xref: /freebsd/sys/kern/subr_smp.c (revision 221622ec0c8e184dd1ea7e1f77fb45d2d32cb6e2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * This module holds the global variables and machine independent functions
30  * used for the kernel SMP support.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/ktr.h>
40 #include <sys/proc.h>
41 #include <sys/bus.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/pcpu.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 
50 #include <machine/cpu.h>
51 #include <machine/smp.h>
52 
53 #include "opt_sched.h"
54 
55 #ifdef SMP
56 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
57 
58 volatile cpuset_t stopped_cpus;
59 volatile cpuset_t started_cpus;
60 volatile cpuset_t suspended_cpus;
61 cpuset_t hlt_cpus_mask;
62 cpuset_t logical_cpus_mask;
63 
64 void (*cpustop_restartfunc)(void);
65 #endif
66 
67 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
68 
69 /* This is used in modules that need to work in both SMP and UP. */
70 cpuset_t all_cpus;
71 
72 int mp_ncpus;
73 /* export this for libkvm consumers. */
74 int mp_maxcpus = MAXCPU;
75 
76 volatile int smp_started;
77 u_int mp_maxid;
78 
79 static SYSCTL_NODE(_kern, OID_AUTO, smp,
80     CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
81     "Kernel SMP");
82 
83 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
84     "Max CPU ID.");
85 
86 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
87     0, "Max number of CPUs that the system was compiled for.");
88 
89 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
90     NULL, 0, sysctl_kern_smp_active, "I",
91     "Indicates system is running in SMP mode");
92 
93 int smp_disabled = 0;	/* has smp been disabled? */
94 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
95     &smp_disabled, 0, "SMP has been disabled from the loader");
96 
97 int smp_cpus = 1;	/* how many cpu's running */
98 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
99     "Number of CPUs online");
100 
101 int smp_threads_per_core = 1;	/* how many SMT threads are running per core */
102 SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
103     &smp_threads_per_core, 0, "Number of SMT threads online per core");
104 
105 int mp_ncores = -1;	/* how many physical cores running */
106 SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
107     "Number of physical cores online");
108 
109 int smp_topology = 0;	/* Which topology we're using. */
110 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
111     "Topology override setting; 0 is default provided by hardware.");
112 
113 #ifdef SMP
114 /* Enable forwarding of a signal to a process running on a different CPU */
115 static int forward_signal_enabled = 1;
116 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
117 	   &forward_signal_enabled, 0,
118 	   "Forwarding of a signal to a process on a different CPU");
119 
120 /* Variables needed for SMP rendezvous. */
121 static volatile int smp_rv_ncpus;
122 static void (*volatile smp_rv_setup_func)(void *arg);
123 static void (*volatile smp_rv_action_func)(void *arg);
124 static void (*volatile smp_rv_teardown_func)(void *arg);
125 static void *volatile smp_rv_func_arg;
126 static volatile int smp_rv_waiters[4];
127 
128 /*
129  * Shared mutex to restrict busywaits between smp_rendezvous() and
130  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
131  * functions trigger at once and cause multiple CPUs to busywait with
132  * interrupts disabled.
133  */
134 struct mtx smp_ipi_mtx;
135 
136 /*
137  * Let the MD SMP code initialize mp_maxid very early if it can.
138  */
139 static void
140 mp_setmaxid(void *dummy)
141 {
142 
143 	cpu_mp_setmaxid();
144 
145 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
146 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
147 	    ("%s: one CPU but mp_maxid is not zero", __func__));
148 	KASSERT(mp_maxid >= mp_ncpus - 1,
149 	    ("%s: counters out of sync: max %d, count %d", __func__,
150 		mp_maxid, mp_ncpus));
151 }
152 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
153 
154 /*
155  * Call the MD SMP initialization code.
156  */
157 static void
158 mp_start(void *dummy)
159 {
160 
161 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
162 
163 	/* Probe for MP hardware. */
164 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
165 		mp_ncores = 1;
166 		mp_ncpus = 1;
167 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
168 		return;
169 	}
170 
171 	cpu_mp_start();
172 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
173 	    mp_ncpus);
174 
175 	/* Provide a default for most architectures that don't have SMT/HTT. */
176 	if (mp_ncores < 0)
177 		mp_ncores = mp_ncpus;
178 
179 	cpu_mp_announce();
180 }
181 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
182 
183 void
184 forward_signal(struct thread *td)
185 {
186 	int id;
187 
188 	/*
189 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
190 	 * this thread, so all we need to do is poke it if it is currently
191 	 * executing so that it executes ast().
192 	 */
193 	THREAD_LOCK_ASSERT(td, MA_OWNED);
194 	KASSERT(TD_IS_RUNNING(td),
195 	    ("forward_signal: thread is not TDS_RUNNING"));
196 
197 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
198 
199 	if (!smp_started || cold || KERNEL_PANICKED())
200 		return;
201 	if (!forward_signal_enabled)
202 		return;
203 
204 	/* No need to IPI ourself. */
205 	if (td == curthread)
206 		return;
207 
208 	id = td->td_oncpu;
209 	if (id == NOCPU)
210 		return;
211 	ipi_cpu(id, IPI_AST);
212 }
213 
214 /*
215  * When called the executing CPU will send an IPI to all other CPUs
216  *  requesting that they halt execution.
217  *
218  * Usually (but not necessarily) called with 'other_cpus' as its arg.
219  *
220  *  - Signals all CPUs in map to stop.
221  *  - Waits for each to stop.
222  *
223  * Returns:
224  *  -1: error
225  *   0: NA
226  *   1: ok
227  *
228  */
229 #if defined(__amd64__) || defined(__i386__)
230 #define	X86	1
231 #else
232 #define	X86	0
233 #endif
234 static int
235 generic_stop_cpus(cpuset_t map, u_int type)
236 {
237 #ifdef KTR
238 	char cpusetbuf[CPUSETBUFSIZ];
239 #endif
240 	static volatile u_int stopping_cpu = NOCPU;
241 	int i;
242 	volatile cpuset_t *cpus;
243 
244 	KASSERT(
245 	    type == IPI_STOP || type == IPI_STOP_HARD
246 #if X86
247 	    || type == IPI_SUSPEND
248 #endif
249 	    , ("%s: invalid stop type", __func__));
250 
251 	if (!smp_started)
252 		return (0);
253 
254 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
255 	    cpusetobj_strprint(cpusetbuf, &map), type);
256 
257 #if X86
258 	/*
259 	 * When suspending, ensure there are are no IPIs in progress.
260 	 * IPIs that have been issued, but not yet delivered (e.g.
261 	 * not pending on a vCPU when running under virtualization)
262 	 * will be lost, violating FreeBSD's assumption of reliable
263 	 * IPI delivery.
264 	 */
265 	if (type == IPI_SUSPEND)
266 		mtx_lock_spin(&smp_ipi_mtx);
267 #endif
268 
269 #if X86
270 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
271 #endif
272 	if (stopping_cpu != PCPU_GET(cpuid))
273 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
274 		    PCPU_GET(cpuid)) == 0)
275 			while (stopping_cpu != NOCPU)
276 				cpu_spinwait(); /* spin */
277 
278 	/* send the stop IPI to all CPUs in map */
279 	ipi_selected(map, type);
280 #if X86
281 	}
282 #endif
283 
284 #if X86
285 	if (type == IPI_SUSPEND)
286 		cpus = &suspended_cpus;
287 	else
288 #endif
289 		cpus = &stopped_cpus;
290 
291 	i = 0;
292 	while (!CPU_SUBSET(cpus, &map)) {
293 		/* spin */
294 		cpu_spinwait();
295 		i++;
296 		if (i == 100000000) {
297 			printf("timeout stopping cpus\n");
298 			break;
299 		}
300 	}
301 
302 #if X86
303 	if (type == IPI_SUSPEND)
304 		mtx_unlock_spin(&smp_ipi_mtx);
305 #endif
306 
307 	stopping_cpu = NOCPU;
308 	return (1);
309 }
310 
311 int
312 stop_cpus(cpuset_t map)
313 {
314 
315 	return (generic_stop_cpus(map, IPI_STOP));
316 }
317 
318 int
319 stop_cpus_hard(cpuset_t map)
320 {
321 
322 	return (generic_stop_cpus(map, IPI_STOP_HARD));
323 }
324 
325 #if X86
326 int
327 suspend_cpus(cpuset_t map)
328 {
329 
330 	return (generic_stop_cpus(map, IPI_SUSPEND));
331 }
332 #endif
333 
334 /*
335  * Called by a CPU to restart stopped CPUs.
336  *
337  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
338  *
339  *  - Signals all CPUs in map to restart.
340  *  - Waits for each to restart.
341  *
342  * Returns:
343  *  -1: error
344  *   0: NA
345  *   1: ok
346  */
347 static int
348 generic_restart_cpus(cpuset_t map, u_int type)
349 {
350 #ifdef KTR
351 	char cpusetbuf[CPUSETBUFSIZ];
352 #endif
353 	volatile cpuset_t *cpus;
354 
355 #if X86
356 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
357 	    || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
358 
359 	if (!smp_started)
360 		return (0);
361 
362 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
363 
364 	if (type == IPI_SUSPEND)
365 		cpus = &resuming_cpus;
366 	else
367 		cpus = &stopped_cpus;
368 
369 	/* signal other cpus to restart */
370 	if (type == IPI_SUSPEND)
371 		CPU_COPY_STORE_REL(&map, &toresume_cpus);
372 	else
373 		CPU_COPY_STORE_REL(&map, &started_cpus);
374 
375 	/*
376 	 * Wake up any CPUs stopped with MWAIT.  From MI code we can't tell if
377 	 * MONITOR/MWAIT is enabled, but the potentially redundant writes are
378 	 * relatively inexpensive.
379 	 */
380 	if (type == IPI_STOP) {
381 		struct monitorbuf *mb;
382 		u_int id;
383 
384 		CPU_FOREACH(id) {
385 			if (!CPU_ISSET(id, &map))
386 				continue;
387 
388 			mb = &pcpu_find(id)->pc_monitorbuf;
389 			atomic_store_int(&mb->stop_state,
390 			    MONITOR_STOPSTATE_RUNNING);
391 		}
392 	}
393 
394 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
395 		/* wait for each to clear its bit */
396 		while (CPU_OVERLAP(cpus, &map))
397 			cpu_spinwait();
398 	}
399 #else /* !X86 */
400 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
401 	    ("%s: invalid stop type", __func__));
402 
403 	if (!smp_started)
404 		return (0);
405 
406 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
407 
408 	cpus = &stopped_cpus;
409 
410 	/* signal other cpus to restart */
411 	CPU_COPY_STORE_REL(&map, &started_cpus);
412 
413 	/* wait for each to clear its bit */
414 	while (CPU_OVERLAP(cpus, &map))
415 		cpu_spinwait();
416 #endif
417 	return (1);
418 }
419 
420 int
421 restart_cpus(cpuset_t map)
422 {
423 
424 	return (generic_restart_cpus(map, IPI_STOP));
425 }
426 
427 #if X86
428 int
429 resume_cpus(cpuset_t map)
430 {
431 
432 	return (generic_restart_cpus(map, IPI_SUSPEND));
433 }
434 #endif
435 #undef X86
436 
437 /*
438  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
439  * (if specified), rendezvous, execute the action function (if specified),
440  * rendezvous again, execute the teardown function (if specified), and then
441  * resume.
442  *
443  * Note that the supplied external functions _must_ be reentrant and aware
444  * that they are running in parallel and in an unknown lock context.
445  */
446 void
447 smp_rendezvous_action(void)
448 {
449 	struct thread *td;
450 	void *local_func_arg;
451 	void (*local_setup_func)(void*);
452 	void (*local_action_func)(void*);
453 	void (*local_teardown_func)(void*);
454 #ifdef INVARIANTS
455 	int owepreempt;
456 #endif
457 
458 	/* Ensure we have up-to-date values. */
459 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
460 	while (smp_rv_waiters[0] < smp_rv_ncpus)
461 		cpu_spinwait();
462 
463 	/* Fetch rendezvous parameters after acquire barrier. */
464 	local_func_arg = smp_rv_func_arg;
465 	local_setup_func = smp_rv_setup_func;
466 	local_action_func = smp_rv_action_func;
467 	local_teardown_func = smp_rv_teardown_func;
468 
469 	/*
470 	 * Use a nested critical section to prevent any preemptions
471 	 * from occurring during a rendezvous action routine.
472 	 * Specifically, if a rendezvous handler is invoked via an IPI
473 	 * and the interrupted thread was in the critical_exit()
474 	 * function after setting td_critnest to 0 but before
475 	 * performing a deferred preemption, this routine can be
476 	 * invoked with td_critnest set to 0 and td_owepreempt true.
477 	 * In that case, a critical_exit() during the rendezvous
478 	 * action would trigger a preemption which is not permitted in
479 	 * a rendezvous action.  To fix this, wrap all of the
480 	 * rendezvous action handlers in a critical section.  We
481 	 * cannot use a regular critical section however as having
482 	 * critical_exit() preempt from this routine would also be
483 	 * problematic (the preemption must not occur before the IPI
484 	 * has been acknowledged via an EOI).  Instead, we
485 	 * intentionally ignore td_owepreempt when leaving the
486 	 * critical section.  This should be harmless because we do
487 	 * not permit rendezvous action routines to schedule threads,
488 	 * and thus td_owepreempt should never transition from 0 to 1
489 	 * during this routine.
490 	 */
491 	td = curthread;
492 	td->td_critnest++;
493 #ifdef INVARIANTS
494 	owepreempt = td->td_owepreempt;
495 #endif
496 
497 	/*
498 	 * If requested, run a setup function before the main action
499 	 * function.  Ensure all CPUs have completed the setup
500 	 * function before moving on to the action function.
501 	 */
502 	if (local_setup_func != smp_no_rendezvous_barrier) {
503 		if (smp_rv_setup_func != NULL)
504 			smp_rv_setup_func(smp_rv_func_arg);
505 		atomic_add_int(&smp_rv_waiters[1], 1);
506 		while (smp_rv_waiters[1] < smp_rv_ncpus)
507                 	cpu_spinwait();
508 	}
509 
510 	if (local_action_func != NULL)
511 		local_action_func(local_func_arg);
512 
513 	if (local_teardown_func != smp_no_rendezvous_barrier) {
514 		/*
515 		 * Signal that the main action has been completed.  If a
516 		 * full exit rendezvous is requested, then all CPUs will
517 		 * wait here until all CPUs have finished the main action.
518 		 */
519 		atomic_add_int(&smp_rv_waiters[2], 1);
520 		while (smp_rv_waiters[2] < smp_rv_ncpus)
521 			cpu_spinwait();
522 
523 		if (local_teardown_func != NULL)
524 			local_teardown_func(local_func_arg);
525 	}
526 
527 	/*
528 	 * Signal that the rendezvous is fully completed by this CPU.
529 	 * This means that no member of smp_rv_* pseudo-structure will be
530 	 * accessed by this target CPU after this point; in particular,
531 	 * memory pointed by smp_rv_func_arg.
532 	 *
533 	 * The release semantic ensures that all accesses performed by
534 	 * the current CPU are visible when smp_rendezvous_cpus()
535 	 * returns, by synchronizing with the
536 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
537 	 */
538 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
539 
540 	td->td_critnest--;
541 	KASSERT(owepreempt == td->td_owepreempt,
542 	    ("rendezvous action changed td_owepreempt"));
543 }
544 
545 void
546 smp_rendezvous_cpus(cpuset_t map,
547 	void (* setup_func)(void *),
548 	void (* action_func)(void *),
549 	void (* teardown_func)(void *),
550 	void *arg)
551 {
552 	int curcpumap, i, ncpus = 0;
553 
554 	/* See comments in the !SMP case. */
555 	if (!smp_started) {
556 		spinlock_enter();
557 		if (setup_func != NULL)
558 			setup_func(arg);
559 		if (action_func != NULL)
560 			action_func(arg);
561 		if (teardown_func != NULL)
562 			teardown_func(arg);
563 		spinlock_exit();
564 		return;
565 	}
566 
567 	/*
568 	 * Make sure we come here with interrupts enabled.  Otherwise we
569 	 * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
570 	 */
571 	MPASS(curthread->td_md.md_spinlock_count == 0);
572 
573 	CPU_FOREACH(i) {
574 		if (CPU_ISSET(i, &map))
575 			ncpus++;
576 	}
577 	if (ncpus == 0)
578 		panic("ncpus is 0 with non-zero map");
579 
580 	mtx_lock_spin(&smp_ipi_mtx);
581 
582 	/* Pass rendezvous parameters via global variables. */
583 	smp_rv_ncpus = ncpus;
584 	smp_rv_setup_func = setup_func;
585 	smp_rv_action_func = action_func;
586 	smp_rv_teardown_func = teardown_func;
587 	smp_rv_func_arg = arg;
588 	smp_rv_waiters[1] = 0;
589 	smp_rv_waiters[2] = 0;
590 	smp_rv_waiters[3] = 0;
591 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
592 
593 	/*
594 	 * Signal other processors, which will enter the IPI with
595 	 * interrupts off.
596 	 */
597 	curcpumap = CPU_ISSET(curcpu, &map);
598 	CPU_CLR(curcpu, &map);
599 	ipi_selected(map, IPI_RENDEZVOUS);
600 
601 	/* Check if the current CPU is in the map */
602 	if (curcpumap != 0)
603 		smp_rendezvous_action();
604 
605 	/*
606 	 * Ensure that the master CPU waits for all the other
607 	 * CPUs to finish the rendezvous, so that smp_rv_*
608 	 * pseudo-structure and the arg are guaranteed to not
609 	 * be in use.
610 	 *
611 	 * Load acquire synchronizes with the release add in
612 	 * smp_rendezvous_action(), which ensures that our caller sees
613 	 * all memory actions done by the called functions on other
614 	 * CPUs.
615 	 */
616 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
617 		cpu_spinwait();
618 
619 	mtx_unlock_spin(&smp_ipi_mtx);
620 }
621 
622 void
623 smp_rendezvous(void (* setup_func)(void *),
624 	       void (* action_func)(void *),
625 	       void (* teardown_func)(void *),
626 	       void *arg)
627 {
628 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
629 }
630 
631 static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1];
632 
633 struct cpu_group *
634 smp_topo(void)
635 {
636 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
637 	struct cpu_group *top;
638 
639 	/*
640 	 * Check for a fake topology request for debugging purposes.
641 	 */
642 	switch (smp_topology) {
643 	case 1:
644 		/* Dual core with no sharing.  */
645 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
646 		break;
647 	case 2:
648 		/* No topology, all cpus are equal. */
649 		top = smp_topo_none();
650 		break;
651 	case 3:
652 		/* Dual core with shared L2.  */
653 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
654 		break;
655 	case 4:
656 		/* quad core, shared l3 among each package, private l2.  */
657 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
658 		break;
659 	case 5:
660 		/* quad core,  2 dualcore parts on each package share l2.  */
661 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
662 		break;
663 	case 6:
664 		/* Single-core 2xHTT */
665 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
666 		break;
667 	case 7:
668 		/* quad core with a shared l3, 8 threads sharing L2.  */
669 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
670 		    CG_FLAG_SMT);
671 		break;
672 	default:
673 		/* Default, ask the system what it wants. */
674 		top = cpu_topo();
675 		break;
676 	}
677 	/*
678 	 * Verify the returned topology.
679 	 */
680 	if (top->cg_count != mp_ncpus)
681 		panic("Built bad topology at %p.  CPU count %d != %d",
682 		    top, top->cg_count, mp_ncpus);
683 	if (CPU_CMP(&top->cg_mask, &all_cpus))
684 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
685 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
686 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
687 
688 	/*
689 	 * Collapse nonsense levels that may be created out of convenience by
690 	 * the MD layers.  They cause extra work in the search functions.
691 	 */
692 	while (top->cg_children == 1) {
693 		top = &top->cg_child[0];
694 		top->cg_parent = NULL;
695 	}
696 	return (top);
697 }
698 
699 struct cpu_group *
700 smp_topo_alloc(u_int count)
701 {
702 	static u_int index;
703 	u_int curr;
704 
705 	curr = index;
706 	index += count;
707 	return (&group[curr]);
708 }
709 
710 struct cpu_group *
711 smp_topo_none(void)
712 {
713 	struct cpu_group *top;
714 
715 	top = &group[0];
716 	top->cg_parent = NULL;
717 	top->cg_child = NULL;
718 	top->cg_mask = all_cpus;
719 	top->cg_count = mp_ncpus;
720 	top->cg_children = 0;
721 	top->cg_level = CG_SHARE_NONE;
722 	top->cg_flags = 0;
723 
724 	return (top);
725 }
726 
727 static int
728 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
729     int count, int flags, int start)
730 {
731 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
732 	cpuset_t mask;
733 	int i;
734 
735 	CPU_ZERO(&mask);
736 	for (i = 0; i < count; i++, start++)
737 		CPU_SET(start, &mask);
738 	child->cg_parent = parent;
739 	child->cg_child = NULL;
740 	child->cg_children = 0;
741 	child->cg_level = share;
742 	child->cg_count = count;
743 	child->cg_flags = flags;
744 	child->cg_mask = mask;
745 	parent->cg_children++;
746 	for (; parent != NULL; parent = parent->cg_parent) {
747 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
748 			panic("Duplicate children in %p.  mask (%s) child (%s)",
749 			    parent,
750 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
751 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
752 		CPU_OR(&parent->cg_mask, &child->cg_mask);
753 		parent->cg_count += child->cg_count;
754 	}
755 
756 	return (start);
757 }
758 
759 struct cpu_group *
760 smp_topo_1level(int share, int count, int flags)
761 {
762 	struct cpu_group *child;
763 	struct cpu_group *top;
764 	int packages;
765 	int cpu;
766 	int i;
767 
768 	cpu = 0;
769 	top = &group[0];
770 	packages = mp_ncpus / count;
771 	top->cg_child = child = &group[1];
772 	top->cg_level = CG_SHARE_NONE;
773 	for (i = 0; i < packages; i++, child++)
774 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
775 	return (top);
776 }
777 
778 struct cpu_group *
779 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
780     int l1flags)
781 {
782 	struct cpu_group *top;
783 	struct cpu_group *l1g;
784 	struct cpu_group *l2g;
785 	int cpu;
786 	int i;
787 	int j;
788 
789 	cpu = 0;
790 	top = &group[0];
791 	l2g = &group[1];
792 	top->cg_child = l2g;
793 	top->cg_level = CG_SHARE_NONE;
794 	top->cg_children = mp_ncpus / (l2count * l1count);
795 	l1g = l2g + top->cg_children;
796 	for (i = 0; i < top->cg_children; i++, l2g++) {
797 		l2g->cg_parent = top;
798 		l2g->cg_child = l1g;
799 		l2g->cg_level = l2share;
800 		for (j = 0; j < l2count; j++, l1g++)
801 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
802 			    l1flags, cpu);
803 	}
804 	return (top);
805 }
806 
807 struct cpu_group *
808 smp_topo_find(struct cpu_group *top, int cpu)
809 {
810 	struct cpu_group *cg;
811 	cpuset_t mask;
812 	int children;
813 	int i;
814 
815 	CPU_SETOF(cpu, &mask);
816 	cg = top;
817 	for (;;) {
818 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
819 			return (NULL);
820 		if (cg->cg_children == 0)
821 			return (cg);
822 		children = cg->cg_children;
823 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
824 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
825 				break;
826 	}
827 	return (NULL);
828 }
829 #else /* !SMP */
830 
831 void
832 smp_rendezvous_cpus(cpuset_t map,
833 	void (*setup_func)(void *),
834 	void (*action_func)(void *),
835 	void (*teardown_func)(void *),
836 	void *arg)
837 {
838 	/*
839 	 * In the !SMP case we just need to ensure the same initial conditions
840 	 * as the SMP case.
841 	 */
842 	spinlock_enter();
843 	if (setup_func != NULL)
844 		setup_func(arg);
845 	if (action_func != NULL)
846 		action_func(arg);
847 	if (teardown_func != NULL)
848 		teardown_func(arg);
849 	spinlock_exit();
850 }
851 
852 void
853 smp_rendezvous(void (*setup_func)(void *),
854 	       void (*action_func)(void *),
855 	       void (*teardown_func)(void *),
856 	       void *arg)
857 {
858 
859 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
860 	    arg);
861 }
862 
863 /*
864  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
865  * APIs will still work using this dummy support.
866  */
867 static void
868 mp_setvariables_for_up(void *dummy)
869 {
870 	mp_ncpus = 1;
871 	mp_ncores = 1;
872 	mp_maxid = PCPU_GET(cpuid);
873 	CPU_SETOF(mp_maxid, &all_cpus);
874 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
875 }
876 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
877     mp_setvariables_for_up, NULL);
878 #endif /* SMP */
879 
880 void
881 smp_no_rendezvous_barrier(void *dummy)
882 {
883 #ifdef SMP
884 	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
885 #endif
886 }
887 
888 void
889 smp_rendezvous_cpus_retry(cpuset_t map,
890 	void (* setup_func)(void *),
891 	void (* action_func)(void *),
892 	void (* teardown_func)(void *),
893 	void (* wait_func)(void *, int),
894 	struct smp_rendezvous_cpus_retry_arg *arg)
895 {
896 	int cpu;
897 
898 	/*
899 	 * Only one CPU to execute on.
900 	 */
901 	if (!smp_started) {
902 		spinlock_enter();
903 		if (setup_func != NULL)
904 			setup_func(arg);
905 		if (action_func != NULL)
906 			action_func(arg);
907 		if (teardown_func != NULL)
908 			teardown_func(arg);
909 		spinlock_exit();
910 		return;
911 	}
912 
913 	/*
914 	 * Execute an action on all specified CPUs while retrying until they
915 	 * all acknowledge completion.
916 	 */
917 	CPU_COPY(&map, &arg->cpus);
918 	for (;;) {
919 		smp_rendezvous_cpus(
920 		    arg->cpus,
921 		    setup_func,
922 		    action_func,
923 		    teardown_func,
924 		    arg);
925 
926 		if (CPU_EMPTY(&arg->cpus))
927 			break;
928 
929 		CPU_FOREACH(cpu) {
930 			if (!CPU_ISSET(cpu, &arg->cpus))
931 				continue;
932 			wait_func(arg, cpu);
933 		}
934 	}
935 }
936 
937 void
938 smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
939 {
940 
941 	CPU_CLR_ATOMIC(curcpu, &arg->cpus);
942 }
943 
944 /*
945  * Wait for specified idle threads to switch once.  This ensures that even
946  * preempted threads have cycled through the switch function once,
947  * exiting their codepaths.  This allows us to change global pointers
948  * with no other synchronization.
949  */
950 int
951 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
952 {
953 	struct pcpu *pcpu;
954 	u_int gen[MAXCPU];
955 	int error;
956 	int cpu;
957 
958 	error = 0;
959 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
960 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
961 			continue;
962 		pcpu = pcpu_find(cpu);
963 		gen[cpu] = pcpu->pc_idlethread->td_generation;
964 	}
965 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
966 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
967 			continue;
968 		pcpu = pcpu_find(cpu);
969 		thread_lock(curthread);
970 		sched_bind(curthread, cpu);
971 		thread_unlock(curthread);
972 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
973 			error = tsleep(quiesce_cpus, prio, wmesg, 1);
974 			if (error != EWOULDBLOCK)
975 				goto out;
976 			error = 0;
977 		}
978 	}
979 out:
980 	thread_lock(curthread);
981 	sched_unbind(curthread);
982 	thread_unlock(curthread);
983 
984 	return (error);
985 }
986 
987 int
988 quiesce_all_cpus(const char *wmesg, int prio)
989 {
990 
991 	return quiesce_cpus(all_cpus, wmesg, prio);
992 }
993 
994 /*
995  * Observe all CPUs not executing in critical section.
996  * We are not in one so the check for us is safe. If the found
997  * thread changes to something else we know the section was
998  * exited as well.
999  */
1000 void
1001 quiesce_all_critical(void)
1002 {
1003 	struct thread *td, *newtd;
1004 	struct pcpu *pcpu;
1005 	int cpu;
1006 
1007 	MPASS(curthread->td_critnest == 0);
1008 
1009 	CPU_FOREACH(cpu) {
1010 		pcpu = cpuid_to_pcpu[cpu];
1011 		td = pcpu->pc_curthread;
1012 		for (;;) {
1013 			if (td->td_critnest == 0)
1014 				break;
1015 			cpu_spinwait();
1016 			newtd = (struct thread *)
1017 			    atomic_load_acq_ptr((void *)pcpu->pc_curthread);
1018 			if (td != newtd)
1019 				break;
1020 		}
1021 	}
1022 }
1023 
1024 static void
1025 cpus_fence_seq_cst_issue(void *arg __unused)
1026 {
1027 
1028 	atomic_thread_fence_seq_cst();
1029 }
1030 
1031 /*
1032  * Send an IPI forcing a sequentially consistent fence.
1033  *
1034  * Allows replacement of an explicitly fence with a compiler barrier.
1035  * Trades speed up during normal execution for a significant slowdown when
1036  * the barrier is needed.
1037  */
1038 void
1039 cpus_fence_seq_cst(void)
1040 {
1041 
1042 #ifdef SMP
1043 	smp_rendezvous(
1044 	    smp_no_rendezvous_barrier,
1045 	    cpus_fence_seq_cst_issue,
1046 	    smp_no_rendezvous_barrier,
1047 	    NULL
1048 	);
1049 #else
1050 	cpus_fence_seq_cst_issue(NULL);
1051 #endif
1052 }
1053 
1054 /* Extra care is taken with this sysctl because the data type is volatile */
1055 static int
1056 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
1057 {
1058 	int error, active;
1059 
1060 	active = smp_started;
1061 	error = SYSCTL_OUT(req, &active, sizeof(active));
1062 	return (error);
1063 }
1064 
1065 #ifdef SMP
1066 void
1067 topo_init_node(struct topo_node *node)
1068 {
1069 
1070 	bzero(node, sizeof(*node));
1071 	TAILQ_INIT(&node->children);
1072 }
1073 
1074 void
1075 topo_init_root(struct topo_node *root)
1076 {
1077 
1078 	topo_init_node(root);
1079 	root->type = TOPO_TYPE_SYSTEM;
1080 }
1081 
1082 /*
1083  * Add a child node with the given ID under the given parent.
1084  * Do nothing if there is already a child with that ID.
1085  */
1086 struct topo_node *
1087 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
1088     topo_node_type type, uintptr_t subtype)
1089 {
1090 	struct topo_node *node;
1091 
1092 	TAILQ_FOREACH_REVERSE(node, &parent->children,
1093 	    topo_children, siblings) {
1094 		if (node->hwid == hwid
1095 		    && node->type == type && node->subtype == subtype) {
1096 			return (node);
1097 		}
1098 	}
1099 
1100 	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
1101 	topo_init_node(node);
1102 	node->parent = parent;
1103 	node->hwid = hwid;
1104 	node->type = type;
1105 	node->subtype = subtype;
1106 	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
1107 	parent->nchildren++;
1108 
1109 	return (node);
1110 }
1111 
1112 /*
1113  * Find a child node with the given ID under the given parent.
1114  */
1115 struct topo_node *
1116 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
1117     topo_node_type type, uintptr_t subtype)
1118 {
1119 
1120 	struct topo_node *node;
1121 
1122 	TAILQ_FOREACH(node, &parent->children, siblings) {
1123 		if (node->hwid == hwid
1124 		    && node->type == type && node->subtype == subtype) {
1125 			return (node);
1126 		}
1127 	}
1128 
1129 	return (NULL);
1130 }
1131 
1132 /*
1133  * Given a node change the order of its parent's child nodes such
1134  * that the node becomes the firt child while preserving the cyclic
1135  * order of the children.  In other words, the given node is promoted
1136  * by rotation.
1137  */
1138 void
1139 topo_promote_child(struct topo_node *child)
1140 {
1141 	struct topo_node *next;
1142 	struct topo_node *node;
1143 	struct topo_node *parent;
1144 
1145 	parent = child->parent;
1146 	next = TAILQ_NEXT(child, siblings);
1147 	TAILQ_REMOVE(&parent->children, child, siblings);
1148 	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1149 
1150 	while (next != NULL) {
1151 		node = next;
1152 		next = TAILQ_NEXT(node, siblings);
1153 		TAILQ_REMOVE(&parent->children, node, siblings);
1154 		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1155 		child = node;
1156 	}
1157 }
1158 
1159 /*
1160  * Iterate to the next node in the depth-first search (traversal) of
1161  * the topology tree.
1162  */
1163 struct topo_node *
1164 topo_next_node(struct topo_node *top, struct topo_node *node)
1165 {
1166 	struct topo_node *next;
1167 
1168 	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1169 		return (next);
1170 
1171 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1172 		return (next);
1173 
1174 	while (node != top && (node = node->parent) != top)
1175 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1176 			return (next);
1177 
1178 	return (NULL);
1179 }
1180 
1181 /*
1182  * Iterate to the next node in the depth-first search of the topology tree,
1183  * but without descending below the current node.
1184  */
1185 struct topo_node *
1186 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1187 {
1188 	struct topo_node *next;
1189 
1190 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1191 		return (next);
1192 
1193 	while (node != top && (node = node->parent) != top)
1194 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1195 			return (next);
1196 
1197 	return (NULL);
1198 }
1199 
1200 /*
1201  * Assign the given ID to the given topology node that represents a logical
1202  * processor.
1203  */
1204 void
1205 topo_set_pu_id(struct topo_node *node, cpuid_t id)
1206 {
1207 
1208 	KASSERT(node->type == TOPO_TYPE_PU,
1209 	    ("topo_set_pu_id: wrong node type: %u", node->type));
1210 	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1211 	    ("topo_set_pu_id: cpuset already not empty"));
1212 	node->id = id;
1213 	CPU_SET(id, &node->cpuset);
1214 	node->cpu_count = 1;
1215 	node->subtype = 1;
1216 
1217 	while ((node = node->parent) != NULL) {
1218 		KASSERT(!CPU_ISSET(id, &node->cpuset),
1219 		    ("logical ID %u is already set in node %p", id, node));
1220 		CPU_SET(id, &node->cpuset);
1221 		node->cpu_count++;
1222 	}
1223 }
1224 
1225 static struct topology_spec {
1226 	topo_node_type	type;
1227 	bool		match_subtype;
1228 	uintptr_t	subtype;
1229 } topology_level_table[TOPO_LEVEL_COUNT] = {
1230 	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1231 	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1232 	[TOPO_LEVEL_CACHEGROUP] = {
1233 		.type = TOPO_TYPE_CACHE,
1234 		.match_subtype = true,
1235 		.subtype = CG_SHARE_L3,
1236 	},
1237 	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1238 	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1239 };
1240 
1241 static bool
1242 topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1243     struct topo_analysis *results)
1244 {
1245 	struct topology_spec *spec;
1246 	struct topo_node *node;
1247 	int count;
1248 
1249 	if (level >= TOPO_LEVEL_COUNT)
1250 		return (true);
1251 
1252 	spec = &topology_level_table[level];
1253 	count = 0;
1254 	node = topo_next_node(root, root);
1255 
1256 	while (node != NULL) {
1257 		if (node->type != spec->type ||
1258 		    (spec->match_subtype && node->subtype != spec->subtype)) {
1259 			node = topo_next_node(root, node);
1260 			continue;
1261 		}
1262 		if (!all && CPU_EMPTY(&node->cpuset)) {
1263 			node = topo_next_nonchild_node(root, node);
1264 			continue;
1265 		}
1266 
1267 		count++;
1268 
1269 		if (!topo_analyze_table(node, all, level + 1, results))
1270 			return (false);
1271 
1272 		node = topo_next_nonchild_node(root, node);
1273 	}
1274 
1275 	/* No explicit subgroups is essentially one subgroup. */
1276 	if (count == 0) {
1277 		count = 1;
1278 
1279 		if (!topo_analyze_table(root, all, level + 1, results))
1280 			return (false);
1281 	}
1282 
1283 	if (results->entities[level] == -1)
1284 		results->entities[level] = count;
1285 	else if (results->entities[level] != count)
1286 		return (false);
1287 
1288 	return (true);
1289 }
1290 
1291 /*
1292  * Check if the topology is uniform, that is, each package has the same number
1293  * of cores in it and each core has the same number of threads (logical
1294  * processors) in it.  If so, calculate the number of packages, the number of
1295  * groups per package, the number of cachegroups per group, and the number of
1296  * logical processors per cachegroup.  'all' parameter tells whether to include
1297  * administratively disabled logical processors into the analysis.
1298  */
1299 int
1300 topo_analyze(struct topo_node *topo_root, int all,
1301     struct topo_analysis *results)
1302 {
1303 
1304 	results->entities[TOPO_LEVEL_PKG] = -1;
1305 	results->entities[TOPO_LEVEL_CORE] = -1;
1306 	results->entities[TOPO_LEVEL_THREAD] = -1;
1307 	results->entities[TOPO_LEVEL_GROUP] = -1;
1308 	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1309 
1310 	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1311 		return (0);
1312 
1313 	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1314 		("bug in topology or analysis"));
1315 
1316 	return (1);
1317 }
1318 
1319 #endif /* SMP */
1320