1 /*- 2 * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * This module holds the global variables and machine independent functions 29 * used for the kernel SMP support. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/ktr.h> 39 #include <sys/proc.h> 40 #include <sys/bus.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/pcpu.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/sysctl.h> 48 49 #include <machine/cpu.h> 50 #include <machine/smp.h> 51 52 #include "opt_sched.h" 53 54 #ifdef SMP 55 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data"); 56 57 volatile cpuset_t stopped_cpus; 58 volatile cpuset_t started_cpus; 59 volatile cpuset_t suspended_cpus; 60 cpuset_t hlt_cpus_mask; 61 cpuset_t logical_cpus_mask; 62 63 void (*cpustop_restartfunc)(void); 64 #endif 65 66 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS); 67 68 /* This is used in modules that need to work in both SMP and UP. */ 69 cpuset_t all_cpus; 70 71 int mp_ncpus; 72 /* export this for libkvm consumers. */ 73 int mp_maxcpus = MAXCPU; 74 75 volatile int smp_started; 76 u_int mp_maxid; 77 78 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL, 79 "Kernel SMP"); 80 81 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0, 82 "Max CPU ID."); 83 84 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus, 85 0, "Max number of CPUs that the system was compiled for."); 86 87 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD | CTLTYPE_INT, NULL, 0, 88 sysctl_kern_smp_active, "I", "Indicates system is running in SMP mode"); 89 90 int smp_disabled = 0; /* has smp been disabled? */ 91 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD, 92 &smp_disabled, 0, "SMP has been disabled from the loader"); 93 94 int smp_cpus = 1; /* how many cpu's running */ 95 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0, 96 "Number of CPUs online"); 97 98 int smp_topology = 0; /* Which topology we're using. */ 99 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0, 100 "Topology override setting; 0 is default provided by hardware."); 101 102 #ifdef SMP 103 /* Enable forwarding of a signal to a process running on a different CPU */ 104 static int forward_signal_enabled = 1; 105 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW, 106 &forward_signal_enabled, 0, 107 "Forwarding of a signal to a process on a different CPU"); 108 109 /* Variables needed for SMP rendezvous. */ 110 static volatile int smp_rv_ncpus; 111 static void (*volatile smp_rv_setup_func)(void *arg); 112 static void (*volatile smp_rv_action_func)(void *arg); 113 static void (*volatile smp_rv_teardown_func)(void *arg); 114 static void *volatile smp_rv_func_arg; 115 static volatile int smp_rv_waiters[4]; 116 117 /* 118 * Shared mutex to restrict busywaits between smp_rendezvous() and 119 * smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these 120 * functions trigger at once and cause multiple CPUs to busywait with 121 * interrupts disabled. 122 */ 123 struct mtx smp_ipi_mtx; 124 125 /* 126 * Let the MD SMP code initialize mp_maxid very early if it can. 127 */ 128 static void 129 mp_setmaxid(void *dummy) 130 { 131 132 cpu_mp_setmaxid(); 133 134 KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__)); 135 KASSERT(mp_ncpus > 1 || mp_maxid == 0, 136 ("%s: one CPU but mp_maxid is not zero", __func__)); 137 KASSERT(mp_maxid >= mp_ncpus - 1, 138 ("%s: counters out of sync: max %d, count %d", __func__, 139 mp_maxid, mp_ncpus)); 140 } 141 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL); 142 143 /* 144 * Call the MD SMP initialization code. 145 */ 146 static void 147 mp_start(void *dummy) 148 { 149 150 mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN); 151 152 /* Probe for MP hardware. */ 153 if (smp_disabled != 0 || cpu_mp_probe() == 0) { 154 mp_ncpus = 1; 155 CPU_SETOF(PCPU_GET(cpuid), &all_cpus); 156 return; 157 } 158 159 cpu_mp_start(); 160 printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n", 161 mp_ncpus); 162 cpu_mp_announce(); 163 } 164 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL); 165 166 void 167 forward_signal(struct thread *td) 168 { 169 int id; 170 171 /* 172 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on 173 * this thread, so all we need to do is poke it if it is currently 174 * executing so that it executes ast(). 175 */ 176 THREAD_LOCK_ASSERT(td, MA_OWNED); 177 KASSERT(TD_IS_RUNNING(td), 178 ("forward_signal: thread is not TDS_RUNNING")); 179 180 CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc); 181 182 if (!smp_started || cold || panicstr) 183 return; 184 if (!forward_signal_enabled) 185 return; 186 187 /* No need to IPI ourself. */ 188 if (td == curthread) 189 return; 190 191 id = td->td_oncpu; 192 if (id == NOCPU) 193 return; 194 ipi_cpu(id, IPI_AST); 195 } 196 197 /* 198 * When called the executing CPU will send an IPI to all other CPUs 199 * requesting that they halt execution. 200 * 201 * Usually (but not necessarily) called with 'other_cpus' as its arg. 202 * 203 * - Signals all CPUs in map to stop. 204 * - Waits for each to stop. 205 * 206 * Returns: 207 * -1: error 208 * 0: NA 209 * 1: ok 210 * 211 */ 212 #if defined(__amd64__) || defined(__i386__) 213 #define X86 1 214 #else 215 #define X86 0 216 #endif 217 static int 218 generic_stop_cpus(cpuset_t map, u_int type) 219 { 220 #ifdef KTR 221 char cpusetbuf[CPUSETBUFSIZ]; 222 #endif 223 static volatile u_int stopping_cpu = NOCPU; 224 int i; 225 volatile cpuset_t *cpus; 226 227 KASSERT( 228 type == IPI_STOP || type == IPI_STOP_HARD 229 #if X86 230 || type == IPI_SUSPEND 231 #endif 232 , ("%s: invalid stop type", __func__)); 233 234 if (!smp_started) 235 return (0); 236 237 CTR2(KTR_SMP, "stop_cpus(%s) with %u type", 238 cpusetobj_strprint(cpusetbuf, &map), type); 239 240 #if X86 241 /* 242 * When suspending, ensure there are are no IPIs in progress. 243 * IPIs that have been issued, but not yet delivered (e.g. 244 * not pending on a vCPU when running under virtualization) 245 * will be lost, violating FreeBSD's assumption of reliable 246 * IPI delivery. 247 */ 248 if (type == IPI_SUSPEND) 249 mtx_lock_spin(&smp_ipi_mtx); 250 #endif 251 252 #if X86 253 if (!nmi_is_broadcast || nmi_kdb_lock == 0) { 254 #endif 255 if (stopping_cpu != PCPU_GET(cpuid)) 256 while (atomic_cmpset_int(&stopping_cpu, NOCPU, 257 PCPU_GET(cpuid)) == 0) 258 while (stopping_cpu != NOCPU) 259 cpu_spinwait(); /* spin */ 260 261 /* send the stop IPI to all CPUs in map */ 262 ipi_selected(map, type); 263 #if X86 264 } 265 #endif 266 267 #if X86 268 if (type == IPI_SUSPEND) 269 cpus = &suspended_cpus; 270 else 271 #endif 272 cpus = &stopped_cpus; 273 274 i = 0; 275 while (!CPU_SUBSET(cpus, &map)) { 276 /* spin */ 277 cpu_spinwait(); 278 i++; 279 if (i == 100000000) { 280 printf("timeout stopping cpus\n"); 281 break; 282 } 283 } 284 285 #if X86 286 if (type == IPI_SUSPEND) 287 mtx_unlock_spin(&smp_ipi_mtx); 288 #endif 289 290 stopping_cpu = NOCPU; 291 return (1); 292 } 293 294 int 295 stop_cpus(cpuset_t map) 296 { 297 298 return (generic_stop_cpus(map, IPI_STOP)); 299 } 300 301 int 302 stop_cpus_hard(cpuset_t map) 303 { 304 305 return (generic_stop_cpus(map, IPI_STOP_HARD)); 306 } 307 308 #if X86 309 int 310 suspend_cpus(cpuset_t map) 311 { 312 313 return (generic_stop_cpus(map, IPI_SUSPEND)); 314 } 315 #endif 316 317 /* 318 * Called by a CPU to restart stopped CPUs. 319 * 320 * Usually (but not necessarily) called with 'stopped_cpus' as its arg. 321 * 322 * - Signals all CPUs in map to restart. 323 * - Waits for each to restart. 324 * 325 * Returns: 326 * -1: error 327 * 0: NA 328 * 1: ok 329 */ 330 static int 331 generic_restart_cpus(cpuset_t map, u_int type) 332 { 333 #ifdef KTR 334 char cpusetbuf[CPUSETBUFSIZ]; 335 #endif 336 volatile cpuset_t *cpus; 337 338 KASSERT(type == IPI_STOP || type == IPI_STOP_HARD 339 #if X86 340 || type == IPI_SUSPEND 341 #endif 342 , ("%s: invalid stop type", __func__)); 343 344 if (!smp_started) 345 return (0); 346 347 CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map)); 348 349 #if X86 350 if (type == IPI_SUSPEND) 351 cpus = &suspended_cpus; 352 else 353 #endif 354 cpus = &stopped_cpus; 355 356 /* signal other cpus to restart */ 357 CPU_COPY_STORE_REL(&map, &started_cpus); 358 359 #if X86 360 if (!nmi_is_broadcast || nmi_kdb_lock == 0) { 361 #endif 362 /* wait for each to clear its bit */ 363 while (CPU_OVERLAP(cpus, &map)) 364 cpu_spinwait(); 365 #if X86 366 } 367 #endif 368 369 return (1); 370 } 371 372 int 373 restart_cpus(cpuset_t map) 374 { 375 376 return (generic_restart_cpus(map, IPI_STOP)); 377 } 378 379 #if X86 380 int 381 resume_cpus(cpuset_t map) 382 { 383 384 return (generic_restart_cpus(map, IPI_SUSPEND)); 385 } 386 #endif 387 #undef X86 388 389 /* 390 * All-CPU rendezvous. CPUs are signalled, all execute the setup function 391 * (if specified), rendezvous, execute the action function (if specified), 392 * rendezvous again, execute the teardown function (if specified), and then 393 * resume. 394 * 395 * Note that the supplied external functions _must_ be reentrant and aware 396 * that they are running in parallel and in an unknown lock context. 397 */ 398 void 399 smp_rendezvous_action(void) 400 { 401 struct thread *td; 402 void *local_func_arg; 403 void (*local_setup_func)(void*); 404 void (*local_action_func)(void*); 405 void (*local_teardown_func)(void*); 406 #ifdef INVARIANTS 407 int owepreempt; 408 #endif 409 410 /* Ensure we have up-to-date values. */ 411 atomic_add_acq_int(&smp_rv_waiters[0], 1); 412 while (smp_rv_waiters[0] < smp_rv_ncpus) 413 cpu_spinwait(); 414 415 /* Fetch rendezvous parameters after acquire barrier. */ 416 local_func_arg = smp_rv_func_arg; 417 local_setup_func = smp_rv_setup_func; 418 local_action_func = smp_rv_action_func; 419 local_teardown_func = smp_rv_teardown_func; 420 421 /* 422 * Use a nested critical section to prevent any preemptions 423 * from occurring during a rendezvous action routine. 424 * Specifically, if a rendezvous handler is invoked via an IPI 425 * and the interrupted thread was in the critical_exit() 426 * function after setting td_critnest to 0 but before 427 * performing a deferred preemption, this routine can be 428 * invoked with td_critnest set to 0 and td_owepreempt true. 429 * In that case, a critical_exit() during the rendezvous 430 * action would trigger a preemption which is not permitted in 431 * a rendezvous action. To fix this, wrap all of the 432 * rendezvous action handlers in a critical section. We 433 * cannot use a regular critical section however as having 434 * critical_exit() preempt from this routine would also be 435 * problematic (the preemption must not occur before the IPI 436 * has been acknowledged via an EOI). Instead, we 437 * intentionally ignore td_owepreempt when leaving the 438 * critical section. This should be harmless because we do 439 * not permit rendezvous action routines to schedule threads, 440 * and thus td_owepreempt should never transition from 0 to 1 441 * during this routine. 442 */ 443 td = curthread; 444 td->td_critnest++; 445 #ifdef INVARIANTS 446 owepreempt = td->td_owepreempt; 447 #endif 448 449 /* 450 * If requested, run a setup function before the main action 451 * function. Ensure all CPUs have completed the setup 452 * function before moving on to the action function. 453 */ 454 if (local_setup_func != smp_no_rendezvous_barrier) { 455 if (smp_rv_setup_func != NULL) 456 smp_rv_setup_func(smp_rv_func_arg); 457 atomic_add_int(&smp_rv_waiters[1], 1); 458 while (smp_rv_waiters[1] < smp_rv_ncpus) 459 cpu_spinwait(); 460 } 461 462 if (local_action_func != NULL) 463 local_action_func(local_func_arg); 464 465 if (local_teardown_func != smp_no_rendezvous_barrier) { 466 /* 467 * Signal that the main action has been completed. If a 468 * full exit rendezvous is requested, then all CPUs will 469 * wait here until all CPUs have finished the main action. 470 */ 471 atomic_add_int(&smp_rv_waiters[2], 1); 472 while (smp_rv_waiters[2] < smp_rv_ncpus) 473 cpu_spinwait(); 474 475 if (local_teardown_func != NULL) 476 local_teardown_func(local_func_arg); 477 } 478 479 /* 480 * Signal that the rendezvous is fully completed by this CPU. 481 * This means that no member of smp_rv_* pseudo-structure will be 482 * accessed by this target CPU after this point; in particular, 483 * memory pointed by smp_rv_func_arg. 484 * 485 * The release semantic ensures that all accesses performed by 486 * the current CPU are visible when smp_rendezvous_cpus() 487 * returns, by synchronizing with the 488 * atomic_load_acq_int(&smp_rv_waiters[3]). 489 */ 490 atomic_add_rel_int(&smp_rv_waiters[3], 1); 491 492 td->td_critnest--; 493 KASSERT(owepreempt == td->td_owepreempt, 494 ("rendezvous action changed td_owepreempt")); 495 } 496 497 void 498 smp_rendezvous_cpus(cpuset_t map, 499 void (* setup_func)(void *), 500 void (* action_func)(void *), 501 void (* teardown_func)(void *), 502 void *arg) 503 { 504 int curcpumap, i, ncpus = 0; 505 506 /* Look comments in the !SMP case. */ 507 if (!smp_started) { 508 spinlock_enter(); 509 if (setup_func != NULL) 510 setup_func(arg); 511 if (action_func != NULL) 512 action_func(arg); 513 if (teardown_func != NULL) 514 teardown_func(arg); 515 spinlock_exit(); 516 return; 517 } 518 519 CPU_FOREACH(i) { 520 if (CPU_ISSET(i, &map)) 521 ncpus++; 522 } 523 if (ncpus == 0) 524 panic("ncpus is 0 with non-zero map"); 525 526 mtx_lock_spin(&smp_ipi_mtx); 527 528 /* Pass rendezvous parameters via global variables. */ 529 smp_rv_ncpus = ncpus; 530 smp_rv_setup_func = setup_func; 531 smp_rv_action_func = action_func; 532 smp_rv_teardown_func = teardown_func; 533 smp_rv_func_arg = arg; 534 smp_rv_waiters[1] = 0; 535 smp_rv_waiters[2] = 0; 536 smp_rv_waiters[3] = 0; 537 atomic_store_rel_int(&smp_rv_waiters[0], 0); 538 539 /* 540 * Signal other processors, which will enter the IPI with 541 * interrupts off. 542 */ 543 curcpumap = CPU_ISSET(curcpu, &map); 544 CPU_CLR(curcpu, &map); 545 ipi_selected(map, IPI_RENDEZVOUS); 546 547 /* Check if the current CPU is in the map */ 548 if (curcpumap != 0) 549 smp_rendezvous_action(); 550 551 /* 552 * Ensure that the master CPU waits for all the other 553 * CPUs to finish the rendezvous, so that smp_rv_* 554 * pseudo-structure and the arg are guaranteed to not 555 * be in use. 556 * 557 * Load acquire synchronizes with the release add in 558 * smp_rendezvous_action(), which ensures that our caller sees 559 * all memory actions done by the called functions on other 560 * CPUs. 561 */ 562 while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus) 563 cpu_spinwait(); 564 565 mtx_unlock_spin(&smp_ipi_mtx); 566 } 567 568 void 569 smp_rendezvous(void (* setup_func)(void *), 570 void (* action_func)(void *), 571 void (* teardown_func)(void *), 572 void *arg) 573 { 574 smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg); 575 } 576 577 static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1]; 578 579 struct cpu_group * 580 smp_topo(void) 581 { 582 char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ]; 583 struct cpu_group *top; 584 585 /* 586 * Check for a fake topology request for debugging purposes. 587 */ 588 switch (smp_topology) { 589 case 1: 590 /* Dual core with no sharing. */ 591 top = smp_topo_1level(CG_SHARE_NONE, 2, 0); 592 break; 593 case 2: 594 /* No topology, all cpus are equal. */ 595 top = smp_topo_none(); 596 break; 597 case 3: 598 /* Dual core with shared L2. */ 599 top = smp_topo_1level(CG_SHARE_L2, 2, 0); 600 break; 601 case 4: 602 /* quad core, shared l3 among each package, private l2. */ 603 top = smp_topo_1level(CG_SHARE_L3, 4, 0); 604 break; 605 case 5: 606 /* quad core, 2 dualcore parts on each package share l2. */ 607 top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0); 608 break; 609 case 6: 610 /* Single-core 2xHTT */ 611 top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT); 612 break; 613 case 7: 614 /* quad core with a shared l3, 8 threads sharing L2. */ 615 top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8, 616 CG_FLAG_SMT); 617 break; 618 default: 619 /* Default, ask the system what it wants. */ 620 top = cpu_topo(); 621 break; 622 } 623 /* 624 * Verify the returned topology. 625 */ 626 if (top->cg_count != mp_ncpus) 627 panic("Built bad topology at %p. CPU count %d != %d", 628 top, top->cg_count, mp_ncpus); 629 if (CPU_CMP(&top->cg_mask, &all_cpus)) 630 panic("Built bad topology at %p. CPU mask (%s) != (%s)", 631 top, cpusetobj_strprint(cpusetbuf, &top->cg_mask), 632 cpusetobj_strprint(cpusetbuf2, &all_cpus)); 633 634 /* 635 * Collapse nonsense levels that may be created out of convenience by 636 * the MD layers. They cause extra work in the search functions. 637 */ 638 while (top->cg_children == 1) { 639 top = &top->cg_child[0]; 640 top->cg_parent = NULL; 641 } 642 return (top); 643 } 644 645 struct cpu_group * 646 smp_topo_alloc(u_int count) 647 { 648 static u_int index; 649 u_int curr; 650 651 curr = index; 652 index += count; 653 return (&group[curr]); 654 } 655 656 struct cpu_group * 657 smp_topo_none(void) 658 { 659 struct cpu_group *top; 660 661 top = &group[0]; 662 top->cg_parent = NULL; 663 top->cg_child = NULL; 664 top->cg_mask = all_cpus; 665 top->cg_count = mp_ncpus; 666 top->cg_children = 0; 667 top->cg_level = CG_SHARE_NONE; 668 top->cg_flags = 0; 669 670 return (top); 671 } 672 673 static int 674 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share, 675 int count, int flags, int start) 676 { 677 char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ]; 678 cpuset_t mask; 679 int i; 680 681 CPU_ZERO(&mask); 682 for (i = 0; i < count; i++, start++) 683 CPU_SET(start, &mask); 684 child->cg_parent = parent; 685 child->cg_child = NULL; 686 child->cg_children = 0; 687 child->cg_level = share; 688 child->cg_count = count; 689 child->cg_flags = flags; 690 child->cg_mask = mask; 691 parent->cg_children++; 692 for (; parent != NULL; parent = parent->cg_parent) { 693 if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask)) 694 panic("Duplicate children in %p. mask (%s) child (%s)", 695 parent, 696 cpusetobj_strprint(cpusetbuf, &parent->cg_mask), 697 cpusetobj_strprint(cpusetbuf2, &child->cg_mask)); 698 CPU_OR(&parent->cg_mask, &child->cg_mask); 699 parent->cg_count += child->cg_count; 700 } 701 702 return (start); 703 } 704 705 struct cpu_group * 706 smp_topo_1level(int share, int count, int flags) 707 { 708 struct cpu_group *child; 709 struct cpu_group *top; 710 int packages; 711 int cpu; 712 int i; 713 714 cpu = 0; 715 top = &group[0]; 716 packages = mp_ncpus / count; 717 top->cg_child = child = &group[1]; 718 top->cg_level = CG_SHARE_NONE; 719 for (i = 0; i < packages; i++, child++) 720 cpu = smp_topo_addleaf(top, child, share, count, flags, cpu); 721 return (top); 722 } 723 724 struct cpu_group * 725 smp_topo_2level(int l2share, int l2count, int l1share, int l1count, 726 int l1flags) 727 { 728 struct cpu_group *top; 729 struct cpu_group *l1g; 730 struct cpu_group *l2g; 731 int cpu; 732 int i; 733 int j; 734 735 cpu = 0; 736 top = &group[0]; 737 l2g = &group[1]; 738 top->cg_child = l2g; 739 top->cg_level = CG_SHARE_NONE; 740 top->cg_children = mp_ncpus / (l2count * l1count); 741 l1g = l2g + top->cg_children; 742 for (i = 0; i < top->cg_children; i++, l2g++) { 743 l2g->cg_parent = top; 744 l2g->cg_child = l1g; 745 l2g->cg_level = l2share; 746 for (j = 0; j < l2count; j++, l1g++) 747 cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count, 748 l1flags, cpu); 749 } 750 return (top); 751 } 752 753 754 struct cpu_group * 755 smp_topo_find(struct cpu_group *top, int cpu) 756 { 757 struct cpu_group *cg; 758 cpuset_t mask; 759 int children; 760 int i; 761 762 CPU_SETOF(cpu, &mask); 763 cg = top; 764 for (;;) { 765 if (!CPU_OVERLAP(&cg->cg_mask, &mask)) 766 return (NULL); 767 if (cg->cg_children == 0) 768 return (cg); 769 children = cg->cg_children; 770 for (i = 0, cg = cg->cg_child; i < children; cg++, i++) 771 if (CPU_OVERLAP(&cg->cg_mask, &mask)) 772 break; 773 } 774 return (NULL); 775 } 776 #else /* !SMP */ 777 778 void 779 smp_rendezvous_cpus(cpuset_t map, 780 void (*setup_func)(void *), 781 void (*action_func)(void *), 782 void (*teardown_func)(void *), 783 void *arg) 784 { 785 /* 786 * In the !SMP case we just need to ensure the same initial conditions 787 * as the SMP case. 788 */ 789 spinlock_enter(); 790 if (setup_func != NULL) 791 setup_func(arg); 792 if (action_func != NULL) 793 action_func(arg); 794 if (teardown_func != NULL) 795 teardown_func(arg); 796 spinlock_exit(); 797 } 798 799 void 800 smp_rendezvous(void (*setup_func)(void *), 801 void (*action_func)(void *), 802 void (*teardown_func)(void *), 803 void *arg) 804 { 805 806 smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, 807 arg); 808 } 809 810 /* 811 * Provide dummy SMP support for UP kernels. Modules that need to use SMP 812 * APIs will still work using this dummy support. 813 */ 814 static void 815 mp_setvariables_for_up(void *dummy) 816 { 817 mp_ncpus = 1; 818 mp_maxid = PCPU_GET(cpuid); 819 CPU_SETOF(mp_maxid, &all_cpus); 820 KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero")); 821 } 822 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST, 823 mp_setvariables_for_up, NULL); 824 #endif /* SMP */ 825 826 void 827 smp_no_rendezvous_barrier(void *dummy) 828 { 829 #ifdef SMP 830 KASSERT((!smp_started),("smp_no_rendezvous called and smp is started")); 831 #endif 832 } 833 834 /* 835 * Wait for specified idle threads to switch once. This ensures that even 836 * preempted threads have cycled through the switch function once, 837 * exiting their codepaths. This allows us to change global pointers 838 * with no other synchronization. 839 */ 840 int 841 quiesce_cpus(cpuset_t map, const char *wmesg, int prio) 842 { 843 struct pcpu *pcpu; 844 u_int gen[MAXCPU]; 845 int error; 846 int cpu; 847 848 error = 0; 849 for (cpu = 0; cpu <= mp_maxid; cpu++) { 850 if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu)) 851 continue; 852 pcpu = pcpu_find(cpu); 853 gen[cpu] = pcpu->pc_idlethread->td_generation; 854 } 855 for (cpu = 0; cpu <= mp_maxid; cpu++) { 856 if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu)) 857 continue; 858 pcpu = pcpu_find(cpu); 859 thread_lock(curthread); 860 sched_bind(curthread, cpu); 861 thread_unlock(curthread); 862 while (gen[cpu] == pcpu->pc_idlethread->td_generation) { 863 error = tsleep(quiesce_cpus, prio, wmesg, 1); 864 if (error != EWOULDBLOCK) 865 goto out; 866 error = 0; 867 } 868 } 869 out: 870 thread_lock(curthread); 871 sched_unbind(curthread); 872 thread_unlock(curthread); 873 874 return (error); 875 } 876 877 int 878 quiesce_all_cpus(const char *wmesg, int prio) 879 { 880 881 return quiesce_cpus(all_cpus, wmesg, prio); 882 } 883 884 /* Extra care is taken with this sysctl because the data type is volatile */ 885 static int 886 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS) 887 { 888 int error, active; 889 890 active = smp_started; 891 error = SYSCTL_OUT(req, &active, sizeof(active)); 892 return (error); 893 } 894 895 896 #ifdef SMP 897 void 898 topo_init_node(struct topo_node *node) 899 { 900 901 bzero(node, sizeof(*node)); 902 TAILQ_INIT(&node->children); 903 } 904 905 void 906 topo_init_root(struct topo_node *root) 907 { 908 909 topo_init_node(root); 910 root->type = TOPO_TYPE_SYSTEM; 911 } 912 913 /* 914 * Add a child node with the given ID under the given parent. 915 * Do nothing if there is already a child with that ID. 916 */ 917 struct topo_node * 918 topo_add_node_by_hwid(struct topo_node *parent, int hwid, 919 topo_node_type type, uintptr_t subtype) 920 { 921 struct topo_node *node; 922 923 TAILQ_FOREACH_REVERSE(node, &parent->children, 924 topo_children, siblings) { 925 if (node->hwid == hwid 926 && node->type == type && node->subtype == subtype) { 927 return (node); 928 } 929 } 930 931 node = malloc(sizeof(*node), M_TOPO, M_WAITOK); 932 topo_init_node(node); 933 node->parent = parent; 934 node->hwid = hwid; 935 node->type = type; 936 node->subtype = subtype; 937 TAILQ_INSERT_TAIL(&parent->children, node, siblings); 938 parent->nchildren++; 939 940 return (node); 941 } 942 943 /* 944 * Find a child node with the given ID under the given parent. 945 */ 946 struct topo_node * 947 topo_find_node_by_hwid(struct topo_node *parent, int hwid, 948 topo_node_type type, uintptr_t subtype) 949 { 950 951 struct topo_node *node; 952 953 TAILQ_FOREACH(node, &parent->children, siblings) { 954 if (node->hwid == hwid 955 && node->type == type && node->subtype == subtype) { 956 return (node); 957 } 958 } 959 960 return (NULL); 961 } 962 963 /* 964 * Given a node change the order of its parent's child nodes such 965 * that the node becomes the firt child while preserving the cyclic 966 * order of the children. In other words, the given node is promoted 967 * by rotation. 968 */ 969 void 970 topo_promote_child(struct topo_node *child) 971 { 972 struct topo_node *next; 973 struct topo_node *node; 974 struct topo_node *parent; 975 976 parent = child->parent; 977 next = TAILQ_NEXT(child, siblings); 978 TAILQ_REMOVE(&parent->children, child, siblings); 979 TAILQ_INSERT_HEAD(&parent->children, child, siblings); 980 981 while (next != NULL) { 982 node = next; 983 next = TAILQ_NEXT(node, siblings); 984 TAILQ_REMOVE(&parent->children, node, siblings); 985 TAILQ_INSERT_AFTER(&parent->children, child, node, siblings); 986 child = node; 987 } 988 } 989 990 /* 991 * Iterate to the next node in the depth-first search (traversal) of 992 * the topology tree. 993 */ 994 struct topo_node * 995 topo_next_node(struct topo_node *top, struct topo_node *node) 996 { 997 struct topo_node *next; 998 999 if ((next = TAILQ_FIRST(&node->children)) != NULL) 1000 return (next); 1001 1002 if ((next = TAILQ_NEXT(node, siblings)) != NULL) 1003 return (next); 1004 1005 while (node != top && (node = node->parent) != top) 1006 if ((next = TAILQ_NEXT(node, siblings)) != NULL) 1007 return (next); 1008 1009 return (NULL); 1010 } 1011 1012 /* 1013 * Iterate to the next node in the depth-first search of the topology tree, 1014 * but without descending below the current node. 1015 */ 1016 struct topo_node * 1017 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node) 1018 { 1019 struct topo_node *next; 1020 1021 if ((next = TAILQ_NEXT(node, siblings)) != NULL) 1022 return (next); 1023 1024 while (node != top && (node = node->parent) != top) 1025 if ((next = TAILQ_NEXT(node, siblings)) != NULL) 1026 return (next); 1027 1028 return (NULL); 1029 } 1030 1031 /* 1032 * Assign the given ID to the given topology node that represents a logical 1033 * processor. 1034 */ 1035 void 1036 topo_set_pu_id(struct topo_node *node, cpuid_t id) 1037 { 1038 1039 KASSERT(node->type == TOPO_TYPE_PU, 1040 ("topo_set_pu_id: wrong node type: %u", node->type)); 1041 KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0, 1042 ("topo_set_pu_id: cpuset already not empty")); 1043 node->id = id; 1044 CPU_SET(id, &node->cpuset); 1045 node->cpu_count = 1; 1046 node->subtype = 1; 1047 1048 while ((node = node->parent) != NULL) { 1049 KASSERT(!CPU_ISSET(id, &node->cpuset), 1050 ("logical ID %u is already set in node %p", id, node)); 1051 CPU_SET(id, &node->cpuset); 1052 node->cpu_count++; 1053 } 1054 } 1055 1056 static struct topology_spec { 1057 topo_node_type type; 1058 bool match_subtype; 1059 uintptr_t subtype; 1060 } topology_level_table[TOPO_LEVEL_COUNT] = { 1061 [TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, }, 1062 [TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, }, 1063 [TOPO_LEVEL_CACHEGROUP] = { 1064 .type = TOPO_TYPE_CACHE, 1065 .match_subtype = true, 1066 .subtype = CG_SHARE_L3, 1067 }, 1068 [TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, }, 1069 [TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, }, 1070 }; 1071 1072 static bool 1073 topo_analyze_table(struct topo_node *root, int all, enum topo_level level, 1074 struct topo_analysis *results) 1075 { 1076 struct topology_spec *spec; 1077 struct topo_node *node; 1078 int count; 1079 1080 if (level >= TOPO_LEVEL_COUNT) 1081 return (true); 1082 1083 spec = &topology_level_table[level]; 1084 count = 0; 1085 node = topo_next_node(root, root); 1086 1087 while (node != NULL) { 1088 if (node->type != spec->type || 1089 (spec->match_subtype && node->subtype != spec->subtype)) { 1090 node = topo_next_node(root, node); 1091 continue; 1092 } 1093 if (!all && CPU_EMPTY(&node->cpuset)) { 1094 node = topo_next_nonchild_node(root, node); 1095 continue; 1096 } 1097 1098 count++; 1099 1100 if (!topo_analyze_table(node, all, level + 1, results)) 1101 return (false); 1102 1103 node = topo_next_nonchild_node(root, node); 1104 } 1105 1106 /* No explicit subgroups is essentially one subgroup. */ 1107 if (count == 0) { 1108 count = 1; 1109 1110 if (!topo_analyze_table(root, all, level + 1, results)) 1111 return (false); 1112 } 1113 1114 if (results->entities[level] == -1) 1115 results->entities[level] = count; 1116 else if (results->entities[level] != count) 1117 return (false); 1118 1119 return (true); 1120 } 1121 1122 /* 1123 * Check if the topology is uniform, that is, each package has the same number 1124 * of cores in it and each core has the same number of threads (logical 1125 * processors) in it. If so, calculate the number of packages, the number of 1126 * groups per package, the number of cachegroups per group, and the number of 1127 * logical processors per cachegroup. 'all' parameter tells whether to include 1128 * administratively disabled logical processors into the analysis. 1129 */ 1130 int 1131 topo_analyze(struct topo_node *topo_root, int all, 1132 struct topo_analysis *results) 1133 { 1134 1135 results->entities[TOPO_LEVEL_PKG] = -1; 1136 results->entities[TOPO_LEVEL_CORE] = -1; 1137 results->entities[TOPO_LEVEL_THREAD] = -1; 1138 results->entities[TOPO_LEVEL_GROUP] = -1; 1139 results->entities[TOPO_LEVEL_CACHEGROUP] = -1; 1140 1141 if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results)) 1142 return (0); 1143 1144 KASSERT(results->entities[TOPO_LEVEL_PKG] > 0, 1145 ("bug in topology or analysis")); 1146 1147 return (1); 1148 } 1149 1150 #endif /* SMP */ 1151 1152