xref: /freebsd/sys/kern/subr_smp.c (revision 0640d357f29fb1c0daaaffadd0416c5981413afd)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  *	$Id: mp_machdep.c,v 1.82 1998/10/10 09:38:02 kato Exp $
26  */
27 
28 #include "opt_smp.h"
29 #include "opt_vm86.h"
30 #include "opt_cpu.h"
31 #include "opt_user_ldt.h"
32 
33 #ifdef SMP
34 #include <machine/smptests.h>
35 #else
36 #error
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/sysctl.h>
44 #ifdef BETTER_CLOCK
45 #include <sys/dkstat.h>
46 #endif
47 
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_extern.h>
53 #ifdef BETTER_CLOCK
54 #include <sys/lock.h>
55 #include <vm/vm_map.h>
56 #include <sys/user.h>
57 #ifdef GPROF
58 #include <sys/gmon.h>
59 #endif
60 #endif
61 
62 #include <machine/smp.h>
63 #include <machine/apic.h>
64 #include <machine/mpapic.h>
65 #include <machine/segments.h>
66 #include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
67 #include <machine/tss.h>
68 #include <machine/specialreg.h>
69 #include <machine/cputypes.h>
70 #include <machine/globaldata.h>
71 
72 #include <i386/i386/cons.h>	/* cngetc() */
73 
74 #if defined(APIC_IO)
75 #include <machine/md_var.h>		/* setidt() */
76 #include <i386/isa/icu.h>		/* IPIs */
77 #include <i386/isa/intr_machdep.h>	/* IPIs */
78 #endif	/* APIC_IO */
79 
80 #if defined(TEST_DEFAULT_CONFIG)
81 #define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
82 #else
83 #define MPFPS_MPFB1	mpfps->mpfb1
84 #endif  /* TEST_DEFAULT_CONFIG */
85 
86 #define WARMBOOT_TARGET		0
87 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
88 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
89 
90 #ifdef PC98
91 #define BIOS_BASE		(0xe8000)
92 #define BIOS_SIZE		(0x18000)
93 #else
94 #define BIOS_BASE		(0xf0000)
95 #define BIOS_SIZE		(0x10000)
96 #endif
97 #define BIOS_COUNT		(BIOS_SIZE/4)
98 
99 #define CMOS_REG		(0x70)
100 #define CMOS_DATA		(0x71)
101 #define BIOS_RESET		(0x0f)
102 #define BIOS_WARM		(0x0a)
103 
104 #define PROCENTRY_FLAG_EN	0x01
105 #define PROCENTRY_FLAG_BP	0x02
106 #define IOAPICENTRY_FLAG_EN	0x01
107 
108 
109 /* MP Floating Pointer Structure */
110 typedef struct MPFPS {
111 	char    signature[4];
112 	void   *pap;
113 	u_char  length;
114 	u_char  spec_rev;
115 	u_char  checksum;
116 	u_char  mpfb1;
117 	u_char  mpfb2;
118 	u_char  mpfb3;
119 	u_char  mpfb4;
120 	u_char  mpfb5;
121 }      *mpfps_t;
122 
123 /* MP Configuration Table Header */
124 typedef struct MPCTH {
125 	char    signature[4];
126 	u_short base_table_length;
127 	u_char  spec_rev;
128 	u_char  checksum;
129 	u_char  oem_id[8];
130 	u_char  product_id[12];
131 	void   *oem_table_pointer;
132 	u_short oem_table_size;
133 	u_short entry_count;
134 	void   *apic_address;
135 	u_short extended_table_length;
136 	u_char  extended_table_checksum;
137 	u_char  reserved;
138 }      *mpcth_t;
139 
140 
141 typedef struct PROCENTRY {
142 	u_char  type;
143 	u_char  apic_id;
144 	u_char  apic_version;
145 	u_char  cpu_flags;
146 	u_long  cpu_signature;
147 	u_long  feature_flags;
148 	u_long  reserved1;
149 	u_long  reserved2;
150 }      *proc_entry_ptr;
151 
152 typedef struct BUSENTRY {
153 	u_char  type;
154 	u_char  bus_id;
155 	char    bus_type[6];
156 }      *bus_entry_ptr;
157 
158 typedef struct IOAPICENTRY {
159 	u_char  type;
160 	u_char  apic_id;
161 	u_char  apic_version;
162 	u_char  apic_flags;
163 	void   *apic_address;
164 }      *io_apic_entry_ptr;
165 
166 typedef struct INTENTRY {
167 	u_char  type;
168 	u_char  int_type;
169 	u_short int_flags;
170 	u_char  src_bus_id;
171 	u_char  src_bus_irq;
172 	u_char  dst_apic_id;
173 	u_char  dst_apic_int;
174 }      *int_entry_ptr;
175 
176 /* descriptions of MP basetable entries */
177 typedef struct BASETABLE_ENTRY {
178 	u_char  type;
179 	u_char  length;
180 	char    name[16];
181 }       basetable_entry;
182 
183 /*
184  * this code MUST be enabled here and in mpboot.s.
185  * it follows the very early stages of AP boot by placing values in CMOS ram.
186  * it NORMALLY will never be needed and thus the primitive method for enabling.
187  *
188 #define CHECK_POINTS
189  */
190 
191 #if defined(CHECK_POINTS) && !defined(PC98)
192 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
193 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
194 
195 #define CHECK_INIT(D);				\
196 	CHECK_WRITE(0x34, (D));			\
197 	CHECK_WRITE(0x35, (D));			\
198 	CHECK_WRITE(0x36, (D));			\
199 	CHECK_WRITE(0x37, (D));			\
200 	CHECK_WRITE(0x38, (D));			\
201 	CHECK_WRITE(0x39, (D));
202 
203 #define CHECK_PRINT(S);				\
204 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
205 	   (S),					\
206 	   CHECK_READ(0x34),			\
207 	   CHECK_READ(0x35),			\
208 	   CHECK_READ(0x36),			\
209 	   CHECK_READ(0x37),			\
210 	   CHECK_READ(0x38),			\
211 	   CHECK_READ(0x39));
212 
213 #else				/* CHECK_POINTS */
214 
215 #define CHECK_INIT(D)
216 #define CHECK_PRINT(S)
217 
218 #endif				/* CHECK_POINTS */
219 
220 /*
221  * Values to send to the POST hardware.
222  */
223 #define MP_BOOTADDRESS_POST	0x10
224 #define MP_PROBE_POST		0x11
225 #define MPTABLE_PASS1_POST	0x12
226 
227 #define MP_START_POST		0x13
228 #define MP_ENABLE_POST		0x14
229 #define MPTABLE_PASS2_POST	0x15
230 
231 #define START_ALL_APS_POST	0x16
232 #define INSTALL_AP_TRAMP_POST	0x17
233 #define START_AP_POST		0x18
234 
235 #define MP_ANNOUNCE_POST	0x19
236 
237 
238 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
239 int	current_postcode;
240 
241 /** XXX FIXME: what system files declare these??? */
242 extern struct region_descriptor r_gdt, r_idt;
243 
244 int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
245 int	mp_ncpus;		/* # of CPUs, including BSP */
246 int	mp_naps;		/* # of Applications processors */
247 int	mp_nbusses;		/* # of busses */
248 int	mp_napics;		/* # of IO APICs */
249 int	boot_cpu_id;		/* designated BSP */
250 vm_offset_t cpu_apic_address;
251 vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
252 extern	int nkpt;
253 
254 u_int32_t cpu_apic_versions[NCPU];
255 u_int32_t io_apic_versions[NAPIC];
256 
257 #ifdef APIC_INTR_DIAGNOSTIC
258 int apic_itrace_enter[32];
259 int apic_itrace_tryisrlock[32];
260 int apic_itrace_gotisrlock[32];
261 int apic_itrace_active[32];
262 int apic_itrace_masked[32];
263 int apic_itrace_noisrlock[32];
264 int apic_itrace_masked2[32];
265 int apic_itrace_unmask[32];
266 int apic_itrace_noforward[32];
267 int apic_itrace_leave[32];
268 int apic_itrace_enter2[32];
269 int apic_itrace_doreti[32];
270 int apic_itrace_splz[32];
271 int apic_itrace_eoi[32];
272 #ifdef APIC_INTR_DIAGNOSTIC_IRQ
273 unsigned short apic_itrace_debugbuffer[32768];
274 int apic_itrace_debugbuffer_idx;
275 struct simplelock apic_itrace_debuglock;
276 #endif
277 #endif
278 
279 #ifdef APIC_INTR_REORDER
280 struct {
281 	volatile int *location;
282 	int bit;
283 } apic_isrbit_location[32];
284 #endif
285 
286 struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
287 
288 /*
289  * APIC ID logical/physical mapping structures.
290  * We oversize these to simplify boot-time config.
291  */
292 int     cpu_num_to_apic_id[NAPICID];
293 int     io_num_to_apic_id[NAPICID];
294 int     apic_id_to_logical[NAPICID];
295 
296 
297 /* Bitmap of all available CPUs */
298 u_int	all_cpus;
299 
300 /* AP uses this PTD during bootstrap.  Do not staticize.  */
301 pd_entry_t *bootPTD;
302 
303 /* Hotwire a 0->4MB V==P mapping */
304 extern pt_entry_t *KPTphys;
305 
306 /* Virtual address of per-cpu common_tss */
307 extern struct i386tss common_tss;
308 #ifdef VM86
309 extern struct segment_descriptor common_tssd;
310 extern u_int private_tss;		/* flag indicating private tss */
311 extern u_int my_tr;
312 #endif /* VM86 */
313 
314 /* IdlePTD per cpu */
315 pd_entry_t *IdlePTDS[NCPU];
316 
317 /* "my" private page table page, for BSP init */
318 extern pt_entry_t SMP_prvpt[];
319 
320 /* Private page pointer to curcpu's PTD, used during BSP init */
321 extern pd_entry_t *my_idlePTD;
322 
323 struct pcb stoppcbs[NCPU];
324 
325 int smp_started;		/* has the system started? */
326 
327 /*
328  * Local data and functions.
329  */
330 
331 static int	mp_capable;
332 static u_int	boot_address;
333 static u_int	base_memory;
334 
335 static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
336 static mpfps_t	mpfps;
337 static int	search_for_sig(u_int32_t target, int count);
338 static void	mp_enable(u_int boot_addr);
339 
340 static int	mptable_pass1(void);
341 static int	mptable_pass2(void);
342 static void	default_mp_table(int type);
343 static void	fix_mp_table(void);
344 static void	setup_apic_irq_mapping(void);
345 static void	init_locks(void);
346 static int	start_all_aps(u_int boot_addr);
347 static void	install_ap_tramp(u_int boot_addr);
348 static int	start_ap(int logicalCpu, u_int boot_addr);
349 
350 /*
351  * Calculate usable address in base memory for AP trampoline code.
352  */
353 u_int
354 mp_bootaddress(u_int basemem)
355 {
356 	POSTCODE(MP_BOOTADDRESS_POST);
357 
358 	base_memory = basemem * 1024;	/* convert to bytes */
359 
360 	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
361 	if ((base_memory - boot_address) < bootMP_size)
362 		boot_address -= 4096;	/* not enough, lower by 4k */
363 
364 	return boot_address;
365 }
366 
367 
368 /*
369  * Look for an Intel MP spec table (ie, SMP capable hardware).
370  */
371 int
372 mp_probe(void)
373 {
374 	int     x;
375 	u_long  segment;
376 	u_int32_t target;
377 
378 	POSTCODE(MP_PROBE_POST);
379 
380 	/* see if EBDA exists */
381 	if (segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) {
382 		/* search first 1K of EBDA */
383 		target = (u_int32_t) (segment << 4);
384 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
385 			goto found;
386 	} else {
387 		/* last 1K of base memory, effective 'top of base' passed in */
388 		target = (u_int32_t) (base_memory - 0x400);
389 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
390 			goto found;
391 	}
392 
393 	/* search the BIOS */
394 	target = (u_int32_t) BIOS_BASE;
395 	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
396 		goto found;
397 
398 	/* nothing found */
399 	mpfps = (mpfps_t)0;
400 	mp_capable = 0;
401 	return 0;
402 
403 found:
404 	/* calculate needed resources */
405 	mpfps = (mpfps_t)x;
406 	if (mptable_pass1())
407 		panic("you must reconfigure your kernel");
408 
409 	/* flag fact that we are running multiple processors */
410 	mp_capable = 1;
411 	return 1;
412 }
413 
414 
415 /*
416  * Startup the SMP processors.
417  */
418 void
419 mp_start(void)
420 {
421 	POSTCODE(MP_START_POST);
422 
423 	/* look for MP capable motherboard */
424 	if (mp_capable)
425 		mp_enable(boot_address);
426 	else
427 		panic("MP hardware not found!");
428 }
429 
430 
431 /*
432  * Print various information about the SMP system hardware and setup.
433  */
434 void
435 mp_announce(void)
436 {
437 	int     x;
438 
439 	POSTCODE(MP_ANNOUNCE_POST);
440 
441 	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
442 	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
443 	printf(", version: 0x%08x", cpu_apic_versions[0]);
444 	printf(", at 0x%08x\n", cpu_apic_address);
445 	for (x = 1; x <= mp_naps; ++x) {
446 		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
447 		printf(", version: 0x%08x", cpu_apic_versions[x]);
448 		printf(", at 0x%08x\n", cpu_apic_address);
449 	}
450 
451 #if defined(APIC_IO)
452 	for (x = 0; x < mp_napics; ++x) {
453 		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
454 		printf(", version: 0x%08x", io_apic_versions[x]);
455 		printf(", at 0x%08x\n", io_apic_address[x]);
456 	}
457 #else
458 	printf(" Warning: APIC I/O disabled\n");
459 #endif	/* APIC_IO */
460 }
461 
462 /*
463  * AP cpu's call this to sync up protected mode.
464  */
465 void
466 init_secondary(void)
467 {
468 	int	gsel_tss;
469 #ifndef VM86
470 	u_int	my_tr;
471 #endif
472 
473 	r_gdt.rd_limit = sizeof(gdt[0]) * (NGDT + NCPU) - 1;
474 	r_gdt.rd_base = (int) gdt;
475 	lgdt(&r_gdt);			/* does magic intra-segment return */
476 	lidt(&r_idt);
477 	lldt(_default_ldt);
478 #ifdef USER_LDT
479 	currentldt = _default_ldt;
480 #endif
481 
482 	my_tr = NGDT + cpuid;
483 	gsel_tss = GSEL(my_tr, SEL_KPL);
484 	gdt[my_tr].sd.sd_type = SDT_SYS386TSS;
485 	common_tss.tss_esp0 = 0;	/* not used until after switch */
486 	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
487 	common_tss.tss_ioopt = (sizeof common_tss) << 16;
488 #ifdef VM86
489 	common_tssd = gdt[my_tr].sd;
490 	private_tss = 0;
491 #endif /* VM86 */
492 	ltr(gsel_tss);
493 
494 	load_cr0(0x8005003b);		/* XXX! */
495 
496 	PTD[0] = 0;
497 	pmap_set_opt((unsigned *)PTD);
498 
499 	putmtrr();
500 	pmap_setvidram();
501 
502 	invltlb();
503 }
504 
505 
506 #if defined(APIC_IO)
507 /*
508  * Final configuration of the BSP's local APIC:
509  *  - disable 'pic mode'.
510  *  - disable 'virtual wire mode'.
511  *  - enable NMI.
512  */
513 void
514 bsp_apic_configure(void)
515 {
516 	u_char		byte;
517 	u_int32_t	temp;
518 
519 	/* leave 'pic mode' if necessary */
520 	if (picmode) {
521 		outb(0x22, 0x70);	/* select IMCR */
522 		byte = inb(0x23);	/* current contents */
523 		byte |= 0x01;		/* mask external INTR */
524 		outb(0x23, byte);	/* disconnect 8259s/NMI */
525 	}
526 
527 	/* mask lint0 (the 8259 'virtual wire' connection) */
528 	temp = lapic.lvt_lint0;
529 	temp |= APIC_LVT_M;		/* set the mask */
530 	lapic.lvt_lint0 = temp;
531 
532         /* setup lint1 to handle NMI */
533         temp = lapic.lvt_lint1;
534         temp &= ~APIC_LVT_M;		/* clear the mask */
535         lapic.lvt_lint1 = temp;
536 
537 	if (bootverbose)
538 		apic_dump("bsp_apic_configure()");
539 }
540 #endif  /* APIC_IO */
541 
542 
543 /*******************************************************************
544  * local functions and data
545  */
546 
547 /*
548  * start the SMP system
549  */
550 static void
551 mp_enable(u_int boot_addr)
552 {
553 	int     x;
554 #if defined(APIC_IO)
555 	int     apic;
556 	u_int   ux;
557 #endif	/* APIC_IO */
558 
559 	getmtrr();
560 	pmap_setvidram();
561 
562 	POSTCODE(MP_ENABLE_POST);
563 
564 	/* turn on 4MB of V == P addressing so we can get to MP table */
565 	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
566 	invltlb();
567 
568 	/* examine the MP table for needed info, uses physical addresses */
569 	x = mptable_pass2();
570 
571 	*(int *)PTD = 0;
572 	invltlb();
573 
574 	/* can't process default configs till the CPU APIC is pmapped */
575 	if (x)
576 		default_mp_table(x);
577 
578 	/* post scan cleanup */
579 	fix_mp_table();
580 	setup_apic_irq_mapping();
581 
582 #if defined(APIC_IO)
583 
584 	/* fill the LOGICAL io_apic_versions table */
585 	for (apic = 0; apic < mp_napics; ++apic) {
586 		ux = io_apic_read(apic, IOAPIC_VER);
587 		io_apic_versions[apic] = ux;
588 	}
589 
590 	/* program each IO APIC in the system */
591 	for (apic = 0; apic < mp_napics; ++apic)
592 		if (io_apic_setup(apic) < 0)
593 			panic("IO APIC setup failure");
594 
595 	/* install a 'Spurious INTerrupt' vector */
596 	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
597 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
598 
599 	/* install an inter-CPU IPI for TLB invalidation */
600 	setidt(XINVLTLB_OFFSET, Xinvltlb,
601 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
602 
603 #ifdef BETTER_CLOCK
604 	/* install an inter-CPU IPI for reading processor state */
605 	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
606 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
607 #endif
608 
609 	/* install an inter-CPU IPI for forcing an additional software trap */
610 	setidt(XCPUAST_OFFSET, Xcpuast,
611 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
612 
613 	/* install an inter-CPU IPI for interrupt forwarding */
614 	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
615 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
616 
617 	/* install an inter-CPU IPI for CPU stop/restart */
618 	setidt(XCPUSTOP_OFFSET, Xcpustop,
619 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
620 
621 #if defined(TEST_TEST1)
622 	/* install a "fake hardware INTerrupt" vector */
623 	setidt(XTEST1_OFFSET, Xtest1,
624 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
625 #endif  /** TEST_TEST1 */
626 
627 #endif	/* APIC_IO */
628 
629 	/* initialize all SMP locks */
630 	init_locks();
631 
632 	/* start each Application Processor */
633 	start_all_aps(boot_addr);
634 
635 	/*
636 	 * The init process might be started on a different CPU now,
637 	 * and the boot CPU might not call prepare_usermode to get
638 	 * cr0 correctly configured. Thus we initialize cr0 here.
639 	 */
640 	load_cr0(rcr0() | CR0_WP | CR0_AM);
641 }
642 
643 
644 /*
645  * look for the MP spec signature
646  */
647 
648 /* string defined by the Intel MP Spec as identifying the MP table */
649 #define MP_SIG		0x5f504d5f	/* _MP_ */
650 #define NEXT(X)		((X) += 4)
651 static int
652 search_for_sig(u_int32_t target, int count)
653 {
654 	int     x;
655 	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
656 
657 	for (x = 0; x < count; NEXT(x))
658 		if (addr[x] == MP_SIG)
659 			/* make array index a byte index */
660 			return (target + (x * sizeof(u_int32_t)));
661 
662 	return -1;
663 }
664 
665 
666 static basetable_entry basetable_entry_types[] =
667 {
668 	{0, 20, "Processor"},
669 	{1, 8, "Bus"},
670 	{2, 8, "I/O APIC"},
671 	{3, 8, "I/O INT"},
672 	{4, 8, "Local INT"}
673 };
674 
675 typedef struct BUSDATA {
676 	u_char  bus_id;
677 	enum busTypes bus_type;
678 }       bus_datum;
679 
680 typedef struct INTDATA {
681 	u_char  int_type;
682 	u_short int_flags;
683 	u_char  src_bus_id;
684 	u_char  src_bus_irq;
685 	u_char  dst_apic_id;
686 	u_char  dst_apic_int;
687 	u_char	int_vector;
688 }       io_int, local_int;
689 
690 typedef struct BUSTYPENAME {
691 	u_char  type;
692 	char    name[7];
693 }       bus_type_name;
694 
695 static bus_type_name bus_type_table[] =
696 {
697 	{CBUS, "CBUS"},
698 	{CBUSII, "CBUSII"},
699 	{EISA, "EISA"},
700 	{UNKNOWN_BUSTYPE, "---"},
701 	{UNKNOWN_BUSTYPE, "---"},
702 	{ISA, "ISA"},
703 	{UNKNOWN_BUSTYPE, "---"},
704 	{UNKNOWN_BUSTYPE, "---"},
705 	{UNKNOWN_BUSTYPE, "---"},
706 	{UNKNOWN_BUSTYPE, "---"},
707 	{UNKNOWN_BUSTYPE, "---"},
708 	{UNKNOWN_BUSTYPE, "---"},
709 	{PCI, "PCI"},
710 	{UNKNOWN_BUSTYPE, "---"},
711 	{UNKNOWN_BUSTYPE, "---"},
712 	{UNKNOWN_BUSTYPE, "---"},
713 	{UNKNOWN_BUSTYPE, "---"},
714 	{XPRESS, "XPRESS"},
715 	{UNKNOWN_BUSTYPE, "---"}
716 };
717 /* from MP spec v1.4, table 5-1 */
718 static int default_data[7][5] =
719 {
720 /*   nbus, id0, type0, id1, type1 */
721 	{1, 0, ISA, 255, 255},
722 	{1, 0, EISA, 255, 255},
723 	{1, 0, EISA, 255, 255},
724 	{0, 255, 255, 255, 255},/* MCA not supported */
725 	{2, 0, ISA, 1, PCI},
726 	{2, 0, EISA, 1, PCI},
727 	{0, 255, 255, 255, 255}	/* MCA not supported */
728 };
729 
730 
731 /* the bus data */
732 static bus_datum bus_data[NBUS];
733 
734 /* the IO INT data, one entry per possible APIC INTerrupt */
735 static io_int  io_apic_ints[NINTR];
736 
737 static int nintrs;
738 
739 static int processor_entry	__P((proc_entry_ptr entry, int cpu));
740 static int bus_entry		__P((bus_entry_ptr entry, int bus));
741 static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
742 static int int_entry		__P((int_entry_ptr entry, int intr));
743 static int lookup_bus_type	__P((char *name));
744 
745 
746 /*
747  * 1st pass on motherboard's Intel MP specification table.
748  *
749  * initializes:
750  *	mp_ncpus = 1
751  *
752  * determines:
753  *	cpu_apic_address (common to all CPUs)
754  *	io_apic_address[N]
755  *	mp_naps
756  *	mp_nbusses
757  *	mp_napics
758  *	nintrs
759  */
760 static int
761 mptable_pass1(void)
762 {
763 	int	x;
764 	mpcth_t	cth;
765 	int	totalSize;
766 	void*	position;
767 	int	count;
768 	int	type;
769 	int	mustpanic;
770 
771 	POSTCODE(MPTABLE_PASS1_POST);
772 
773 	mustpanic = 0;
774 
775 	/* clear various tables */
776 	for (x = 0; x < NAPICID; ++x) {
777 		io_apic_address[x] = ~0;	/* IO APIC address table */
778 	}
779 
780 	/* init everything to empty */
781 	mp_naps = 0;
782 	mp_nbusses = 0;
783 	mp_napics = 0;
784 	nintrs = 0;
785 
786 	/* check for use of 'default' configuration */
787 	if (MPFPS_MPFB1 != 0) {
788 		/* use default addresses */
789 		cpu_apic_address = DEFAULT_APIC_BASE;
790 		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
791 
792 		/* fill in with defaults */
793 		mp_naps = 2;		/* includes BSP */
794 		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
795 #if defined(APIC_IO)
796 		mp_napics = 1;
797 		nintrs = 16;
798 #endif	/* APIC_IO */
799 	}
800 	else {
801 		if ((cth = mpfps->pap) == 0)
802 			panic("MP Configuration Table Header MISSING!");
803 
804 		cpu_apic_address = (vm_offset_t) cth->apic_address;
805 
806 		/* walk the table, recording info of interest */
807 		totalSize = cth->base_table_length - sizeof(struct MPCTH);
808 		position = (u_char *) cth + sizeof(struct MPCTH);
809 		count = cth->entry_count;
810 
811 		while (count--) {
812 			switch (type = *(u_char *) position) {
813 			case 0: /* processor_entry */
814 				if (((proc_entry_ptr)position)->cpu_flags
815 					& PROCENTRY_FLAG_EN)
816 					++mp_naps;
817 				break;
818 			case 1: /* bus_entry */
819 				++mp_nbusses;
820 				break;
821 			case 2: /* io_apic_entry */
822 				if (((io_apic_entry_ptr)position)->apic_flags
823 					& IOAPICENTRY_FLAG_EN)
824 					io_apic_address[mp_napics++] =
825 					    (vm_offset_t)((io_apic_entry_ptr)
826 						position)->apic_address;
827 				break;
828 			case 3: /* int_entry */
829 				++nintrs;
830 				break;
831 			case 4:	/* int_entry */
832 				break;
833 			default:
834 				panic("mpfps Base Table HOSED!");
835 				/* NOTREACHED */
836 			}
837 
838 			totalSize -= basetable_entry_types[type].length;
839 			(u_char*)position += basetable_entry_types[type].length;
840 		}
841 	}
842 
843 	/* qualify the numbers */
844 	if (mp_naps > NCPU)
845 #if 0 /* XXX FIXME: kern/4255 */
846 		printf("Warning: only using %d of %d available CPUs!\n",
847 			NCPU, mp_naps);
848 #else
849 	{
850 		printf("NCPU cannot be different than actual CPU count.\n");
851 		printf(" add 'options NCPU=%d' to your kernel config file,\n",
852 			mp_naps);
853 		printf(" then rerun config & rebuild your SMP kernel\n");
854 		mustpanic = 1;
855 	}
856 #endif /* XXX FIXME: kern/4255 */
857 	if (mp_nbusses > NBUS) {
858 		printf("found %d busses, increase NBUS\n", mp_nbusses);
859 		mustpanic = 1;
860 	}
861 	if (mp_napics > NAPIC) {
862 		printf("found %d apics, increase NAPIC\n", mp_napics);
863 		mustpanic = 1;
864 	}
865 	if (nintrs > NINTR) {
866 		printf("found %d intrs, increase NINTR\n", nintrs);
867 		mustpanic = 1;
868 	}
869 
870 	/*
871 	 * Count the BSP.
872 	 * This is also used as a counter while starting the APs.
873 	 */
874 	mp_ncpus = 1;
875 
876 	--mp_naps;	/* subtract the BSP */
877 
878 	return mustpanic;
879 }
880 
881 
882 /*
883  * 2nd pass on motherboard's Intel MP specification table.
884  *
885  * sets:
886  *	boot_cpu_id
887  *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
888  *	CPU_TO_ID(N), logical CPU to APIC ID table
889  *	IO_TO_ID(N), logical IO to APIC ID table
890  *	bus_data[N]
891  *	io_apic_ints[N]
892  */
893 static int
894 mptable_pass2(void)
895 {
896 	int     x;
897 	mpcth_t cth;
898 	int     totalSize;
899 	void*   position;
900 	int     count;
901 	int     type;
902 	int     apic, bus, cpu, intr;
903 
904 	POSTCODE(MPTABLE_PASS2_POST);
905 
906 	/* clear various tables */
907 	for (x = 0; x < NAPICID; ++x) {
908 		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
909 		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
910 		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
911 	}
912 
913 	/* clear bus data table */
914 	for (x = 0; x < NBUS; ++x)
915 		bus_data[x].bus_id = 0xff;
916 
917 	/* clear IO APIC INT table */
918 	for (x = 0; x < NINTR; ++x) {
919 		io_apic_ints[x].int_type = 0xff;
920 		io_apic_ints[x].int_vector = 0xff;
921 	}
922 
923 	/* setup the cpu/apic mapping arrays */
924 	boot_cpu_id = -1;
925 
926 	/* record whether PIC or virtual-wire mode */
927 	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
928 
929 	/* check for use of 'default' configuration */
930 	if (MPFPS_MPFB1 != 0)
931 		return MPFPS_MPFB1;	/* return default configuration type */
932 
933 	if ((cth = mpfps->pap) == 0)
934 		panic("MP Configuration Table Header MISSING!");
935 
936 	/* walk the table, recording info of interest */
937 	totalSize = cth->base_table_length - sizeof(struct MPCTH);
938 	position = (u_char *) cth + sizeof(struct MPCTH);
939 	count = cth->entry_count;
940 	apic = bus = intr = 0;
941 	cpu = 1;				/* pre-count the BSP */
942 
943 	while (count--) {
944 		switch (type = *(u_char *) position) {
945 		case 0:
946 			if (processor_entry(position, cpu))
947 				++cpu;
948 			break;
949 		case 1:
950 			if (bus_entry(position, bus))
951 				++bus;
952 			break;
953 		case 2:
954 			if (io_apic_entry(position, apic))
955 				++apic;
956 			break;
957 		case 3:
958 			if (int_entry(position, intr))
959 				++intr;
960 			break;
961 		case 4:
962 			/* int_entry(position); */
963 			break;
964 		default:
965 			panic("mpfps Base Table HOSED!");
966 			/* NOTREACHED */
967 		}
968 
969 		totalSize -= basetable_entry_types[type].length;
970 		(u_char *) position += basetable_entry_types[type].length;
971 	}
972 
973 	if (boot_cpu_id == -1)
974 		panic("NO BSP found!");
975 
976 	/* report fact that its NOT a default configuration */
977 	return 0;
978 }
979 
980 
981 static void
982 assign_apic_irq(int apic, int intpin, int irq)
983 {
984 	int x;
985 
986 	if (int_to_apicintpin[irq].ioapic != -1)
987 		panic("assign_apic_irq: inconsistent table");
988 
989 	int_to_apicintpin[irq].ioapic = apic;
990 	int_to_apicintpin[irq].int_pin = intpin;
991 	int_to_apicintpin[irq].apic_address = ioapic[apic];
992 	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
993 
994 	for (x = 0; x < nintrs; x++) {
995 		if ((io_apic_ints[x].int_type == 0 ||
996 		     io_apic_ints[x].int_type == 3) &&
997 		    io_apic_ints[x].int_vector == 0xff &&
998 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
999 		    io_apic_ints[x].dst_apic_int == intpin)
1000 			io_apic_ints[x].int_vector = irq;
1001 	}
1002 }
1003 
1004 /*
1005  * parse an Intel MP specification table
1006  */
1007 static void
1008 fix_mp_table(void)
1009 {
1010 	int	x;
1011 	int	id;
1012 	int	bus_0;
1013 	int	bus_pci;
1014 	int	num_pci_bus;
1015 
1016 	/*
1017 	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1018 	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1019 	 * exists the BIOS must begin with bus entries for the PCI bus and use
1020 	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1021 	 * exists the BIOS can choose to ignore this ordering, and indeed many
1022 	 * MP motherboards do ignore it.  This causes a problem when the PCI
1023 	 * sub-system makes requests of the MP sub-system based on PCI bus
1024 	 * numbers.	So here we look for the situation and renumber the
1025 	 * busses and associated INTs in an effort to "make it right".
1026 	 */
1027 
1028 	/* find bus 0, PCI bus, count the number of PCI busses */
1029 	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1030 		if (bus_data[x].bus_id == 0) {
1031 			bus_0 = x;
1032 		}
1033 		if (bus_data[x].bus_type == PCI) {
1034 			++num_pci_bus;
1035 			bus_pci = x;
1036 		}
1037 	}
1038 	/*
1039 	 * bus_0 == slot of bus with ID of 0
1040 	 * bus_pci == slot of last PCI bus encountered
1041 	 */
1042 
1043 	/* check the 1 PCI bus case for sanity */
1044 	if (num_pci_bus == 1) {
1045 
1046 		/* if it is number 0 all is well */
1047 		if (bus_data[bus_pci].bus_id == 0)
1048 			return;
1049 
1050 		/* mis-numbered, swap with whichever bus uses slot 0 */
1051 
1052 		/* swap the bus entry types */
1053 		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1054 		bus_data[bus_0].bus_type = PCI;
1055 
1056 		/* swap each relavant INTerrupt entry */
1057 		id = bus_data[bus_pci].bus_id;
1058 		for (x = 0; x < nintrs; ++x) {
1059 			if (io_apic_ints[x].src_bus_id == id) {
1060 				io_apic_ints[x].src_bus_id = 0;
1061 			}
1062 			else if (io_apic_ints[x].src_bus_id == 0) {
1063 				io_apic_ints[x].src_bus_id = id;
1064 			}
1065 		}
1066 	}
1067 	/* sanity check if more than 1 PCI bus */
1068 	else if (num_pci_bus > 1) {
1069 		for (x = 0; x < mp_nbusses; ++x) {
1070 			if (bus_data[x].bus_type != PCI)
1071 				continue;
1072 			if (bus_data[x].bus_id >= num_pci_bus)
1073 				panic("bad PCI bus numbering");
1074 		}
1075 	}
1076 }
1077 
1078 
1079 static void
1080 setup_apic_irq_mapping(void)
1081 {
1082 	int	x;
1083 	int	int_vector;
1084 
1085 	/* Assign low level interrupt handlers */
1086 	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1087 		int_to_apicintpin[x].ioapic = -1;
1088 		int_to_apicintpin[x].int_pin = 0;
1089 		int_to_apicintpin[x].apic_address = NULL;
1090 		int_to_apicintpin[x].redirindex = 0;
1091 	}
1092 	for (x = 0; x < nintrs; x++) {
1093 		if (io_apic_ints[x].dst_apic_int <= APIC_INTMAPSIZE &&
1094 		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1095 		    io_apic_ints[x].int_vector == 0xff &&
1096 		    (io_apic_ints[x].int_type == 0 ||
1097 		     io_apic_ints[x].int_type == 3)) {
1098 			assign_apic_irq(0,
1099 					io_apic_ints[x].dst_apic_int,
1100 					io_apic_ints[x].dst_apic_int);
1101 		}
1102 	}
1103 	int_vector = 0;
1104 	while (int_vector < APIC_INTMAPSIZE &&
1105 	       int_to_apicintpin[int_vector].ioapic != -1)
1106 		int_vector++;
1107 	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1108 		if ((io_apic_ints[x].int_type == 0 ||
1109 		     io_apic_ints[x].int_type == 3) &&
1110 		    io_apic_ints[x].int_vector == 0xff) {
1111 			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1112 					io_apic_ints[x].dst_apic_int,
1113 					int_vector);
1114 			int_vector++;
1115 			while (int_vector < APIC_INTMAPSIZE &&
1116 			       int_to_apicintpin[int_vector].ioapic != -1)
1117 				int_vector++;
1118 		}
1119 	}
1120 }
1121 
1122 
1123 static int
1124 processor_entry(proc_entry_ptr entry, int cpu)
1125 {
1126 	/* check for usability */
1127 	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
1128 		return 0;
1129 
1130 	/* check for BSP flag */
1131 	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1132 		boot_cpu_id = entry->apic_id;
1133 		CPU_TO_ID(0) = entry->apic_id;
1134 		ID_TO_CPU(entry->apic_id) = 0;
1135 		return 0;	/* its already been counted */
1136 	}
1137 
1138 	/* add another AP to list, if less than max number of CPUs */
1139 	else {
1140 		CPU_TO_ID(cpu) = entry->apic_id;
1141 		ID_TO_CPU(entry->apic_id) = cpu;
1142 		return 1;
1143 	}
1144 }
1145 
1146 
1147 static int
1148 bus_entry(bus_entry_ptr entry, int bus)
1149 {
1150 	int     x;
1151 	char    c, name[8];
1152 
1153 	/* encode the name into an index */
1154 	for (x = 0; x < 6; ++x) {
1155 		if ((c = entry->bus_type[x]) == ' ')
1156 			break;
1157 		name[x] = c;
1158 	}
1159 	name[x] = '\0';
1160 
1161 	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1162 		panic("unknown bus type: '%s'", name);
1163 
1164 	bus_data[bus].bus_id = entry->bus_id;
1165 	bus_data[bus].bus_type = x;
1166 
1167 	return 1;
1168 }
1169 
1170 
1171 static int
1172 io_apic_entry(io_apic_entry_ptr entry, int apic)
1173 {
1174 	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1175 		return 0;
1176 
1177 	IO_TO_ID(apic) = entry->apic_id;
1178 	ID_TO_IO(entry->apic_id) = apic;
1179 
1180 	return 1;
1181 }
1182 
1183 
1184 static int
1185 lookup_bus_type(char *name)
1186 {
1187 	int     x;
1188 
1189 	for (x = 0; x < MAX_BUSTYPE; ++x)
1190 		if (strcmp(bus_type_table[x].name, name) == 0)
1191 			return bus_type_table[x].type;
1192 
1193 	return UNKNOWN_BUSTYPE;
1194 }
1195 
1196 
1197 static int
1198 int_entry(int_entry_ptr entry, int intr)
1199 {
1200 	io_apic_ints[intr].int_type = entry->int_type;
1201 	io_apic_ints[intr].int_flags = entry->int_flags;
1202 	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1203 	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1204 	io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1205 	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1206 
1207 	return 1;
1208 }
1209 
1210 
1211 static int
1212 apic_int_is_bus_type(int intr, int bus_type)
1213 {
1214 	int     bus;
1215 
1216 	for (bus = 0; bus < mp_nbusses; ++bus)
1217 		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1218 		    && ((int) bus_data[bus].bus_type == bus_type))
1219 			return 1;
1220 
1221 	return 0;
1222 }
1223 
1224 
1225 /*
1226  * Given a traditional ISA INT mask, return an APIC mask.
1227  */
1228 u_int
1229 isa_apic_mask(u_int isa_mask)
1230 {
1231 	int isa_irq;
1232 	int apic_pin;
1233 
1234 #if defined(SKIP_IRQ15_REDIRECT)
1235 	if (isa_mask == (1 << 15)) {
1236 		printf("skipping ISA IRQ15 redirect\n");
1237 		return isa_mask;
1238 	}
1239 #endif  /* SKIP_IRQ15_REDIRECT */
1240 
1241 	isa_irq = ffs(isa_mask);		/* find its bit position */
1242 	if (isa_irq == 0)			/* doesn't exist */
1243 		return 0;
1244 	--isa_irq;				/* make it zero based */
1245 
1246 	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1247 	if (apic_pin == -1)
1248 		return 0;
1249 
1250 	return (1 << apic_pin);			/* convert pin# to a mask */
1251 }
1252 
1253 
1254 /*
1255  * Determine which APIC pin an ISA/EISA INT is attached to.
1256  */
1257 #define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1258 #define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1259 #define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1260 #define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1261 
1262 #define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1263 int
1264 isa_apic_irq(int isa_irq)
1265 {
1266 	int     intr;
1267 
1268 	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1269 		if (INTTYPE(intr) == 0) {		/* standard INT */
1270 			if (SRCBUSIRQ(intr) == isa_irq) {
1271 				if (apic_int_is_bus_type(intr, ISA) ||
1272 			            apic_int_is_bus_type(intr, EISA))
1273 					return INTIRQ(intr);	/* found */
1274 			}
1275 		}
1276 	}
1277 	return -1;					/* NOT found */
1278 }
1279 
1280 
1281 /*
1282  * Determine which APIC pin a PCI INT is attached to.
1283  */
1284 #define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1285 #define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1286 #define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1287 int
1288 pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1289 {
1290 	int     intr;
1291 
1292 	--pciInt;					/* zero based */
1293 
1294 	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1295 		if ((INTTYPE(intr) == 0)		/* standard INT */
1296 		    && (SRCBUSID(intr) == pciBus)
1297 		    && (SRCBUSDEVICE(intr) == pciDevice)
1298 		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1299 			if (apic_int_is_bus_type(intr, PCI))
1300 				return INTIRQ(intr);	/* exact match */
1301 
1302 	return -1;					/* NOT found */
1303 }
1304 
1305 int
1306 next_apic_irq(int irq)
1307 {
1308 	int intr, ointr;
1309 	int bus, bustype;
1310 
1311 	bus = 0;
1312 	bustype = 0;
1313 	for (intr = 0; intr < nintrs; intr++) {
1314 		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1315 			continue;
1316 		bus = SRCBUSID(intr);
1317 		bustype = apic_bus_type(bus);
1318 		if (bustype != ISA &&
1319 		    bustype != EISA &&
1320 		    bustype != PCI)
1321 			continue;
1322 		break;
1323 	}
1324 	if (intr >= nintrs) {
1325 		return -1;
1326 	}
1327 	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1328 		if (INTTYPE(ointr) != 0)
1329 			continue;
1330 		if (bus != SRCBUSID(ointr))
1331 			continue;
1332 		if (bustype == PCI) {
1333 			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1334 				continue;
1335 			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1336 				continue;
1337 		}
1338 		if (bustype == ISA || bustype == EISA) {
1339 			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1340 				continue;
1341 		}
1342 		if (INTPIN(intr) == INTPIN(ointr))
1343 			continue;
1344 		break;
1345 	}
1346 	if (ointr >= nintrs) {
1347 		return -1;
1348 	}
1349 	return INTIRQ(ointr);
1350 }
1351 #undef SRCBUSLINE
1352 #undef SRCBUSDEVICE
1353 #undef SRCBUSID
1354 #undef SRCBUSIRQ
1355 
1356 #undef INTPIN
1357 #undef INTIRQ
1358 #undef INTAPIC
1359 #undef INTTYPE
1360 
1361 
1362 /*
1363  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1364  *
1365  * XXX FIXME:
1366  *  Exactly what this means is unclear at this point.  It is a solution
1367  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1368  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1369  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1370  *  option.
1371  */
1372 int
1373 undirect_isa_irq(int rirq)
1374 {
1375 #if defined(READY)
1376 	printf("Freeing redirected ISA irq %d.\n", rirq);
1377 	/** FIXME: tickle the MB redirector chip */
1378 	return ???;
1379 #else
1380 	printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1381 	return 0;
1382 #endif  /* READY */
1383 }
1384 
1385 
1386 /*
1387  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1388  */
1389 int
1390 undirect_pci_irq(int rirq)
1391 {
1392 #if defined(READY)
1393 	if (bootverbose)
1394 		printf("Freeing redirected PCI irq %d.\n", rirq);
1395 
1396 	/** FIXME: tickle the MB redirector chip */
1397 	return ???;
1398 #else
1399 	if (bootverbose)
1400 		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1401 		       rirq);
1402 	return 0;
1403 #endif  /* READY */
1404 }
1405 
1406 
1407 /*
1408  * given a bus ID, return:
1409  *  the bus type if found
1410  *  -1 if NOT found
1411  */
1412 int
1413 apic_bus_type(int id)
1414 {
1415 	int     x;
1416 
1417 	for (x = 0; x < mp_nbusses; ++x)
1418 		if (bus_data[x].bus_id == id)
1419 			return bus_data[x].bus_type;
1420 
1421 	return -1;
1422 }
1423 
1424 
1425 /*
1426  * given a LOGICAL APIC# and pin#, return:
1427  *  the associated src bus ID if found
1428  *  -1 if NOT found
1429  */
1430 int
1431 apic_src_bus_id(int apic, int pin)
1432 {
1433 	int     x;
1434 
1435 	/* search each of the possible INTerrupt sources */
1436 	for (x = 0; x < nintrs; ++x)
1437 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1438 		    (pin == io_apic_ints[x].dst_apic_int))
1439 			return (io_apic_ints[x].src_bus_id);
1440 
1441 	return -1;		/* NOT found */
1442 }
1443 
1444 
1445 /*
1446  * given a LOGICAL APIC# and pin#, return:
1447  *  the associated src bus IRQ if found
1448  *  -1 if NOT found
1449  */
1450 int
1451 apic_src_bus_irq(int apic, int pin)
1452 {
1453 	int     x;
1454 
1455 	for (x = 0; x < nintrs; x++)
1456 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1457 		    (pin == io_apic_ints[x].dst_apic_int))
1458 			return (io_apic_ints[x].src_bus_irq);
1459 
1460 	return -1;		/* NOT found */
1461 }
1462 
1463 
1464 /*
1465  * given a LOGICAL APIC# and pin#, return:
1466  *  the associated INTerrupt type if found
1467  *  -1 if NOT found
1468  */
1469 int
1470 apic_int_type(int apic, int pin)
1471 {
1472 	int     x;
1473 
1474 	/* search each of the possible INTerrupt sources */
1475 	for (x = 0; x < nintrs; ++x)
1476 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1477 		    (pin == io_apic_ints[x].dst_apic_int))
1478 			return (io_apic_ints[x].int_type);
1479 
1480 	return -1;		/* NOT found */
1481 }
1482 
1483 int
1484 apic_irq(int apic, int pin)
1485 {
1486 	int x;
1487 	int res;
1488 
1489 	for (x = 0; x < nintrs; ++x)
1490 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1491 		    (pin == io_apic_ints[x].dst_apic_int)) {
1492 			res = io_apic_ints[x].int_vector;
1493 			if (res == 0xff)
1494 				return -1;
1495 			if (apic != int_to_apicintpin[res].ioapic)
1496 				panic("apic_irq: inconsistent table");
1497 			if (pin != int_to_apicintpin[res].int_pin)
1498 				panic("apic_irq inconsistent table (2)");
1499 			return res;
1500 		}
1501 	return -1;
1502 }
1503 
1504 
1505 /*
1506  * given a LOGICAL APIC# and pin#, return:
1507  *  the associated trigger mode if found
1508  *  -1 if NOT found
1509  */
1510 int
1511 apic_trigger(int apic, int pin)
1512 {
1513 	int     x;
1514 
1515 	/* search each of the possible INTerrupt sources */
1516 	for (x = 0; x < nintrs; ++x)
1517 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1518 		    (pin == io_apic_ints[x].dst_apic_int))
1519 			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1520 
1521 	return -1;		/* NOT found */
1522 }
1523 
1524 
1525 /*
1526  * given a LOGICAL APIC# and pin#, return:
1527  *  the associated 'active' level if found
1528  *  -1 if NOT found
1529  */
1530 int
1531 apic_polarity(int apic, int pin)
1532 {
1533 	int     x;
1534 
1535 	/* search each of the possible INTerrupt sources */
1536 	for (x = 0; x < nintrs; ++x)
1537 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1538 		    (pin == io_apic_ints[x].dst_apic_int))
1539 			return (io_apic_ints[x].int_flags & 0x03);
1540 
1541 	return -1;		/* NOT found */
1542 }
1543 
1544 
1545 /*
1546  * set data according to MP defaults
1547  * FIXME: probably not complete yet...
1548  */
1549 static void
1550 default_mp_table(int type)
1551 {
1552 	int     ap_cpu_id;
1553 #if defined(APIC_IO)
1554 	u_int32_t ux;
1555 	int     io_apic_id;
1556 	int     pin;
1557 #endif	/* APIC_IO */
1558 
1559 #if 0
1560 	printf("  MP default config type: %d\n", type);
1561 	switch (type) {
1562 	case 1:
1563 		printf("   bus: ISA, APIC: 82489DX\n");
1564 		break;
1565 	case 2:
1566 		printf("   bus: EISA, APIC: 82489DX\n");
1567 		break;
1568 	case 3:
1569 		printf("   bus: EISA, APIC: 82489DX\n");
1570 		break;
1571 	case 4:
1572 		printf("   bus: MCA, APIC: 82489DX\n");
1573 		break;
1574 	case 5:
1575 		printf("   bus: ISA+PCI, APIC: Integrated\n");
1576 		break;
1577 	case 6:
1578 		printf("   bus: EISA+PCI, APIC: Integrated\n");
1579 		break;
1580 	case 7:
1581 		printf("   bus: MCA+PCI, APIC: Integrated\n");
1582 		break;
1583 	default:
1584 		printf("   future type\n");
1585 		break;
1586 		/* NOTREACHED */
1587 	}
1588 #endif	/* 0 */
1589 
1590 	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1591 	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1592 
1593 	/* BSP */
1594 	CPU_TO_ID(0) = boot_cpu_id;
1595 	ID_TO_CPU(boot_cpu_id) = 0;
1596 
1597 	/* one and only AP */
1598 	CPU_TO_ID(1) = ap_cpu_id;
1599 	ID_TO_CPU(ap_cpu_id) = 1;
1600 
1601 #if defined(APIC_IO)
1602 	/* one and only IO APIC */
1603 	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1604 
1605 	/*
1606 	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1607 	 * necessary as some hardware isn't properly setting up the IO APIC
1608 	 */
1609 #if defined(REALLY_ANAL_IOAPICID_VALUE)
1610 	if (io_apic_id != 2) {
1611 #else
1612 	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1613 #endif	/* REALLY_ANAL_IOAPICID_VALUE */
1614 		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1615 		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1616 		ux |= 0x02000000;	/* set it to '2' */
1617 		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1618 		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1619 		if ((ux & APIC_ID_MASK) != 0x02000000)
1620 			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1621 		io_apic_id = 2;
1622 	}
1623 	IO_TO_ID(0) = io_apic_id;
1624 	ID_TO_IO(io_apic_id) = 0;
1625 #endif	/* APIC_IO */
1626 
1627 	/* fill out bus entries */
1628 	switch (type) {
1629 	case 1:
1630 	case 2:
1631 	case 3:
1632 	case 5:
1633 	case 6:
1634 		bus_data[0].bus_id = default_data[type - 1][1];
1635 		bus_data[0].bus_type = default_data[type - 1][2];
1636 		bus_data[1].bus_id = default_data[type - 1][3];
1637 		bus_data[1].bus_type = default_data[type - 1][4];
1638 		break;
1639 
1640 	/* case 4: case 7:		   MCA NOT supported */
1641 	default:		/* illegal/reserved */
1642 		panic("BAD default MP config: %d", type);
1643 		/* NOTREACHED */
1644 	}
1645 
1646 #if defined(APIC_IO)
1647 	/* general cases from MP v1.4, table 5-2 */
1648 	for (pin = 0; pin < 16; ++pin) {
1649 		io_apic_ints[pin].int_type = 0;
1650 		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1651 		io_apic_ints[pin].src_bus_id = 0;
1652 		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1653 		io_apic_ints[pin].dst_apic_id = io_apic_id;
1654 		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1655 	}
1656 
1657 	/* special cases from MP v1.4, table 5-2 */
1658 	if (type == 2) {
1659 		io_apic_ints[2].int_type = 0xff;	/* N/C */
1660 		io_apic_ints[13].int_type = 0xff;	/* N/C */
1661 #if !defined(APIC_MIXED_MODE)
1662 		/** FIXME: ??? */
1663 		panic("sorry, can't support type 2 default yet");
1664 #endif	/* APIC_MIXED_MODE */
1665 	}
1666 	else
1667 		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1668 
1669 	if (type == 7)
1670 		io_apic_ints[0].int_type = 0xff;	/* N/C */
1671 	else
1672 		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1673 #endif	/* APIC_IO */
1674 }
1675 
1676 
1677 /*
1678  * initialize all the SMP locks
1679  */
1680 
1681 /* critical region around IO APIC, apic_imen */
1682 struct simplelock	imen_lock;
1683 
1684 /* critical region around splxx(), cpl, cml, cil, ipending */
1685 struct simplelock	cpl_lock;
1686 
1687 /* Make FAST_INTR() routines sequential */
1688 struct simplelock	fast_intr_lock;
1689 
1690 /* critical region around INTR() routines */
1691 struct simplelock	intr_lock;
1692 
1693 /* lock regions protected in UP kernel via cli/sti */
1694 struct simplelock	mpintr_lock;
1695 
1696 /* lock region used by kernel profiling */
1697 struct simplelock	mcount_lock;
1698 
1699 #ifdef USE_COMLOCK
1700 /* locks com (tty) data/hardware accesses: a FASTINTR() */
1701 struct simplelock	com_lock;
1702 #endif /* USE_COMLOCK */
1703 
1704 #ifdef USE_CLOCKLOCK
1705 /* lock regions around the clock hardware */
1706 struct simplelock	clock_lock;
1707 #endif /* USE_CLOCKLOCK */
1708 
1709 static void
1710 init_locks(void)
1711 {
1712 	/*
1713 	 * Get the initial mp_lock with a count of 1 for the BSP.
1714 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1715 	 */
1716 	mp_lock = 0x00000001;
1717 
1718 	/* ISR uses its own "giant lock" */
1719 	isr_lock = FREE_LOCK;
1720 
1721 #if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1722 	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1723 #endif
1724 
1725 	s_lock_init((struct simplelock*)&mpintr_lock);
1726 
1727 	s_lock_init((struct simplelock*)&mcount_lock);
1728 
1729 	s_lock_init((struct simplelock*)&fast_intr_lock);
1730 	s_lock_init((struct simplelock*)&intr_lock);
1731 	s_lock_init((struct simplelock*)&imen_lock);
1732 	s_lock_init((struct simplelock*)&cpl_lock);
1733 
1734 #ifdef USE_COMLOCK
1735 	s_lock_init((struct simplelock*)&com_lock);
1736 #endif /* USE_COMLOCK */
1737 #ifdef USE_CLOCKLOCK
1738 	s_lock_init((struct simplelock*)&clock_lock);
1739 #endif /* USE_CLOCKLOCK */
1740 }
1741 
1742 
1743 /*
1744  * start each AP in our list
1745  */
1746 static int
1747 start_all_aps(u_int boot_addr)
1748 {
1749 	int     x, i;
1750 	u_char  mpbiosreason;
1751 	u_long  mpbioswarmvec;
1752 	pd_entry_t *newptd;
1753 	pt_entry_t *newpt;
1754 	struct globaldata *gd;
1755 	char *stack;
1756 	pd_entry_t	*myPTD;
1757 
1758 	POSTCODE(START_ALL_APS_POST);
1759 
1760 	/* initialize BSP's local APIC */
1761 	apic_initialize();
1762 	bsp_apic_ready = 1;
1763 
1764 	/* install the AP 1st level boot code */
1765 	install_ap_tramp(boot_addr);
1766 
1767 
1768 	/* save the current value of the warm-start vector */
1769 	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1770 #ifndef PC98
1771 	outb(CMOS_REG, BIOS_RESET);
1772 	mpbiosreason = inb(CMOS_DATA);
1773 #endif
1774 
1775 	/* record BSP in CPU map */
1776 	all_cpus = 1;
1777 
1778 	/* start each AP */
1779 	for (x = 1; x <= mp_naps; ++x) {
1780 
1781 		/* This is a bit verbose, it will go away soon.  */
1782 
1783 		/* alloc new page table directory */
1784 		newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1785 
1786 		/* Store the virtual PTD address for this CPU */
1787 		IdlePTDS[x] = newptd;
1788 
1789 		/* clone currently active one (ie: IdlePTD) */
1790 		bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1791 
1792 		/* set up 0 -> 4MB P==V mapping for AP boot */
1793 		newptd[0] = (void *)(uintptr_t)(PG_V | PG_RW |
1794 		    ((uintptr_t)(void *)KPTphys & PG_FRAME));
1795 
1796 		/* store PTD for this AP's boot sequence */
1797 		myPTD = (pd_entry_t *)vtophys(newptd);
1798 
1799 		/* alloc new page table page */
1800 		newpt = (pt_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1801 
1802 		/* set the new PTD's private page to point there */
1803 		newptd[MPPTDI] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1804 
1805 		/* install self referential entry */
1806 		newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1807 
1808 		/* allocate a new private data page */
1809 		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1810 
1811 		/* wire it into the private page table page */
1812 		newpt[0] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1813 
1814 		/* wire the ptp into itself for access */
1815 		newpt[1] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1816 
1817 		/* copy in the pointer to the local apic */
1818 		newpt[2] = SMP_prvpt[2];
1819 
1820 		/* and the IO apic mapping[s] */
1821 		for (i = 16; i < 32; i++)
1822 			newpt[i] = SMP_prvpt[i];
1823 
1824 		/* allocate and set up an idle stack data page */
1825 		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1826 		for (i = 0; i < UPAGES; i++)
1827 			newpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1828 
1829 		newpt[3 + UPAGES] = 0;		/* *prv_CMAP1 */
1830 		newpt[4 + UPAGES] = 0;		/* *prv_CMAP2 */
1831 		newpt[5 + UPAGES] = 0;		/* *prv_CMAP3 */
1832 		newpt[6 + UPAGES] = 0;		/* *prv_PMAP1 */
1833 
1834 		/* prime data page for it to use */
1835 		gd->cpuid = x;
1836 		gd->cpu_lockid = x << 24;
1837 		gd->my_idlePTD = myPTD;
1838 		gd->prv_CMAP1 = &newpt[3 + UPAGES];
1839 		gd->prv_CMAP2 = &newpt[4 + UPAGES];
1840 		gd->prv_CMAP3 = &newpt[5 + UPAGES];
1841 		gd->prv_PMAP1 = &newpt[6 + UPAGES];
1842 
1843 		/* setup a vector to our boot code */
1844 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1845 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1846 #ifndef PC98
1847 		outb(CMOS_REG, BIOS_RESET);
1848 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1849 #endif
1850 
1851 		bootPTD = myPTD;
1852 		/* attempt to start the Application Processor */
1853 		CHECK_INIT(99);	/* setup checkpoints */
1854 		if (!start_ap(x, boot_addr)) {
1855 			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1856 			CHECK_PRINT("trace");	/* show checkpoints */
1857 			/* better panic as the AP may be running loose */
1858 			printf("panic y/n? [y] ");
1859 			if (cngetc() != 'n')
1860 				panic("bye-bye");
1861 		}
1862 		CHECK_PRINT("trace");		/* show checkpoints */
1863 
1864 		/* record its version info */
1865 		cpu_apic_versions[x] = cpu_apic_versions[0];
1866 
1867 		all_cpus |= (1 << x);		/* record AP in CPU map */
1868 	}
1869 
1870 	/* build our map of 'other' CPUs */
1871 	other_cpus = all_cpus & ~(1 << cpuid);
1872 
1873 	/* fill in our (BSP) APIC version */
1874 	cpu_apic_versions[0] = lapic.version;
1875 
1876 	/* restore the warmstart vector */
1877 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1878 #ifndef PC98
1879 	outb(CMOS_REG, BIOS_RESET);
1880 	outb(CMOS_DATA, mpbiosreason);
1881 #endif
1882 
1883 	/*
1884 	 * Set up the idle context for the BSP.  Similar to above except
1885 	 * that some was done by locore, some by pmap.c and some is implicit
1886 	 * because the BSP is cpu#0 and the page is initially zero, and also
1887 	 * because we can refer to variables by name on the BSP..
1888 	 */
1889 	newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1890 
1891 	bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1892 	IdlePTDS[0] = newptd;
1893 
1894 	/* Point PTD[] to this page instead of IdlePTD's physical page */
1895 	newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1896 
1897 	my_idlePTD = (pd_entry_t *)vtophys(newptd);
1898 
1899 	/* Allocate and setup BSP idle stack */
1900 	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1901 	for (i = 0; i < UPAGES; i++)
1902 		SMP_prvpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1903 
1904 	pmap_set_opt_bsp();
1905 
1906 	for (i = 0; i < mp_ncpus; i++) {
1907 		bcopy( (int *) PTD + KPTDI, (int *) IdlePTDS[i] + KPTDI, NKPDE * sizeof (int));
1908 	}
1909 
1910 	/* number of APs actually started */
1911 	return mp_ncpus - 1;
1912 }
1913 
1914 
1915 /*
1916  * load the 1st level AP boot code into base memory.
1917  */
1918 
1919 /* targets for relocation */
1920 extern void bigJump(void);
1921 extern void bootCodeSeg(void);
1922 extern void bootDataSeg(void);
1923 extern void MPentry(void);
1924 extern u_int MP_GDT;
1925 extern u_int mp_gdtbase;
1926 
1927 static void
1928 install_ap_tramp(u_int boot_addr)
1929 {
1930 	int     x;
1931 	int     size = *(int *) ((u_long) & bootMP_size);
1932 	u_char *src = (u_char *) ((u_long) bootMP);
1933 	u_char *dst = (u_char *) boot_addr + KERNBASE;
1934 	u_int   boot_base = (u_int) bootMP;
1935 	u_int8_t *dst8;
1936 	u_int16_t *dst16;
1937 	u_int32_t *dst32;
1938 
1939 	POSTCODE(INSTALL_AP_TRAMP_POST);
1940 
1941 	for (x = 0; x < size; ++x)
1942 		*dst++ = *src++;
1943 
1944 	/*
1945 	 * modify addresses in code we just moved to basemem. unfortunately we
1946 	 * need fairly detailed info about mpboot.s for this to work.  changes
1947 	 * to mpboot.s might require changes here.
1948 	 */
1949 
1950 	/* boot code is located in KERNEL space */
1951 	dst = (u_char *) boot_addr + KERNBASE;
1952 
1953 	/* modify the lgdt arg */
1954 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1955 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1956 
1957 	/* modify the ljmp target for MPentry() */
1958 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1959 	*dst32 = ((u_int) MPentry - KERNBASE);
1960 
1961 	/* modify the target for boot code segment */
1962 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1963 	dst8 = (u_int8_t *) (dst16 + 1);
1964 	*dst16 = (u_int) boot_addr & 0xffff;
1965 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1966 
1967 	/* modify the target for boot data segment */
1968 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1969 	dst8 = (u_int8_t *) (dst16 + 1);
1970 	*dst16 = (u_int) boot_addr & 0xffff;
1971 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1972 }
1973 
1974 
1975 /*
1976  * this function starts the AP (application processor) identified
1977  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1978  * to accomplish this.  This is necessary because of the nuances
1979  * of the different hardware we might encounter.  It ain't pretty,
1980  * but it seems to work.
1981  */
1982 static int
1983 start_ap(int logical_cpu, u_int boot_addr)
1984 {
1985 	int     physical_cpu;
1986 	int     vector;
1987 	int     cpus;
1988 	u_long  icr_lo, icr_hi;
1989 
1990 	POSTCODE(START_AP_POST);
1991 
1992 	/* get the PHYSICAL APIC ID# */
1993 	physical_cpu = CPU_TO_ID(logical_cpu);
1994 
1995 	/* calculate the vector */
1996 	vector = (boot_addr >> 12) & 0xff;
1997 
1998 	/* used as a watchpoint to signal AP startup */
1999 	cpus = mp_ncpus;
2000 
2001 	/*
2002 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2003 	 * and running the target CPU. OR this INIT IPI might be latched (P5
2004 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2005 	 * ignored.
2006 	 */
2007 
2008 	/* setup the address for the target AP */
2009 	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2010 	icr_hi |= (physical_cpu << 24);
2011 	lapic.icr_hi = icr_hi;
2012 
2013 	/* do an INIT IPI: assert RESET */
2014 	icr_lo = lapic.icr_lo & 0xfff00000;
2015 	lapic.icr_lo = icr_lo | 0x0000c500;
2016 
2017 	/* wait for pending status end */
2018 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2019 		 /* spin */ ;
2020 
2021 	/* do an INIT IPI: deassert RESET */
2022 	lapic.icr_lo = icr_lo | 0x00008500;
2023 
2024 	/* wait for pending status end */
2025 	u_sleep(10000);		/* wait ~10mS */
2026 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2027 		 /* spin */ ;
2028 
2029 	/*
2030 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2031 	 * latched, (P5 bug) this 1st STARTUP would then terminate
2032 	 * immediately, and the previously started INIT IPI would continue. OR
2033 	 * the previous INIT IPI has already run. and this STARTUP IPI will
2034 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2035 	 * will run.
2036 	 */
2037 
2038 	/* do a STARTUP IPI */
2039 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2040 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2041 		 /* spin */ ;
2042 	u_sleep(200);		/* wait ~200uS */
2043 
2044 	/*
2045 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2046 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2047 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2048 	 * recognized after hardware RESET or INIT IPI.
2049 	 */
2050 
2051 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2052 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2053 		 /* spin */ ;
2054 	u_sleep(200);		/* wait ~200uS */
2055 
2056 	/* wait for it to start */
2057 	set_apic_timer(5000000);/* == 5 seconds */
2058 	while (read_apic_timer())
2059 		if (mp_ncpus > cpus)
2060 			return 1;	/* return SUCCESS */
2061 
2062 	return 0;		/* return FAILURE */
2063 }
2064 
2065 
2066 /*
2067  * Flush the TLB on all other CPU's
2068  *
2069  * XXX: Needs to handshake and wait for completion before proceding.
2070  */
2071 void
2072 smp_invltlb(void)
2073 {
2074 #if defined(APIC_IO)
2075 	if (smp_started && invltlb_ok)
2076 		all_but_self_ipi(XINVLTLB_OFFSET);
2077 #endif  /* APIC_IO */
2078 }
2079 
2080 void
2081 invlpg(u_int addr)
2082 {
2083 	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2084 
2085 	/* send a message to the other CPUs */
2086 	smp_invltlb();
2087 }
2088 
2089 void
2090 invltlb(void)
2091 {
2092 	u_long  temp;
2093 
2094 	/*
2095 	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2096 	 * inlined.
2097 	 */
2098 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2099 
2100 	/* send a message to the other CPUs */
2101 	smp_invltlb();
2102 }
2103 
2104 
2105 /*
2106  * When called the executing CPU will send an IPI to all other CPUs
2107  *  requesting that they halt execution.
2108  *
2109  * Usually (but not necessarily) called with 'other_cpus' as its arg.
2110  *
2111  *  - Signals all CPUs in map to stop.
2112  *  - Waits for each to stop.
2113  *
2114  * Returns:
2115  *  -1: error
2116  *   0: NA
2117  *   1: ok
2118  *
2119  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2120  *            from executing at same time.
2121  */
2122 int
2123 stop_cpus(u_int map)
2124 {
2125 	if (!smp_started)
2126 		return 0;
2127 
2128 	/* send the Xcpustop IPI to all CPUs in map */
2129 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2130 
2131 	while ((stopped_cpus & map) != map)
2132 		/* spin */ ;
2133 
2134 	return 1;
2135 }
2136 
2137 
2138 /*
2139  * Called by a CPU to restart stopped CPUs.
2140  *
2141  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2142  *
2143  *  - Signals all CPUs in map to restart.
2144  *  - Waits for each to restart.
2145  *
2146  * Returns:
2147  *  -1: error
2148  *   0: NA
2149  *   1: ok
2150  */
2151 int
2152 restart_cpus(u_int map)
2153 {
2154 	if (!smp_started)
2155 		return 0;
2156 
2157 	started_cpus = map;		/* signal other cpus to restart */
2158 
2159 	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2160 		/* spin */ ;
2161 
2162 	return 1;
2163 }
2164 
2165 int smp_active = 0;	/* are the APs allowed to run? */
2166 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2167 
2168 /* XXX maybe should be hw.ncpu */
2169 static int smp_cpus = 1;	/* how many cpu's running */
2170 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2171 
2172 int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2173 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2174 
2175 /* Warning: Do not staticize.  Used from swtch.s */
2176 int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2177 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2178 	   &do_page_zero_idle, 0, "");
2179 
2180 /* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2181 int forward_irq_enabled = 1;
2182 SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2183 	   &forward_irq_enabled, 0, "");
2184 
2185 /* Enable forwarding of a signal to a process running on a different CPU */
2186 int forward_signal_enabled = 1;
2187 SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2188 	   &forward_signal_enabled, 0, "");
2189 
2190 /* Enable forwarding of roundrobin to all other cpus */
2191 int forward_roundrobin_enabled = 1;
2192 SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2193 	   &forward_roundrobin_enabled, 0, "");
2194 
2195 /*
2196  * This is called once the rest of the system is up and running and we're
2197  * ready to let the AP's out of the pen.
2198  */
2199 void ap_init(void);
2200 
2201 void
2202 ap_init()
2203 {
2204 	u_int   temp;
2205 	u_int	apic_id;
2206 
2207 	smp_cpus++;
2208 
2209 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2210 	lidt(&r_idt);
2211 #endif
2212 
2213 	/* Build our map of 'other' CPUs. */
2214 	other_cpus = all_cpus & ~(1 << cpuid);
2215 
2216 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2217 
2218 	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
2219 	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
2220 
2221 	/* A quick check from sanity claus */
2222 	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2223 	if (cpuid != apic_id) {
2224 		printf("SMP: cpuid = %d\n", cpuid);
2225 		printf("SMP: apic_id = %d\n", apic_id);
2226 		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2227 		panic("cpuid mismatch! boom!!");
2228 	}
2229 
2230 	getmtrr();
2231 
2232 	/* Init local apic for irq's */
2233 	apic_initialize();
2234 
2235 	/*
2236 	 * Activate smp_invltlb, although strictly speaking, this isn't
2237 	 * quite correct yet.  We should have a bitfield for cpus willing
2238 	 * to accept TLB flush IPI's or something and sync them.
2239 	 */
2240 	if (smp_cpus == mp_ncpus) {
2241 		invltlb_ok = 1;
2242 		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2243 		smp_active = 1;	 /* historic */
2244 	}
2245 
2246 	curproc = NULL;		/* make sure */
2247 }
2248 
2249 #ifdef BETTER_CLOCK
2250 
2251 #define CHECKSTATE_USER	0
2252 #define CHECKSTATE_SYS	1
2253 #define CHECKSTATE_INTR	2
2254 
2255 /* Do not staticize.  Used from apic_vector.s */
2256 struct proc*	checkstate_curproc[NCPU];
2257 int		checkstate_cpustate[NCPU];
2258 u_long		checkstate_pc[NCPU];
2259 
2260 extern long	cp_time[CPUSTATES];
2261 
2262 #define PC_TO_INDEX(pc, prof)				\
2263         ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2264             (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2265 
2266 static void
2267 addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2268 {
2269 	int i;
2270 	struct uprof *prof;
2271 	u_long pc;
2272 
2273 	pc = checkstate_pc[id];
2274 	prof = &p->p_stats->p_prof;
2275 	if (pc >= prof->pr_off &&
2276 	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2277 		if ((p->p_flag & P_OWEUPC) == 0) {
2278 			prof->pr_addr = pc;
2279 			prof->pr_ticks = 1;
2280 			p->p_flag |= P_OWEUPC;
2281 		}
2282 		*astmap |= (1 << id);
2283 	}
2284 }
2285 
2286 static void
2287 forwarded_statclock(int id, int pscnt, int *astmap)
2288 {
2289 	struct pstats *pstats;
2290 	long rss;
2291 	struct rusage *ru;
2292 	struct vmspace *vm;
2293 	int cpustate;
2294 	struct proc *p;
2295 #ifdef GPROF
2296 	register struct gmonparam *g;
2297 	int i;
2298 #endif
2299 
2300 	p = checkstate_curproc[id];
2301 	cpustate = checkstate_cpustate[id];
2302 
2303 	switch (cpustate) {
2304 	case CHECKSTATE_USER:
2305 		if (p->p_flag & P_PROFIL)
2306 			addupc_intr_forwarded(p, id, astmap);
2307 		if (pscnt > 1)
2308 			return;
2309 		p->p_uticks++;
2310 		if (p->p_nice > NZERO)
2311 			cp_time[CP_NICE]++;
2312 		else
2313 			cp_time[CP_USER]++;
2314 		break;
2315 	case CHECKSTATE_SYS:
2316 #ifdef GPROF
2317 		/*
2318 		 * Kernel statistics are just like addupc_intr, only easier.
2319 		 */
2320 		g = &_gmonparam;
2321 		if (g->state == GMON_PROF_ON) {
2322 			i = checkstate_pc[id] - g->lowpc;
2323 			if (i < g->textsize) {
2324 				i /= HISTFRACTION * sizeof(*g->kcount);
2325 				g->kcount[i]++;
2326 			}
2327 		}
2328 #endif
2329 		if (pscnt > 1)
2330 			return;
2331 
2332 		if (!p)
2333 			cp_time[CP_IDLE]++;
2334 		else {
2335 			p->p_sticks++;
2336 			cp_time[CP_SYS]++;
2337 		}
2338 		break;
2339 	case CHECKSTATE_INTR:
2340 	default:
2341 #ifdef GPROF
2342 		/*
2343 		 * Kernel statistics are just like addupc_intr, only easier.
2344 		 */
2345 		g = &_gmonparam;
2346 		if (g->state == GMON_PROF_ON) {
2347 			i = checkstate_pc[id] - g->lowpc;
2348 			if (i < g->textsize) {
2349 				i /= HISTFRACTION * sizeof(*g->kcount);
2350 				g->kcount[i]++;
2351 			}
2352 		}
2353 #endif
2354 		if (pscnt > 1)
2355 			return;
2356 		if (p)
2357 			p->p_iticks++;
2358 		cp_time[CP_INTR]++;
2359 	}
2360 	if (p != NULL) {
2361 		p->p_cpticks++;
2362 		if (++p->p_estcpu == 0)
2363 			p->p_estcpu--;
2364 		if ((p->p_estcpu & 3) == 0) {
2365 			resetpriority(p);
2366 			if (p->p_priority >= PUSER)
2367 				p->p_priority = p->p_usrpri;
2368 		}
2369 
2370 		/* Update resource usage integrals and maximums. */
2371 		if ((pstats = p->p_stats) != NULL &&
2372 		    (ru = &pstats->p_ru) != NULL &&
2373 		    (vm = p->p_vmspace) != NULL) {
2374 			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
2375 			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
2376 			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
2377 			rss = vm->vm_pmap.pm_stats.resident_count *
2378 				PAGE_SIZE / 1024;
2379 			if (ru->ru_maxrss < rss)
2380 				ru->ru_maxrss = rss;
2381         	}
2382 	}
2383 }
2384 
2385 void
2386 forward_statclock(int pscnt)
2387 {
2388 	int map;
2389 	int id;
2390 	int i;
2391 
2392 	/* Kludge. We don't yet have separate locks for the interrupts
2393 	 * and the kernel. This means that we cannot let the other processors
2394 	 * handle complex interrupts while inhibiting them from entering
2395 	 * the kernel in a non-interrupt context.
2396 	 *
2397 	 * What we can do, without changing the locking mechanisms yet,
2398 	 * is letting the other processors handle a very simple interrupt
2399 	 * (wich determines the processor states), and do the main
2400 	 * work ourself.
2401 	 */
2402 
2403 	if (!smp_started || !invltlb_ok || cold || panicstr)
2404 		return;
2405 
2406 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2407 
2408 	map = other_cpus & ~stopped_cpus ;
2409 	checkstate_probed_cpus = 0;
2410 	if (map != 0)
2411 		selected_apic_ipi(map,
2412 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2413 
2414 	i = 0;
2415 	while (checkstate_probed_cpus != map) {
2416 		/* spin */
2417 		i++;
2418 		if (i == 100000) {
2419 #ifdef BETTER_CLOCK_DIAGNOSTIC
2420 			printf("forward_statclock: checkstate %x\n",
2421 			       checkstate_probed_cpus);
2422 #endif
2423 			break;
2424 		}
2425 	}
2426 
2427 	/*
2428 	 * Step 2: walk through other processors processes, update ticks and
2429 	 * profiling info.
2430 	 */
2431 
2432 	map = 0;
2433 	for (id = 0; id < mp_ncpus; id++) {
2434 		if (id == cpuid)
2435 			continue;
2436 		if (((1 << id) & checkstate_probed_cpus) == 0)
2437 			continue;
2438 		forwarded_statclock(id, pscnt, &map);
2439 	}
2440 	if (map != 0) {
2441 		checkstate_need_ast |= map;
2442 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2443 		i = 0;
2444 		while ((checkstate_need_ast & map) != 0) {
2445 			/* spin */
2446 			i++;
2447 			if (i > 100000) {
2448 #ifdef BETTER_CLOCK_DIAGNOSTIC
2449 				printf("forward_statclock: dropped ast 0x%x\n",
2450 				       checkstate_need_ast & map);
2451 #endif
2452 				break;
2453 			}
2454 		}
2455 	}
2456 }
2457 
2458 void
2459 forward_hardclock(int pscnt)
2460 {
2461 	int map;
2462 	int id;
2463 	struct proc *p;
2464 	struct pstats *pstats;
2465 	int i;
2466 
2467 	/* Kludge. We don't yet have separate locks for the interrupts
2468 	 * and the kernel. This means that we cannot let the other processors
2469 	 * handle complex interrupts while inhibiting them from entering
2470 	 * the kernel in a non-interrupt context.
2471 	 *
2472 	 * What we can do, without changing the locking mechanisms yet,
2473 	 * is letting the other processors handle a very simple interrupt
2474 	 * (wich determines the processor states), and do the main
2475 	 * work ourself.
2476 	 */
2477 
2478 	if (!smp_started || !invltlb_ok || cold || panicstr)
2479 		return;
2480 
2481 	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2482 
2483 	map = other_cpus & ~stopped_cpus ;
2484 	checkstate_probed_cpus = 0;
2485 	if (map != 0)
2486 		selected_apic_ipi(map,
2487 				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2488 
2489 	i = 0;
2490 	while (checkstate_probed_cpus != map) {
2491 		/* spin */
2492 		i++;
2493 		if (i == 100000) {
2494 #ifdef BETTER_CLOCK_DIAGNOSTIC
2495 			printf("forward_hardclock: checkstate %x\n",
2496 			       checkstate_probed_cpus);
2497 #endif
2498 			break;
2499 		}
2500 	}
2501 
2502 	/*
2503 	 * Step 2: walk through other processors processes, update virtual
2504 	 * timer and profiling timer. If stathz == 0, also update ticks and
2505 	 * profiling info.
2506 	 */
2507 
2508 	map = 0;
2509 	for (id = 0; id < mp_ncpus; id++) {
2510 		if (id == cpuid)
2511 			continue;
2512 		if (((1 << id) & checkstate_probed_cpus) == 0)
2513 			continue;
2514 		p = checkstate_curproc[id];
2515 		if (p) {
2516 			pstats = p->p_stats;
2517 			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2518 			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2519 			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2520 				psignal(p, SIGVTALRM);
2521 				map |= (1 << id);
2522 			}
2523 			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2524 			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2525 				psignal(p, SIGPROF);
2526 				map |= (1 << id);
2527 			}
2528 		}
2529 		if (stathz == 0) {
2530 			forwarded_statclock( id, pscnt, &map);
2531 		}
2532 	}
2533 	if (map != 0) {
2534 		checkstate_need_ast |= map;
2535 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2536 		i = 0;
2537 		while ((checkstate_need_ast & map) != 0) {
2538 			/* spin */
2539 			i++;
2540 			if (i > 100000) {
2541 #ifdef BETTER_CLOCK_DIAGNOSTIC
2542 				printf("forward_hardclock: dropped ast 0x%x\n",
2543 				       checkstate_need_ast & map);
2544 #endif
2545 				break;
2546 			}
2547 		}
2548 	}
2549 }
2550 
2551 #endif /* BETTER_CLOCK */
2552 
2553 void
2554 forward_signal(struct proc *p)
2555 {
2556 	int map;
2557 	int id;
2558 	int i;
2559 
2560 	/* Kludge. We don't yet have separate locks for the interrupts
2561 	 * and the kernel. This means that we cannot let the other processors
2562 	 * handle complex interrupts while inhibiting them from entering
2563 	 * the kernel in a non-interrupt context.
2564 	 *
2565 	 * What we can do, without changing the locking mechanisms yet,
2566 	 * is letting the other processors handle a very simple interrupt
2567 	 * (wich determines the processor states), and do the main
2568 	 * work ourself.
2569 	 */
2570 
2571 	if (!smp_started || !invltlb_ok || cold || panicstr)
2572 		return;
2573 	if (!forward_signal_enabled)
2574 		return;
2575 	while (1) {
2576 		if (p->p_stat != SRUN)
2577 			return;
2578 		id = (u_char) p->p_oncpu;
2579 		if (id == 0xff)
2580 			return;
2581 		map = (1<<id);
2582 		checkstate_need_ast |= map;
2583 		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2584 		i = 0;
2585 		while ((checkstate_need_ast & map) != 0) {
2586 			/* spin */
2587 			i++;
2588 			if (i > 100000) {
2589 #if 0
2590 				printf("forward_signal: dropped ast 0x%x\n",
2591 				       checkstate_need_ast & map);
2592 #endif
2593 				break;
2594 			}
2595 		}
2596 		if (id == (u_char) p->p_oncpu)
2597 			return;
2598 	}
2599 }
2600 
2601 void
2602 forward_roundrobin(void)
2603 {
2604 	u_int map;
2605 	int i;
2606 
2607 	if (!smp_started || !invltlb_ok || cold || panicstr)
2608 		return;
2609 	if (!forward_roundrobin_enabled)
2610 		return;
2611 	resched_cpus |= other_cpus;
2612 	map = other_cpus & ~stopped_cpus ;
2613 #if 1
2614 	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2615 #else
2616 	(void) all_but_self_ipi(XCPUAST_OFFSET);
2617 #endif
2618 	i = 0;
2619 	while ((checkstate_need_ast & map) != 0) {
2620 		/* spin */
2621 		i++;
2622 		if (i > 100000) {
2623 #if 0
2624 			printf("forward_roundrobin: dropped ast 0x%x\n",
2625 			       checkstate_need_ast & map);
2626 #endif
2627 			break;
2628 		}
2629 	}
2630 }
2631 
2632 
2633 #ifdef APIC_INTR_REORDER
2634 /*
2635  *	Maintain mapping from softintr vector to isr bit in local apic.
2636  */
2637 void
2638 set_lapic_isrloc(int intr, int vector)
2639 {
2640 	if (intr < 0 || intr > 32)
2641 		panic("set_apic_isrloc: bad intr argument: %d",intr);
2642 	if (vector < ICU_OFFSET || vector > 255)
2643 		panic("set_apic_isrloc: bad vector argument: %d",vector);
2644 	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2645 	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2646 }
2647 #endif
2648