1 /*- 2 * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * This module holds the global variables and machine independent functions 32 * used for the kernel SMP support. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/ktr.h> 42 #include <sys/proc.h> 43 #include <sys/bus.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/pcpu.h> 47 #include <sys/smp.h> 48 #include <sys/sysctl.h> 49 50 #include <machine/cpu.h> 51 #include <machine/smp.h> 52 53 #include "opt_sched.h" 54 55 #ifdef SMP 56 volatile cpumask_t stopped_cpus; 57 volatile cpumask_t started_cpus; 58 cpumask_t idle_cpus_mask; 59 cpumask_t hlt_cpus_mask; 60 cpumask_t logical_cpus_mask; 61 62 void (*cpustop_restartfunc)(void); 63 #endif 64 /* This is used in modules that need to work in both SMP and UP. */ 65 cpumask_t all_cpus; 66 67 int mp_ncpus; 68 /* export this for libkvm consumers. */ 69 int mp_maxcpus = MAXCPU; 70 71 volatile int smp_started; 72 u_int mp_maxid; 73 74 SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP"); 75 76 SYSCTL_UINT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0, 77 "Max CPU ID."); 78 79 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0, 80 "Max number of CPUs that the system was compiled for."); 81 82 int smp_active = 0; /* are the APs allowed to run? */ 83 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0, 84 "Number of Auxillary Processors (APs) that were successfully started"); 85 86 int smp_disabled = 0; /* has smp been disabled? */ 87 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0, 88 "SMP has been disabled from the loader"); 89 TUNABLE_INT("kern.smp.disabled", &smp_disabled); 90 91 int smp_cpus = 1; /* how many cpu's running */ 92 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0, 93 "Number of CPUs online"); 94 95 int smp_topology = 0; /* Which topology we're using. */ 96 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0, 97 "Topology override setting; 0 is default provided by hardware."); 98 TUNABLE_INT("kern.smp.topology", &smp_topology); 99 100 #ifdef SMP 101 /* Enable forwarding of a signal to a process running on a different CPU */ 102 static int forward_signal_enabled = 1; 103 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW, 104 &forward_signal_enabled, 0, 105 "Forwarding of a signal to a process on a different CPU"); 106 107 /* Variables needed for SMP rendezvous. */ 108 static volatile int smp_rv_ncpus; 109 static void (*volatile smp_rv_setup_func)(void *arg); 110 static void (*volatile smp_rv_action_func)(void *arg); 111 static void (*volatile smp_rv_teardown_func)(void *arg); 112 static void *volatile smp_rv_func_arg; 113 static volatile int smp_rv_waiters[3]; 114 115 /* 116 * Shared mutex to restrict busywaits between smp_rendezvous() and 117 * smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these 118 * functions trigger at once and cause multiple CPUs to busywait with 119 * interrupts disabled. 120 */ 121 struct mtx smp_ipi_mtx; 122 123 /* 124 * Let the MD SMP code initialize mp_maxid very early if it can. 125 */ 126 static void 127 mp_setmaxid(void *dummy) 128 { 129 cpu_mp_setmaxid(); 130 } 131 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL); 132 133 /* 134 * Call the MD SMP initialization code. 135 */ 136 static void 137 mp_start(void *dummy) 138 { 139 140 mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN); 141 142 /* Probe for MP hardware. */ 143 if (smp_disabled != 0 || cpu_mp_probe() == 0) { 144 mp_ncpus = 1; 145 all_cpus = PCPU_GET(cpumask); 146 return; 147 } 148 149 cpu_mp_start(); 150 printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n", 151 mp_ncpus); 152 cpu_mp_announce(); 153 } 154 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL); 155 156 void 157 forward_signal(struct thread *td) 158 { 159 int id; 160 161 /* 162 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on 163 * this thread, so all we need to do is poke it if it is currently 164 * executing so that it executes ast(). 165 */ 166 THREAD_LOCK_ASSERT(td, MA_OWNED); 167 KASSERT(TD_IS_RUNNING(td), 168 ("forward_signal: thread is not TDS_RUNNING")); 169 170 CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc); 171 172 if (!smp_started || cold || panicstr) 173 return; 174 if (!forward_signal_enabled) 175 return; 176 177 /* No need to IPI ourself. */ 178 if (td == curthread) 179 return; 180 181 id = td->td_oncpu; 182 if (id == NOCPU) 183 return; 184 ipi_cpu(id, IPI_AST); 185 } 186 187 /* 188 * When called the executing CPU will send an IPI to all other CPUs 189 * requesting that they halt execution. 190 * 191 * Usually (but not necessarily) called with 'other_cpus' as its arg. 192 * 193 * - Signals all CPUs in map to stop. 194 * - Waits for each to stop. 195 * 196 * Returns: 197 * -1: error 198 * 0: NA 199 * 1: ok 200 * 201 */ 202 static int 203 generic_stop_cpus(cpumask_t map, u_int type) 204 { 205 static volatile u_int stopping_cpu = NOCPU; 206 int i; 207 208 KASSERT( 209 #if defined(__amd64__) 210 type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND, 211 #else 212 type == IPI_STOP || type == IPI_STOP_HARD, 213 #endif 214 ("%s: invalid stop type", __func__)); 215 216 if (!smp_started) 217 return (0); 218 219 CTR2(KTR_SMP, "stop_cpus(%x) with %u type", map, type); 220 221 if (stopping_cpu != PCPU_GET(cpuid)) 222 while (atomic_cmpset_int(&stopping_cpu, NOCPU, 223 PCPU_GET(cpuid)) == 0) 224 while (stopping_cpu != NOCPU) 225 cpu_spinwait(); /* spin */ 226 227 /* send the stop IPI to all CPUs in map */ 228 ipi_selected(map, type); 229 230 i = 0; 231 while ((stopped_cpus & map) != map) { 232 /* spin */ 233 cpu_spinwait(); 234 i++; 235 #ifdef DIAGNOSTIC 236 if (i == 100000) { 237 printf("timeout stopping cpus\n"); 238 break; 239 } 240 #endif 241 } 242 243 stopping_cpu = NOCPU; 244 return (1); 245 } 246 247 int 248 stop_cpus(cpumask_t map) 249 { 250 251 return (generic_stop_cpus(map, IPI_STOP)); 252 } 253 254 int 255 stop_cpus_hard(cpumask_t map) 256 { 257 258 return (generic_stop_cpus(map, IPI_STOP_HARD)); 259 } 260 261 #if defined(__amd64__) 262 int 263 suspend_cpus(cpumask_t map) 264 { 265 266 return (generic_stop_cpus(map, IPI_SUSPEND)); 267 } 268 #endif 269 270 /* 271 * Called by a CPU to restart stopped CPUs. 272 * 273 * Usually (but not necessarily) called with 'stopped_cpus' as its arg. 274 * 275 * - Signals all CPUs in map to restart. 276 * - Waits for each to restart. 277 * 278 * Returns: 279 * -1: error 280 * 0: NA 281 * 1: ok 282 */ 283 int 284 restart_cpus(cpumask_t map) 285 { 286 287 if (!smp_started) 288 return 0; 289 290 CTR1(KTR_SMP, "restart_cpus(%x)", map); 291 292 /* signal other cpus to restart */ 293 atomic_store_rel_int(&started_cpus, map); 294 295 /* wait for each to clear its bit */ 296 while ((stopped_cpus & map) != 0) 297 cpu_spinwait(); 298 299 return 1; 300 } 301 302 /* 303 * All-CPU rendezvous. CPUs are signalled, all execute the setup function 304 * (if specified), rendezvous, execute the action function (if specified), 305 * rendezvous again, execute the teardown function (if specified), and then 306 * resume. 307 * 308 * Note that the supplied external functions _must_ be reentrant and aware 309 * that they are running in parallel and in an unknown lock context. 310 */ 311 void 312 smp_rendezvous_action(void) 313 { 314 void* local_func_arg = smp_rv_func_arg; 315 void (*local_setup_func)(void*) = smp_rv_setup_func; 316 void (*local_action_func)(void*) = smp_rv_action_func; 317 void (*local_teardown_func)(void*) = smp_rv_teardown_func; 318 319 /* Ensure we have up-to-date values. */ 320 atomic_add_acq_int(&smp_rv_waiters[0], 1); 321 while (smp_rv_waiters[0] < smp_rv_ncpus) 322 cpu_spinwait(); 323 324 /* setup function */ 325 if (local_setup_func != smp_no_rendevous_barrier) { 326 if (smp_rv_setup_func != NULL) 327 smp_rv_setup_func(smp_rv_func_arg); 328 329 /* spin on entry rendezvous */ 330 atomic_add_int(&smp_rv_waiters[1], 1); 331 while (smp_rv_waiters[1] < smp_rv_ncpus) 332 cpu_spinwait(); 333 } 334 335 /* action function */ 336 if (local_action_func != NULL) 337 local_action_func(local_func_arg); 338 339 /* spin on exit rendezvous */ 340 atomic_add_int(&smp_rv_waiters[2], 1); 341 if (local_teardown_func == smp_no_rendevous_barrier) 342 return; 343 while (smp_rv_waiters[2] < smp_rv_ncpus) 344 cpu_spinwait(); 345 346 /* teardown function */ 347 if (local_teardown_func != NULL) 348 local_teardown_func(local_func_arg); 349 } 350 351 void 352 smp_rendezvous_cpus(cpumask_t map, 353 void (* setup_func)(void *), 354 void (* action_func)(void *), 355 void (* teardown_func)(void *), 356 void *arg) 357 { 358 int i, ncpus = 0; 359 360 if (!smp_started) { 361 if (setup_func != NULL) 362 setup_func(arg); 363 if (action_func != NULL) 364 action_func(arg); 365 if (teardown_func != NULL) 366 teardown_func(arg); 367 return; 368 } 369 370 CPU_FOREACH(i) { 371 if (((1 << i) & map) != 0) 372 ncpus++; 373 } 374 if (ncpus == 0) 375 panic("ncpus is 0 with map=0x%x", map); 376 377 /* obtain rendezvous lock */ 378 mtx_lock_spin(&smp_ipi_mtx); 379 380 /* set static function pointers */ 381 smp_rv_ncpus = ncpus; 382 smp_rv_setup_func = setup_func; 383 smp_rv_action_func = action_func; 384 smp_rv_teardown_func = teardown_func; 385 smp_rv_func_arg = arg; 386 smp_rv_waiters[1] = 0; 387 smp_rv_waiters[2] = 0; 388 atomic_store_rel_int(&smp_rv_waiters[0], 0); 389 390 /* signal other processors, which will enter the IPI with interrupts off */ 391 ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS); 392 393 /* Check if the current CPU is in the map */ 394 if ((map & (1 << curcpu)) != 0) 395 smp_rendezvous_action(); 396 397 if (teardown_func == smp_no_rendevous_barrier) 398 while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus) 399 cpu_spinwait(); 400 401 /* release lock */ 402 mtx_unlock_spin(&smp_ipi_mtx); 403 } 404 405 void 406 smp_rendezvous(void (* setup_func)(void *), 407 void (* action_func)(void *), 408 void (* teardown_func)(void *), 409 void *arg) 410 { 411 smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg); 412 } 413 414 static struct cpu_group group[MAXCPU]; 415 416 struct cpu_group * 417 smp_topo(void) 418 { 419 struct cpu_group *top; 420 421 /* 422 * Check for a fake topology request for debugging purposes. 423 */ 424 switch (smp_topology) { 425 case 1: 426 /* Dual core with no sharing. */ 427 top = smp_topo_1level(CG_SHARE_NONE, 2, 0); 428 break; 429 case 2: 430 /* No topology, all cpus are equal. */ 431 top = smp_topo_none(); 432 break; 433 case 3: 434 /* Dual core with shared L2. */ 435 top = smp_topo_1level(CG_SHARE_L2, 2, 0); 436 break; 437 case 4: 438 /* quad core, shared l3 among each package, private l2. */ 439 top = smp_topo_1level(CG_SHARE_L3, 4, 0); 440 break; 441 case 5: 442 /* quad core, 2 dualcore parts on each package share l2. */ 443 top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0); 444 break; 445 case 6: 446 /* Single-core 2xHTT */ 447 top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT); 448 break; 449 case 7: 450 /* quad core with a shared l3, 8 threads sharing L2. */ 451 top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8, 452 CG_FLAG_SMT); 453 break; 454 default: 455 /* Default, ask the system what it wants. */ 456 top = cpu_topo(); 457 break; 458 } 459 /* 460 * Verify the returned topology. 461 */ 462 if (top->cg_count != mp_ncpus) 463 panic("Built bad topology at %p. CPU count %d != %d", 464 top, top->cg_count, mp_ncpus); 465 if (top->cg_mask != all_cpus) 466 panic("Built bad topology at %p. CPU mask 0x%X != 0x%X", 467 top, top->cg_mask, all_cpus); 468 return (top); 469 } 470 471 struct cpu_group * 472 smp_topo_none(void) 473 { 474 struct cpu_group *top; 475 476 top = &group[0]; 477 top->cg_parent = NULL; 478 top->cg_child = NULL; 479 top->cg_mask = all_cpus; 480 top->cg_count = mp_ncpus; 481 top->cg_children = 0; 482 top->cg_level = CG_SHARE_NONE; 483 top->cg_flags = 0; 484 485 return (top); 486 } 487 488 static int 489 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share, 490 int count, int flags, int start) 491 { 492 cpumask_t mask; 493 int i; 494 495 for (mask = 0, i = 0; i < count; i++, start++) 496 mask |= (1 << start); 497 child->cg_parent = parent; 498 child->cg_child = NULL; 499 child->cg_children = 0; 500 child->cg_level = share; 501 child->cg_count = count; 502 child->cg_flags = flags; 503 child->cg_mask = mask; 504 parent->cg_children++; 505 for (; parent != NULL; parent = parent->cg_parent) { 506 if ((parent->cg_mask & child->cg_mask) != 0) 507 panic("Duplicate children in %p. mask 0x%X child 0x%X", 508 parent, parent->cg_mask, child->cg_mask); 509 parent->cg_mask |= child->cg_mask; 510 parent->cg_count += child->cg_count; 511 } 512 513 return (start); 514 } 515 516 struct cpu_group * 517 smp_topo_1level(int share, int count, int flags) 518 { 519 struct cpu_group *child; 520 struct cpu_group *top; 521 int packages; 522 int cpu; 523 int i; 524 525 cpu = 0; 526 top = &group[0]; 527 packages = mp_ncpus / count; 528 top->cg_child = child = &group[1]; 529 top->cg_level = CG_SHARE_NONE; 530 for (i = 0; i < packages; i++, child++) 531 cpu = smp_topo_addleaf(top, child, share, count, flags, cpu); 532 return (top); 533 } 534 535 struct cpu_group * 536 smp_topo_2level(int l2share, int l2count, int l1share, int l1count, 537 int l1flags) 538 { 539 struct cpu_group *top; 540 struct cpu_group *l1g; 541 struct cpu_group *l2g; 542 int cpu; 543 int i; 544 int j; 545 546 cpu = 0; 547 top = &group[0]; 548 l2g = &group[1]; 549 top->cg_child = l2g; 550 top->cg_level = CG_SHARE_NONE; 551 top->cg_children = mp_ncpus / (l2count * l1count); 552 l1g = l2g + top->cg_children; 553 for (i = 0; i < top->cg_children; i++, l2g++) { 554 l2g->cg_parent = top; 555 l2g->cg_child = l1g; 556 l2g->cg_level = l2share; 557 for (j = 0; j < l2count; j++, l1g++) 558 cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count, 559 l1flags, cpu); 560 } 561 return (top); 562 } 563 564 565 struct cpu_group * 566 smp_topo_find(struct cpu_group *top, int cpu) 567 { 568 struct cpu_group *cg; 569 cpumask_t mask; 570 int children; 571 int i; 572 573 mask = (1 << cpu); 574 cg = top; 575 for (;;) { 576 if ((cg->cg_mask & mask) == 0) 577 return (NULL); 578 if (cg->cg_children == 0) 579 return (cg); 580 children = cg->cg_children; 581 for (i = 0, cg = cg->cg_child; i < children; cg++, i++) 582 if ((cg->cg_mask & mask) != 0) 583 break; 584 } 585 return (NULL); 586 } 587 #else /* !SMP */ 588 589 void 590 smp_rendezvous_cpus(cpumask_t map, 591 void (*setup_func)(void *), 592 void (*action_func)(void *), 593 void (*teardown_func)(void *), 594 void *arg) 595 { 596 if (setup_func != NULL) 597 setup_func(arg); 598 if (action_func != NULL) 599 action_func(arg); 600 if (teardown_func != NULL) 601 teardown_func(arg); 602 } 603 604 void 605 smp_rendezvous(void (*setup_func)(void *), 606 void (*action_func)(void *), 607 void (*teardown_func)(void *), 608 void *arg) 609 { 610 611 if (setup_func != NULL) 612 setup_func(arg); 613 if (action_func != NULL) 614 action_func(arg); 615 if (teardown_func != NULL) 616 teardown_func(arg); 617 } 618 619 /* 620 * Provide dummy SMP support for UP kernels. Modules that need to use SMP 621 * APIs will still work using this dummy support. 622 */ 623 static void 624 mp_setvariables_for_up(void *dummy) 625 { 626 mp_ncpus = 1; 627 mp_maxid = PCPU_GET(cpuid); 628 all_cpus = PCPU_GET(cpumask); 629 KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero")); 630 } 631 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST, 632 mp_setvariables_for_up, NULL); 633 #endif /* SMP */ 634 635 void 636 smp_no_rendevous_barrier(void *dummy) 637 { 638 #ifdef SMP 639 KASSERT((!smp_started),("smp_no_rendevous called and smp is started")); 640 #endif 641 } 642