xref: /freebsd/sys/kern/subr_sleepqueue.c (revision fe9b3289e67c4558d52b5035a0de1eae3bd96d10)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_kdtrace.h"
68 #include "opt_sched.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sbuf.h>
78 #include <sys/sched.h>
79 #include <sys/sdt.h>
80 #include <sys/signalvar.h>
81 #include <sys/sleepqueue.h>
82 #include <sys/sysctl.h>
83 
84 #include <vm/uma.h>
85 
86 #ifdef DDB
87 #include <ddb/ddb.h>
88 #endif
89 
90 /*
91  * Constants for the hash table of sleep queue chains.  These constants are
92  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
93  * Basically, we ignore the lower 8 bits of the address since most wait
94  * channel pointers are aligned and only look at the next 7 bits for the
95  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96  */
97 #define	SC_TABLESIZE	128			/* Must be power of 2. */
98 #define	SC_MASK		(SC_TABLESIZE - 1)
99 #define	SC_SHIFT	8
100 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
101 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
102 #define NR_SLEEPQS      2
103 /*
104  * There two different lists of sleep queues.  Both lists are connected
105  * via the sq_hash entries.  The first list is the sleep queue chain list
106  * that a sleep queue is on when it is attached to a wait channel.  The
107  * second list is the free list hung off of a sleep queue that is attached
108  * to a wait channel.
109  *
110  * Each sleep queue also contains the wait channel it is attached to, the
111  * list of threads blocked on that wait channel, flags specific to the
112  * wait channel, and the lock used to synchronize with a wait channel.
113  * The flags are used to catch mismatches between the various consumers
114  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
115  * The lock pointer is only used when invariants are enabled for various
116  * debugging checks.
117  *
118  * Locking key:
119  *  c - sleep queue chain lock
120  */
121 struct sleepqueue {
122 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
123 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
124 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
125 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
126 	void	*sq_wchan;			/* (c) Wait channel. */
127 	int	sq_type;			/* (c) Queue type. */
128 #ifdef INVARIANTS
129 	struct lock_object *sq_lock;		/* (c) Associated lock. */
130 #endif
131 };
132 
133 struct sleepqueue_chain {
134 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
135 	struct mtx sc_lock;			/* Spin lock for this chain. */
136 #ifdef SLEEPQUEUE_PROFILING
137 	u_int	sc_depth;			/* Length of sc_queues. */
138 	u_int	sc_max_depth;			/* Max length of sc_queues. */
139 #endif
140 };
141 
142 #ifdef SLEEPQUEUE_PROFILING
143 u_int sleepq_max_depth;
144 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
145 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
146     "sleepq chain stats");
147 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
148     0, "maxmimum depth achieved of a single chain");
149 
150 static void	sleepq_profile(const char *wmesg);
151 static int	prof_enabled;
152 #endif
153 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
154 static uma_zone_t sleepq_zone;
155 
156 /*
157  * Prototypes for non-exported routines.
158  */
159 static int	sleepq_catch_signals(void *wchan, int pri);
160 static int	sleepq_check_signals(void);
161 static int	sleepq_check_timeout(void);
162 #ifdef INVARIANTS
163 static void	sleepq_dtor(void *mem, int size, void *arg);
164 #endif
165 static int	sleepq_init(void *mem, int size, int flags);
166 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
167 		    int pri);
168 static void	sleepq_switch(void *wchan, int pri);
169 static void	sleepq_timeout(void *arg);
170 
171 SDT_PROBE_DECLARE(sched, , , sleep);
172 SDT_PROBE_DECLARE(sched, , , wakeup);
173 
174 /*
175  * Early initialization of sleep queues that is called from the sleepinit()
176  * SYSINIT.
177  */
178 void
179 init_sleepqueues(void)
180 {
181 #ifdef SLEEPQUEUE_PROFILING
182 	struct sysctl_oid *chain_oid;
183 	char chain_name[10];
184 #endif
185 	int i;
186 
187 	for (i = 0; i < SC_TABLESIZE; i++) {
188 		LIST_INIT(&sleepq_chains[i].sc_queues);
189 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
190 		    MTX_SPIN | MTX_RECURSE);
191 #ifdef SLEEPQUEUE_PROFILING
192 		snprintf(chain_name, sizeof(chain_name), "%d", i);
193 		chain_oid = SYSCTL_ADD_NODE(NULL,
194 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
195 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
196 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
197 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
198 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
199 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
200 		    NULL);
201 #endif
202 	}
203 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
204 #ifdef INVARIANTS
205 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
206 #else
207 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
208 #endif
209 
210 	thread0.td_sleepqueue = sleepq_alloc();
211 }
212 
213 /*
214  * Get a sleep queue for a new thread.
215  */
216 struct sleepqueue *
217 sleepq_alloc(void)
218 {
219 
220 	return (uma_zalloc(sleepq_zone, M_WAITOK));
221 }
222 
223 /*
224  * Free a sleep queue when a thread is destroyed.
225  */
226 void
227 sleepq_free(struct sleepqueue *sq)
228 {
229 
230 	uma_zfree(sleepq_zone, sq);
231 }
232 
233 /*
234  * Lock the sleep queue chain associated with the specified wait channel.
235  */
236 void
237 sleepq_lock(void *wchan)
238 {
239 	struct sleepqueue_chain *sc;
240 
241 	sc = SC_LOOKUP(wchan);
242 	mtx_lock_spin(&sc->sc_lock);
243 }
244 
245 /*
246  * Look up the sleep queue associated with a given wait channel in the hash
247  * table locking the associated sleep queue chain.  If no queue is found in
248  * the table, NULL is returned.
249  */
250 struct sleepqueue *
251 sleepq_lookup(void *wchan)
252 {
253 	struct sleepqueue_chain *sc;
254 	struct sleepqueue *sq;
255 
256 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
257 	sc = SC_LOOKUP(wchan);
258 	mtx_assert(&sc->sc_lock, MA_OWNED);
259 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
260 		if (sq->sq_wchan == wchan)
261 			return (sq);
262 	return (NULL);
263 }
264 
265 /*
266  * Unlock the sleep queue chain associated with a given wait channel.
267  */
268 void
269 sleepq_release(void *wchan)
270 {
271 	struct sleepqueue_chain *sc;
272 
273 	sc = SC_LOOKUP(wchan);
274 	mtx_unlock_spin(&sc->sc_lock);
275 }
276 
277 /*
278  * Places the current thread on the sleep queue for the specified wait
279  * channel.  If INVARIANTS is enabled, then it associates the passed in
280  * lock with the sleepq to make sure it is held when that sleep queue is
281  * woken up.
282  */
283 void
284 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
285     int queue)
286 {
287 	struct sleepqueue_chain *sc;
288 	struct sleepqueue *sq;
289 	struct thread *td;
290 
291 	td = curthread;
292 	sc = SC_LOOKUP(wchan);
293 	mtx_assert(&sc->sc_lock, MA_OWNED);
294 	MPASS(td->td_sleepqueue != NULL);
295 	MPASS(wchan != NULL);
296 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
297 
298 	/* If this thread is not allowed to sleep, die a horrible death. */
299 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
300 	    ("%s: td %p to sleep on wchan %p with TDP_NOSLEEPING on",
301 	    __func__, td, wchan));
302 
303 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
304 	sq = sleepq_lookup(wchan);
305 
306 	/*
307 	 * If the wait channel does not already have a sleep queue, use
308 	 * this thread's sleep queue.  Otherwise, insert the current thread
309 	 * into the sleep queue already in use by this wait channel.
310 	 */
311 	if (sq == NULL) {
312 #ifdef INVARIANTS
313 		int i;
314 
315 		sq = td->td_sleepqueue;
316 		for (i = 0; i < NR_SLEEPQS; i++) {
317 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
318 			    ("thread's sleep queue %d is not empty", i));
319 			KASSERT(sq->sq_blockedcnt[i] == 0,
320 			    ("thread's sleep queue %d count mismatches", i));
321 		}
322 		KASSERT(LIST_EMPTY(&sq->sq_free),
323 		    ("thread's sleep queue has a non-empty free list"));
324 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
325 		sq->sq_lock = lock;
326 #endif
327 #ifdef SLEEPQUEUE_PROFILING
328 		sc->sc_depth++;
329 		if (sc->sc_depth > sc->sc_max_depth) {
330 			sc->sc_max_depth = sc->sc_depth;
331 			if (sc->sc_max_depth > sleepq_max_depth)
332 				sleepq_max_depth = sc->sc_max_depth;
333 		}
334 #endif
335 		sq = td->td_sleepqueue;
336 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
337 		sq->sq_wchan = wchan;
338 		sq->sq_type = flags & SLEEPQ_TYPE;
339 	} else {
340 		MPASS(wchan == sq->sq_wchan);
341 		MPASS(lock == sq->sq_lock);
342 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
343 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
344 	}
345 	thread_lock(td);
346 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
347 	sq->sq_blockedcnt[queue]++;
348 	td->td_sleepqueue = NULL;
349 	td->td_sqqueue = queue;
350 	td->td_wchan = wchan;
351 	td->td_wmesg = wmesg;
352 	if (flags & SLEEPQ_INTERRUPTIBLE) {
353 		td->td_flags |= TDF_SINTR;
354 		td->td_flags &= ~TDF_SLEEPABORT;
355 	}
356 	thread_unlock(td);
357 }
358 
359 /*
360  * Sets a timeout that will remove the current thread from the specified
361  * sleep queue after timo ticks if the thread has not already been awakened.
362  */
363 void
364 sleepq_set_timeout(void *wchan, int timo)
365 {
366 	struct sleepqueue_chain *sc;
367 	struct thread *td;
368 
369 	td = curthread;
370 	sc = SC_LOOKUP(wchan);
371 	mtx_assert(&sc->sc_lock, MA_OWNED);
372 	MPASS(TD_ON_SLEEPQ(td));
373 	MPASS(td->td_sleepqueue == NULL);
374 	MPASS(wchan != NULL);
375 	callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
376 }
377 
378 /*
379  * Return the number of actual sleepers for the specified queue.
380  */
381 u_int
382 sleepq_sleepcnt(void *wchan, int queue)
383 {
384 	struct sleepqueue *sq;
385 
386 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
387 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
388 	sq = sleepq_lookup(wchan);
389 	if (sq == NULL)
390 		return (0);
391 	return (sq->sq_blockedcnt[queue]);
392 }
393 
394 /*
395  * Marks the pending sleep of the current thread as interruptible and
396  * makes an initial check for pending signals before putting a thread
397  * to sleep. Enters and exits with the thread lock held.  Thread lock
398  * may have transitioned from the sleepq lock to a run lock.
399  */
400 static int
401 sleepq_catch_signals(void *wchan, int pri)
402 {
403 	struct sleepqueue_chain *sc;
404 	struct sleepqueue *sq;
405 	struct thread *td;
406 	struct proc *p;
407 	struct sigacts *ps;
408 	int sig, ret, stop_allowed;
409 
410 	td = curthread;
411 	p = curproc;
412 	sc = SC_LOOKUP(wchan);
413 	mtx_assert(&sc->sc_lock, MA_OWNED);
414 	MPASS(wchan != NULL);
415 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
416 		td->td_pflags &= ~TDP_WAKEUP;
417 		ret = EINTR;
418 		thread_lock(td);
419 		goto out;
420 	}
421 
422 	/*
423 	 * See if there are any pending signals for this thread.  If not
424 	 * we can switch immediately.  Otherwise do the signal processing
425 	 * directly.
426 	 */
427 	thread_lock(td);
428 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
429 		sleepq_switch(wchan, pri);
430 		return (0);
431 	}
432 	stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
433 	    SIG_STOP_ALLOWED;
434 	thread_unlock(td);
435 	mtx_unlock_spin(&sc->sc_lock);
436 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
437 		(void *)td, (long)p->p_pid, td->td_name);
438 	PROC_LOCK(p);
439 	ps = p->p_sigacts;
440 	mtx_lock(&ps->ps_mtx);
441 	sig = cursig(td, stop_allowed);
442 	if (sig == 0) {
443 		mtx_unlock(&ps->ps_mtx);
444 		ret = thread_suspend_check(1);
445 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
446 	} else {
447 		if (SIGISMEMBER(ps->ps_sigintr, sig))
448 			ret = EINTR;
449 		else
450 			ret = ERESTART;
451 		mtx_unlock(&ps->ps_mtx);
452 	}
453 	/*
454 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
455 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
456 	 * thread_lock() are currently held in tdsendsignal().
457 	 */
458 	PROC_SLOCK(p);
459 	mtx_lock_spin(&sc->sc_lock);
460 	PROC_UNLOCK(p);
461 	thread_lock(td);
462 	PROC_SUNLOCK(p);
463 	if (ret == 0) {
464 		sleepq_switch(wchan, pri);
465 		return (0);
466 	}
467 out:
468 	/*
469 	 * There were pending signals and this thread is still
470 	 * on the sleep queue, remove it from the sleep queue.
471 	 */
472 	if (TD_ON_SLEEPQ(td)) {
473 		sq = sleepq_lookup(wchan);
474 		if (sleepq_resume_thread(sq, td, 0)) {
475 #ifdef INVARIANTS
476 			/*
477 			 * This thread hasn't gone to sleep yet, so it
478 			 * should not be swapped out.
479 			 */
480 			panic("not waking up swapper");
481 #endif
482 		}
483 	}
484 	mtx_unlock_spin(&sc->sc_lock);
485 	MPASS(td->td_lock != &sc->sc_lock);
486 	return (ret);
487 }
488 
489 /*
490  * Switches to another thread if we are still asleep on a sleep queue.
491  * Returns with thread lock.
492  */
493 static void
494 sleepq_switch(void *wchan, int pri)
495 {
496 	struct sleepqueue_chain *sc;
497 	struct sleepqueue *sq;
498 	struct thread *td;
499 
500 	td = curthread;
501 	sc = SC_LOOKUP(wchan);
502 	mtx_assert(&sc->sc_lock, MA_OWNED);
503 	THREAD_LOCK_ASSERT(td, MA_OWNED);
504 
505 	/*
506 	 * If we have a sleep queue, then we've already been woken up, so
507 	 * just return.
508 	 */
509 	if (td->td_sleepqueue != NULL) {
510 		mtx_unlock_spin(&sc->sc_lock);
511 		return;
512 	}
513 
514 	/*
515 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
516 	 * already but we are still on the sleep queue, so dequeue the
517 	 * thread and return.
518 	 */
519 	if (td->td_flags & TDF_TIMEOUT) {
520 		MPASS(TD_ON_SLEEPQ(td));
521 		sq = sleepq_lookup(wchan);
522 		if (sleepq_resume_thread(sq, td, 0)) {
523 #ifdef INVARIANTS
524 			/*
525 			 * This thread hasn't gone to sleep yet, so it
526 			 * should not be swapped out.
527 			 */
528 			panic("not waking up swapper");
529 #endif
530 		}
531 		mtx_unlock_spin(&sc->sc_lock);
532 		return;
533 	}
534 #ifdef SLEEPQUEUE_PROFILING
535 	if (prof_enabled)
536 		sleepq_profile(td->td_wmesg);
537 #endif
538 	MPASS(td->td_sleepqueue == NULL);
539 	sched_sleep(td, pri);
540 	thread_lock_set(td, &sc->sc_lock);
541 	SDT_PROBE0(sched, , , sleep);
542 	TD_SET_SLEEPING(td);
543 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
544 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
545 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
546 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
547 }
548 
549 /*
550  * Check to see if we timed out.
551  */
552 static int
553 sleepq_check_timeout(void)
554 {
555 	struct thread *td;
556 
557 	td = curthread;
558 	THREAD_LOCK_ASSERT(td, MA_OWNED);
559 
560 	/*
561 	 * If TDF_TIMEOUT is set, we timed out.
562 	 */
563 	if (td->td_flags & TDF_TIMEOUT) {
564 		td->td_flags &= ~TDF_TIMEOUT;
565 		return (EWOULDBLOCK);
566 	}
567 
568 	/*
569 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
570 	 * already been woken up.
571 	 */
572 	if (td->td_flags & TDF_TIMOFAIL)
573 		td->td_flags &= ~TDF_TIMOFAIL;
574 
575 	/*
576 	 * If callout_stop() fails, then the timeout is running on
577 	 * another CPU, so synchronize with it to avoid having it
578 	 * accidentally wake up a subsequent sleep.
579 	 */
580 	else if (callout_stop(&td->td_slpcallout) == 0) {
581 		td->td_flags |= TDF_TIMEOUT;
582 		TD_SET_SLEEPING(td);
583 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
584 	}
585 	return (0);
586 }
587 
588 /*
589  * Check to see if we were awoken by a signal.
590  */
591 static int
592 sleepq_check_signals(void)
593 {
594 	struct thread *td;
595 
596 	td = curthread;
597 	THREAD_LOCK_ASSERT(td, MA_OWNED);
598 
599 	/* We are no longer in an interruptible sleep. */
600 	if (td->td_flags & TDF_SINTR)
601 		td->td_flags &= ~TDF_SINTR;
602 
603 	if (td->td_flags & TDF_SLEEPABORT) {
604 		td->td_flags &= ~TDF_SLEEPABORT;
605 		return (td->td_intrval);
606 	}
607 
608 	return (0);
609 }
610 
611 /*
612  * Block the current thread until it is awakened from its sleep queue.
613  */
614 void
615 sleepq_wait(void *wchan, int pri)
616 {
617 	struct thread *td;
618 
619 	td = curthread;
620 	MPASS(!(td->td_flags & TDF_SINTR));
621 	thread_lock(td);
622 	sleepq_switch(wchan, pri);
623 	thread_unlock(td);
624 }
625 
626 /*
627  * Block the current thread until it is awakened from its sleep queue
628  * or it is interrupted by a signal.
629  */
630 int
631 sleepq_wait_sig(void *wchan, int pri)
632 {
633 	int rcatch;
634 	int rval;
635 
636 	rcatch = sleepq_catch_signals(wchan, pri);
637 	rval = sleepq_check_signals();
638 	thread_unlock(curthread);
639 	if (rcatch)
640 		return (rcatch);
641 	return (rval);
642 }
643 
644 /*
645  * Block the current thread until it is awakened from its sleep queue
646  * or it times out while waiting.
647  */
648 int
649 sleepq_timedwait(void *wchan, int pri)
650 {
651 	struct thread *td;
652 	int rval;
653 
654 	td = curthread;
655 	MPASS(!(td->td_flags & TDF_SINTR));
656 	thread_lock(td);
657 	sleepq_switch(wchan, pri);
658 	rval = sleepq_check_timeout();
659 	thread_unlock(td);
660 
661 	return (rval);
662 }
663 
664 /*
665  * Block the current thread until it is awakened from its sleep queue,
666  * it is interrupted by a signal, or it times out waiting to be awakened.
667  */
668 int
669 sleepq_timedwait_sig(void *wchan, int pri)
670 {
671 	int rcatch, rvalt, rvals;
672 
673 	rcatch = sleepq_catch_signals(wchan, pri);
674 	rvalt = sleepq_check_timeout();
675 	rvals = sleepq_check_signals();
676 	thread_unlock(curthread);
677 	if (rcatch)
678 		return (rcatch);
679 	if (rvals)
680 		return (rvals);
681 	return (rvalt);
682 }
683 
684 /*
685  * Returns the type of sleepqueue given a waitchannel.
686  */
687 int
688 sleepq_type(void *wchan)
689 {
690 	struct sleepqueue *sq;
691 	int type;
692 
693 	MPASS(wchan != NULL);
694 
695 	sleepq_lock(wchan);
696 	sq = sleepq_lookup(wchan);
697 	if (sq == NULL) {
698 		sleepq_release(wchan);
699 		return (-1);
700 	}
701 	type = sq->sq_type;
702 	sleepq_release(wchan);
703 	return (type);
704 }
705 
706 /*
707  * Removes a thread from a sleep queue and makes it
708  * runnable.
709  */
710 static int
711 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
712 {
713 	struct sleepqueue_chain *sc;
714 
715 	MPASS(td != NULL);
716 	MPASS(sq->sq_wchan != NULL);
717 	MPASS(td->td_wchan == sq->sq_wchan);
718 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
719 	THREAD_LOCK_ASSERT(td, MA_OWNED);
720 	sc = SC_LOOKUP(sq->sq_wchan);
721 	mtx_assert(&sc->sc_lock, MA_OWNED);
722 
723 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
724 
725 	/* Remove the thread from the queue. */
726 	sq->sq_blockedcnt[td->td_sqqueue]--;
727 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
728 
729 	/*
730 	 * Get a sleep queue for this thread.  If this is the last waiter,
731 	 * use the queue itself and take it out of the chain, otherwise,
732 	 * remove a queue from the free list.
733 	 */
734 	if (LIST_EMPTY(&sq->sq_free)) {
735 		td->td_sleepqueue = sq;
736 #ifdef INVARIANTS
737 		sq->sq_wchan = NULL;
738 #endif
739 #ifdef SLEEPQUEUE_PROFILING
740 		sc->sc_depth--;
741 #endif
742 	} else
743 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
744 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
745 
746 	td->td_wmesg = NULL;
747 	td->td_wchan = NULL;
748 	td->td_flags &= ~TDF_SINTR;
749 
750 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
751 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
752 
753 	/* Adjust priority if requested. */
754 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
755 	if (pri != 0 && td->td_priority > pri &&
756 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
757 		sched_prio(td, pri);
758 
759 	/*
760 	 * Note that thread td might not be sleeping if it is running
761 	 * sleepq_catch_signals() on another CPU or is blocked on its
762 	 * proc lock to check signals.  There's no need to mark the
763 	 * thread runnable in that case.
764 	 */
765 	if (TD_IS_SLEEPING(td)) {
766 		TD_CLR_SLEEPING(td);
767 		return (setrunnable(td));
768 	}
769 	return (0);
770 }
771 
772 #ifdef INVARIANTS
773 /*
774  * UMA zone item deallocator.
775  */
776 static void
777 sleepq_dtor(void *mem, int size, void *arg)
778 {
779 	struct sleepqueue *sq;
780 	int i;
781 
782 	sq = mem;
783 	for (i = 0; i < NR_SLEEPQS; i++) {
784 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
785 		MPASS(sq->sq_blockedcnt[i] == 0);
786 	}
787 }
788 #endif
789 
790 /*
791  * UMA zone item initializer.
792  */
793 static int
794 sleepq_init(void *mem, int size, int flags)
795 {
796 	struct sleepqueue *sq;
797 	int i;
798 
799 	bzero(mem, size);
800 	sq = mem;
801 	for (i = 0; i < NR_SLEEPQS; i++) {
802 		TAILQ_INIT(&sq->sq_blocked[i]);
803 		sq->sq_blockedcnt[i] = 0;
804 	}
805 	LIST_INIT(&sq->sq_free);
806 	return (0);
807 }
808 
809 /*
810  * Find the highest priority thread sleeping on a wait channel and resume it.
811  */
812 int
813 sleepq_signal(void *wchan, int flags, int pri, int queue)
814 {
815 	struct sleepqueue *sq;
816 	struct thread *td, *besttd;
817 	int wakeup_swapper;
818 
819 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
820 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
821 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
822 	sq = sleepq_lookup(wchan);
823 	if (sq == NULL)
824 		return (0);
825 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
826 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
827 
828 	/*
829 	 * Find the highest priority thread on the queue.  If there is a
830 	 * tie, use the thread that first appears in the queue as it has
831 	 * been sleeping the longest since threads are always added to
832 	 * the tail of sleep queues.
833 	 */
834 	besttd = NULL;
835 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
836 		if (besttd == NULL || td->td_priority < besttd->td_priority)
837 			besttd = td;
838 	}
839 	MPASS(besttd != NULL);
840 	thread_lock(besttd);
841 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
842 	thread_unlock(besttd);
843 	return (wakeup_swapper);
844 }
845 
846 /*
847  * Resume all threads sleeping on a specified wait channel.
848  */
849 int
850 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
851 {
852 	struct sleepqueue *sq;
853 	struct thread *td, *tdn;
854 	int wakeup_swapper;
855 
856 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
857 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
858 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
859 	sq = sleepq_lookup(wchan);
860 	if (sq == NULL)
861 		return (0);
862 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
863 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
864 
865 	/* Resume all blocked threads on the sleep queue. */
866 	wakeup_swapper = 0;
867 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
868 		thread_lock(td);
869 		if (sleepq_resume_thread(sq, td, pri))
870 			wakeup_swapper = 1;
871 		thread_unlock(td);
872 	}
873 	return (wakeup_swapper);
874 }
875 
876 /*
877  * Time sleeping threads out.  When the timeout expires, the thread is
878  * removed from the sleep queue and made runnable if it is still asleep.
879  */
880 static void
881 sleepq_timeout(void *arg)
882 {
883 	struct sleepqueue_chain *sc;
884 	struct sleepqueue *sq;
885 	struct thread *td;
886 	void *wchan;
887 	int wakeup_swapper;
888 
889 	td = arg;
890 	wakeup_swapper = 0;
891 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
892 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
893 
894 	/*
895 	 * First, see if the thread is asleep and get the wait channel if
896 	 * it is.
897 	 */
898 	thread_lock(td);
899 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
900 		wchan = td->td_wchan;
901 		sc = SC_LOOKUP(wchan);
902 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
903 		sq = sleepq_lookup(wchan);
904 		MPASS(sq != NULL);
905 		td->td_flags |= TDF_TIMEOUT;
906 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
907 		thread_unlock(td);
908 		if (wakeup_swapper)
909 			kick_proc0();
910 		return;
911 	}
912 
913 	/*
914 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
915 	 * can either be on another CPU in between sleepq_add() and
916 	 * one of the sleepq_*wait*() routines or it can be in
917 	 * sleepq_catch_signals().
918 	 */
919 	if (TD_ON_SLEEPQ(td)) {
920 		td->td_flags |= TDF_TIMEOUT;
921 		thread_unlock(td);
922 		return;
923 	}
924 
925 	/*
926 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
927 	 * then the other thread has already yielded to us, so clear
928 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
929 	 * we know that the other thread is not on a sleep queue, but it
930 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
931 	 * to let it know that the timeout has already run and doesn't
932 	 * need to be canceled.
933 	 */
934 	if (td->td_flags & TDF_TIMEOUT) {
935 		MPASS(TD_IS_SLEEPING(td));
936 		td->td_flags &= ~TDF_TIMEOUT;
937 		TD_CLR_SLEEPING(td);
938 		wakeup_swapper = setrunnable(td);
939 	} else
940 		td->td_flags |= TDF_TIMOFAIL;
941 	thread_unlock(td);
942 	if (wakeup_swapper)
943 		kick_proc0();
944 }
945 
946 /*
947  * Resumes a specific thread from the sleep queue associated with a specific
948  * wait channel if it is on that queue.
949  */
950 void
951 sleepq_remove(struct thread *td, void *wchan)
952 {
953 	struct sleepqueue *sq;
954 	int wakeup_swapper;
955 
956 	/*
957 	 * Look up the sleep queue for this wait channel, then re-check
958 	 * that the thread is asleep on that channel, if it is not, then
959 	 * bail.
960 	 */
961 	MPASS(wchan != NULL);
962 	sleepq_lock(wchan);
963 	sq = sleepq_lookup(wchan);
964 	/*
965 	 * We can not lock the thread here as it may be sleeping on a
966 	 * different sleepq.  However, holding the sleepq lock for this
967 	 * wchan can guarantee that we do not miss a wakeup for this
968 	 * channel.  The asserts below will catch any false positives.
969 	 */
970 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
971 		sleepq_release(wchan);
972 		return;
973 	}
974 	/* Thread is asleep on sleep queue sq, so wake it up. */
975 	thread_lock(td);
976 	MPASS(sq != NULL);
977 	MPASS(td->td_wchan == wchan);
978 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
979 	thread_unlock(td);
980 	sleepq_release(wchan);
981 	if (wakeup_swapper)
982 		kick_proc0();
983 }
984 
985 /*
986  * Abort a thread as if an interrupt had occurred.  Only abort
987  * interruptible waits (unfortunately it isn't safe to abort others).
988  */
989 int
990 sleepq_abort(struct thread *td, int intrval)
991 {
992 	struct sleepqueue *sq;
993 	void *wchan;
994 
995 	THREAD_LOCK_ASSERT(td, MA_OWNED);
996 	MPASS(TD_ON_SLEEPQ(td));
997 	MPASS(td->td_flags & TDF_SINTR);
998 	MPASS(intrval == EINTR || intrval == ERESTART);
999 
1000 	/*
1001 	 * If the TDF_TIMEOUT flag is set, just leave. A
1002 	 * timeout is scheduled anyhow.
1003 	 */
1004 	if (td->td_flags & TDF_TIMEOUT)
1005 		return (0);
1006 
1007 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1008 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1009 	td->td_intrval = intrval;
1010 	td->td_flags |= TDF_SLEEPABORT;
1011 	/*
1012 	 * If the thread has not slept yet it will find the signal in
1013 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1014 	 * we have to do it here.
1015 	 */
1016 	if (!TD_IS_SLEEPING(td))
1017 		return (0);
1018 	wchan = td->td_wchan;
1019 	MPASS(wchan != NULL);
1020 	sq = sleepq_lookup(wchan);
1021 	MPASS(sq != NULL);
1022 
1023 	/* Thread is asleep on sleep queue sq, so wake it up. */
1024 	return (sleepq_resume_thread(sq, td, 0));
1025 }
1026 
1027 #ifdef SLEEPQUEUE_PROFILING
1028 #define	SLEEPQ_PROF_LOCATIONS	1024
1029 #define	SLEEPQ_SBUFSIZE		512
1030 struct sleepq_prof {
1031 	LIST_ENTRY(sleepq_prof) sp_link;
1032 	const char	*sp_wmesg;
1033 	long		sp_count;
1034 };
1035 
1036 LIST_HEAD(sqphead, sleepq_prof);
1037 
1038 struct sqphead sleepq_prof_free;
1039 struct sqphead sleepq_hash[SC_TABLESIZE];
1040 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1041 static struct mtx sleepq_prof_lock;
1042 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1043 
1044 static void
1045 sleepq_profile(const char *wmesg)
1046 {
1047 	struct sleepq_prof *sp;
1048 
1049 	mtx_lock_spin(&sleepq_prof_lock);
1050 	if (prof_enabled == 0)
1051 		goto unlock;
1052 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1053 		if (sp->sp_wmesg == wmesg)
1054 			goto done;
1055 	sp = LIST_FIRST(&sleepq_prof_free);
1056 	if (sp == NULL)
1057 		goto unlock;
1058 	sp->sp_wmesg = wmesg;
1059 	LIST_REMOVE(sp, sp_link);
1060 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1061 done:
1062 	sp->sp_count++;
1063 unlock:
1064 	mtx_unlock_spin(&sleepq_prof_lock);
1065 	return;
1066 }
1067 
1068 static void
1069 sleepq_prof_reset(void)
1070 {
1071 	struct sleepq_prof *sp;
1072 	int enabled;
1073 	int i;
1074 
1075 	mtx_lock_spin(&sleepq_prof_lock);
1076 	enabled = prof_enabled;
1077 	prof_enabled = 0;
1078 	for (i = 0; i < SC_TABLESIZE; i++)
1079 		LIST_INIT(&sleepq_hash[i]);
1080 	LIST_INIT(&sleepq_prof_free);
1081 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1082 		sp = &sleepq_profent[i];
1083 		sp->sp_wmesg = NULL;
1084 		sp->sp_count = 0;
1085 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1086 	}
1087 	prof_enabled = enabled;
1088 	mtx_unlock_spin(&sleepq_prof_lock);
1089 }
1090 
1091 static int
1092 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1093 {
1094 	int error, v;
1095 
1096 	v = prof_enabled;
1097 	error = sysctl_handle_int(oidp, &v, v, req);
1098 	if (error)
1099 		return (error);
1100 	if (req->newptr == NULL)
1101 		return (error);
1102 	if (v == prof_enabled)
1103 		return (0);
1104 	if (v == 1)
1105 		sleepq_prof_reset();
1106 	mtx_lock_spin(&sleepq_prof_lock);
1107 	prof_enabled = !!v;
1108 	mtx_unlock_spin(&sleepq_prof_lock);
1109 
1110 	return (0);
1111 }
1112 
1113 static int
1114 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1115 {
1116 	int error, v;
1117 
1118 	v = 0;
1119 	error = sysctl_handle_int(oidp, &v, 0, req);
1120 	if (error)
1121 		return (error);
1122 	if (req->newptr == NULL)
1123 		return (error);
1124 	if (v == 0)
1125 		return (0);
1126 	sleepq_prof_reset();
1127 
1128 	return (0);
1129 }
1130 
1131 static int
1132 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1133 {
1134 	struct sleepq_prof *sp;
1135 	struct sbuf *sb;
1136 	int enabled;
1137 	int error;
1138 	int i;
1139 
1140 	error = sysctl_wire_old_buffer(req, 0);
1141 	if (error != 0)
1142 		return (error);
1143 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1144 	sbuf_printf(sb, "\nwmesg\tcount\n");
1145 	enabled = prof_enabled;
1146 	mtx_lock_spin(&sleepq_prof_lock);
1147 	prof_enabled = 0;
1148 	mtx_unlock_spin(&sleepq_prof_lock);
1149 	for (i = 0; i < SC_TABLESIZE; i++) {
1150 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1151 			sbuf_printf(sb, "%s\t%ld\n",
1152 			    sp->sp_wmesg, sp->sp_count);
1153 		}
1154 	}
1155 	mtx_lock_spin(&sleepq_prof_lock);
1156 	prof_enabled = enabled;
1157 	mtx_unlock_spin(&sleepq_prof_lock);
1158 
1159 	error = sbuf_finish(sb);
1160 	sbuf_delete(sb);
1161 	return (error);
1162 }
1163 
1164 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1165     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1166 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1167     NULL, 0, reset_sleepq_prof_stats, "I",
1168     "Reset sleepqueue profiling statistics");
1169 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1170     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1171 #endif
1172 
1173 #ifdef DDB
1174 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1175 {
1176 	struct sleepqueue_chain *sc;
1177 	struct sleepqueue *sq;
1178 #ifdef INVARIANTS
1179 	struct lock_object *lock;
1180 #endif
1181 	struct thread *td;
1182 	void *wchan;
1183 	int i;
1184 
1185 	if (!have_addr)
1186 		return;
1187 
1188 	/*
1189 	 * First, see if there is an active sleep queue for the wait channel
1190 	 * indicated by the address.
1191 	 */
1192 	wchan = (void *)addr;
1193 	sc = SC_LOOKUP(wchan);
1194 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1195 		if (sq->sq_wchan == wchan)
1196 			goto found;
1197 
1198 	/*
1199 	 * Second, see if there is an active sleep queue at the address
1200 	 * indicated.
1201 	 */
1202 	for (i = 0; i < SC_TABLESIZE; i++)
1203 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1204 			if (sq == (struct sleepqueue *)addr)
1205 				goto found;
1206 		}
1207 
1208 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1209 	return;
1210 found:
1211 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1212 	db_printf("Queue type: %d\n", sq->sq_type);
1213 #ifdef INVARIANTS
1214 	if (sq->sq_lock) {
1215 		lock = sq->sq_lock;
1216 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1217 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1218 	}
1219 #endif
1220 	db_printf("Blocked threads:\n");
1221 	for (i = 0; i < NR_SLEEPQS; i++) {
1222 		db_printf("\nQueue[%d]:\n", i);
1223 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1224 			db_printf("\tempty\n");
1225 		else
1226 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1227 				      td_slpq) {
1228 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1229 					  td->td_tid, td->td_proc->p_pid,
1230 					  td->td_name);
1231 			}
1232 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1233 	}
1234 }
1235 
1236 /* Alias 'show sleepqueue' to 'show sleepq'. */
1237 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1238 #endif
1239