2436 while (checkstate_probed_cpus != map) { 2437 /* spin */ 2438 i++; 2439 if (i == 100000) { 2440 #ifdef BETTER_CLOCK_DIAGNOSTIC 2441 printf("forward_statclock: checkstate %x\n", 2442 checkstate_probed_cpus); 2443 #endif 2444 break; 2445 } 2446 } 2447 2448 /* 2449 * Step 2: walk through other processors processes, update ticks and 2450 * profiling info. 2451 */ 2452 2453 map = 0; 2454 for (id = 0; id < mp_ncpus; id++) { 2455 if (id == cpuid) 2456 continue; 2457 if (((1 << id) & checkstate_probed_cpus) == 0) 2458 continue; 2459 forwarded_statclock(id, pscnt, &map); 2460 } 2461 if (map != 0) { 2462 checkstate_need_ast |= map; 2463 selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED); 2464 i = 0; 2465 while ((checkstate_need_ast & map) != 0) { 2466 /* spin */ 2467 i++; 2468 if (i > 100000) { 2469 #ifdef BETTER_CLOCK_DIAGNOSTIC 2470 printf("forward_statclock: dropped ast 0x%x\n", 2471 checkstate_need_ast & map); 2472 #endif 2473 break; 2474 } 2475 } 2476 } 2477 } 2478 2479 void 2480 forward_hardclock(int pscnt) 2481 { 2482 int map; 2483 int id; 2484 struct proc *p; 2485 struct pstats *pstats; 2486 int i; 2487 2488 /* Kludge. We don't yet have separate locks for the interrupts 2489 * and the kernel. This means that we cannot let the other processors 2490 * handle complex interrupts while inhibiting them from entering 2491 * the kernel in a non-interrupt context. 2492 * 2493 * What we can do, without changing the locking mechanisms yet, 2494 * is letting the other processors handle a very simple interrupt 2495 * (wich determines the processor states), and do the main 2496 * work ourself. 2497 */ 2498 2499 if (!smp_started || !invltlb_ok || cold || panicstr) 2500 return; 2501 2502 /* Step 1: Probe state (user, cpu, interrupt, spinlock, idle) */ 2503 2504 map = other_cpus & ~stopped_cpus ; 2505 checkstate_probed_cpus = 0; 2506 if (map != 0) 2507 selected_apic_ipi(map, 2508 XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED); 2509 2510 i = 0; 2511 while (checkstate_probed_cpus != map) { 2512 /* spin */ 2513 i++; 2514 if (i == 100000) { 2515 #ifdef BETTER_CLOCK_DIAGNOSTIC 2516 printf("forward_hardclock: checkstate %x\n", 2517 checkstate_probed_cpus); 2518 #endif 2519 break; 2520 } 2521 } 2522 2523 /* 2524 * Step 2: walk through other processors processes, update virtual 2525 * timer and profiling timer. If stathz == 0, also update ticks and 2526 * profiling info. 2527 */ 2528 2529 map = 0; 2530 for (id = 0; id < mp_ncpus; id++) { 2531 if (id == cpuid) 2532 continue; 2533 if (((1 << id) & checkstate_probed_cpus) == 0) 2534 continue; 2535 p = checkstate_curproc[id]; 2536 if (p) { 2537 pstats = p->p_stats; 2538 if (checkstate_cpustate[id] == CHECKSTATE_USER && 2539 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 2540 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { 2541 psignal(p, SIGVTALRM); 2542 map |= (1 << id); 2543 } 2544 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 2545 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { 2546 psignal(p, SIGPROF); 2547 map |= (1 << id); 2548 } 2549 } 2550 if (stathz == 0) { 2551 forwarded_statclock( id, pscnt, &map); 2552 } 2553 } 2554 if (map != 0) { 2555 checkstate_need_ast |= map; 2556 selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED); 2557 i = 0; 2558 while ((checkstate_need_ast & map) != 0) { 2559 /* spin */ 2560 i++; 2561 if (i > 100000) { 2562 #ifdef BETTER_CLOCK_DIAGNOSTIC 2563 printf("forward_hardclock: dropped ast 0x%x\n", 2564 checkstate_need_ast & map); 2565 #endif 2566 break; 2567 } 2568 } 2569 } 2570 } 2571 2572 #endif /* BETTER_CLOCK */ 2573 2574 void 2575 forward_signal(struct proc *p) 2576 { 2577 int map; 2578 int id; 2579 int i; 2580 2581 /* Kludge. We don't yet have separate locks for the interrupts 2582 * and the kernel. This means that we cannot let the other processors 2583 * handle complex interrupts while inhibiting them from entering 2584 * the kernel in a non-interrupt context. 2585 * 2586 * What we can do, without changing the locking mechanisms yet, 2587 * is letting the other processors handle a very simple interrupt 2588 * (wich determines the processor states), and do the main 2589 * work ourself. 2590 */ 2591 2592 if (!smp_started || !invltlb_ok || cold || panicstr) 2593 return; 2594 if (!forward_signal_enabled) 2595 return; 2596 while (1) { 2597 if (p->p_stat != SRUN) 2598 return; 2599 id = p->p_oncpu; 2600 if (id == 0xff) 2601 return; 2602 map = (1<<id); 2603 checkstate_need_ast |= map; 2604 selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED); 2605 i = 0; 2606 while ((checkstate_need_ast & map) != 0) { 2607 /* spin */ 2608 i++; 2609 if (i > 100000) { 2610 #if 0 2611 printf("forward_signal: dropped ast 0x%x\n", 2612 checkstate_need_ast & map); 2613 #endif 2614 break; 2615 } 2616 } 2617 if (id == p->p_oncpu) 2618 return; 2619 } 2620 } 2621 2622 void 2623 forward_roundrobin(void) 2624 { 2625 u_int map; 2626 int i; 2627 2628 if (!smp_started || !invltlb_ok || cold || panicstr) 2629 return; 2630 if (!forward_roundrobin_enabled) 2631 return; 2632 resched_cpus |= other_cpus; 2633 map = other_cpus & ~stopped_cpus ; 2634 #if 1 2635 selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED); 2636 #else 2637 (void) all_but_self_ipi(XCPUAST_OFFSET); 2638 #endif 2639 i = 0; 2640 while ((checkstate_need_ast & map) != 0) { 2641 /* spin */ 2642 i++; 2643 if (i > 100000) { 2644 #if 0 2645 printf("forward_roundrobin: dropped ast 0x%x\n", 2646 checkstate_need_ast & map); 2647 #endif 2648 break; 2649 } 2650 } 2651 } 2652 2653 2654 #ifdef APIC_INTR_REORDER 2655 /* 2656 * Maintain mapping from softintr vector to isr bit in local apic. 2657 */ 2658 void 2659 set_lapic_isrloc(int intr, int vector) 2660 { 2661 if (intr < 0 || intr > 32) 2662 panic("set_apic_isrloc: bad intr argument: %d",intr); 2663 if (vector < ICU_OFFSET || vector > 255) 2664 panic("set_apic_isrloc: bad vector argument: %d",vector); 2665 apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2); 2666 apic_isrbit_location[intr].bit = (1<<(vector & 31)); 2667 } 2668 #endif 2669 2670 /* 2671 * All-CPU rendezvous. CPUs are signalled, all execute the setup function 2672 * (if specified), rendezvous, execute the action function (if specified), 2673 * rendezvous again, execute the teardown function (if specified), and then 2674 * resume. 2675 * 2676 * Note that the supplied external functions _must_ be reentrant and aware 2677 * that they are running in parallel and in an unknown lock context. 2678 */ 2679 static void (*smp_rv_setup_func)(void *arg); 2680 static void (*smp_rv_action_func)(void *arg); 2681 static void (*smp_rv_teardown_func)(void *arg); 2682 static void *smp_rv_func_arg; 2683 static volatile int smp_rv_waiters[2]; 2684 2685 void 2686 smp_rendezvous_action(void) 2687 { 2688 /* setup function */ 2689 if (smp_rv_setup_func != NULL) 2690 smp_rv_setup_func(smp_rv_func_arg); 2691 /* spin on entry rendezvous */ 2692 atomic_add_int(&smp_rv_waiters[0], 1); 2693 while (smp_rv_waiters[0] < mp_ncpus) 2694 ; 2695 /* action function */ 2696 if (smp_rv_action_func != NULL) 2697 smp_rv_action_func(smp_rv_func_arg); 2698 /* spin on exit rendezvous */ 2699 atomic_add_int(&smp_rv_waiters[1], 1); 2700 while (smp_rv_waiters[1] < mp_ncpus) 2701 ; 2702 /* teardown function */ 2703 if (smp_rv_teardown_func != NULL) 2704 smp_rv_teardown_func(smp_rv_func_arg); 2705 } 2706 2707 void 2708 smp_rendezvous(void (* setup_func)(void *), 2709 void (* action_func)(void *), 2710 void (* teardown_func)(void *), 2711 void *arg) 2712 { 2713 u_int efl; 2714 2715 /* obtain rendezvous lock */ 2716 s_lock(&smp_rv_lock); /* XXX sleep here? NOWAIT flag? */ 2717 2718 /* set static function pointers */ 2719 smp_rv_setup_func = setup_func; 2720 smp_rv_action_func = action_func; 2721 smp_rv_teardown_func = teardown_func; 2722 smp_rv_func_arg = arg; 2723 smp_rv_waiters[0] = 0; 2724 smp_rv_waiters[1] = 0; 2725 2726 /* disable interrupts on this CPU, save interrupt status */ 2727 efl = read_eflags(); 2728 write_eflags(efl & ~PSL_I); 2729 2730 /* signal other processors, which will enter the IPI with interrupts off */ 2731 all_but_self_ipi(XRENDEZVOUS_OFFSET); 2732 2733 /* call executor function */ 2734 smp_rendezvous_action(); 2735 2736 /* restore interrupt flag */ 2737 write_eflags(efl); 2738 2739 /* release lock */ 2740 s_unlock(&smp_rv_lock); 2741 } 2742