xref: /freebsd/sys/kern/subr_sleepqueue.c (revision fba3cde907930eed2adb8a320524bc250338c729)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_kdtrace.h"
68 #include "opt_sched.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sbuf.h>
78 #include <sys/sched.h>
79 #include <sys/sdt.h>
80 #include <sys/signalvar.h>
81 #include <sys/sleepqueue.h>
82 #include <sys/sysctl.h>
83 
84 #include <vm/uma.h>
85 
86 #ifdef DDB
87 #include <ddb/ddb.h>
88 #endif
89 
90 /*
91  * Constants for the hash table of sleep queue chains.
92  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
93  */
94 #define	SC_TABLESIZE	256			/* Must be power of 2. */
95 #define	SC_MASK		(SC_TABLESIZE - 1)
96 #define	SC_SHIFT	8
97 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
98 			    SC_MASK)
99 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
100 #define NR_SLEEPQS      2
101 /*
102  * There two different lists of sleep queues.  Both lists are connected
103  * via the sq_hash entries.  The first list is the sleep queue chain list
104  * that a sleep queue is on when it is attached to a wait channel.  The
105  * second list is the free list hung off of a sleep queue that is attached
106  * to a wait channel.
107  *
108  * Each sleep queue also contains the wait channel it is attached to, the
109  * list of threads blocked on that wait channel, flags specific to the
110  * wait channel, and the lock used to synchronize with a wait channel.
111  * The flags are used to catch mismatches between the various consumers
112  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
113  * The lock pointer is only used when invariants are enabled for various
114  * debugging checks.
115  *
116  * Locking key:
117  *  c - sleep queue chain lock
118  */
119 struct sleepqueue {
120 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
121 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
122 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
123 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
124 	void	*sq_wchan;			/* (c) Wait channel. */
125 	int	sq_type;			/* (c) Queue type. */
126 #ifdef INVARIANTS
127 	struct lock_object *sq_lock;		/* (c) Associated lock. */
128 #endif
129 };
130 
131 struct sleepqueue_chain {
132 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
133 	struct mtx sc_lock;			/* Spin lock for this chain. */
134 #ifdef SLEEPQUEUE_PROFILING
135 	u_int	sc_depth;			/* Length of sc_queues. */
136 	u_int	sc_max_depth;			/* Max length of sc_queues. */
137 #endif
138 };
139 
140 #ifdef SLEEPQUEUE_PROFILING
141 u_int sleepq_max_depth;
142 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
143 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
144     "sleepq chain stats");
145 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
146     0, "maxmimum depth achieved of a single chain");
147 
148 static void	sleepq_profile(const char *wmesg);
149 static int	prof_enabled;
150 #endif
151 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
152 static uma_zone_t sleepq_zone;
153 
154 /*
155  * Prototypes for non-exported routines.
156  */
157 static int	sleepq_catch_signals(void *wchan, int pri);
158 static int	sleepq_check_signals(void);
159 static int	sleepq_check_timeout(void);
160 #ifdef INVARIANTS
161 static void	sleepq_dtor(void *mem, int size, void *arg);
162 #endif
163 static int	sleepq_init(void *mem, int size, int flags);
164 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
165 		    int pri);
166 static void	sleepq_switch(void *wchan, int pri);
167 static void	sleepq_timeout(void *arg);
168 
169 SDT_PROBE_DECLARE(sched, , , sleep);
170 SDT_PROBE_DECLARE(sched, , , wakeup);
171 
172 /*
173  * Early initialization of sleep queues that is called from the sleepinit()
174  * SYSINIT.
175  */
176 void
177 init_sleepqueues(void)
178 {
179 #ifdef SLEEPQUEUE_PROFILING
180 	struct sysctl_oid *chain_oid;
181 	char chain_name[10];
182 #endif
183 	int i;
184 
185 	for (i = 0; i < SC_TABLESIZE; i++) {
186 		LIST_INIT(&sleepq_chains[i].sc_queues);
187 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
188 		    MTX_SPIN | MTX_RECURSE);
189 #ifdef SLEEPQUEUE_PROFILING
190 		snprintf(chain_name, sizeof(chain_name), "%d", i);
191 		chain_oid = SYSCTL_ADD_NODE(NULL,
192 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
193 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
194 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
195 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
196 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
197 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
198 		    NULL);
199 #endif
200 	}
201 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
202 #ifdef INVARIANTS
203 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
204 #else
205 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
206 #endif
207 
208 	thread0.td_sleepqueue = sleepq_alloc();
209 }
210 
211 /*
212  * Get a sleep queue for a new thread.
213  */
214 struct sleepqueue *
215 sleepq_alloc(void)
216 {
217 
218 	return (uma_zalloc(sleepq_zone, M_WAITOK));
219 }
220 
221 /*
222  * Free a sleep queue when a thread is destroyed.
223  */
224 void
225 sleepq_free(struct sleepqueue *sq)
226 {
227 
228 	uma_zfree(sleepq_zone, sq);
229 }
230 
231 /*
232  * Lock the sleep queue chain associated with the specified wait channel.
233  */
234 void
235 sleepq_lock(void *wchan)
236 {
237 	struct sleepqueue_chain *sc;
238 
239 	sc = SC_LOOKUP(wchan);
240 	mtx_lock_spin(&sc->sc_lock);
241 }
242 
243 /*
244  * Look up the sleep queue associated with a given wait channel in the hash
245  * table locking the associated sleep queue chain.  If no queue is found in
246  * the table, NULL is returned.
247  */
248 struct sleepqueue *
249 sleepq_lookup(void *wchan)
250 {
251 	struct sleepqueue_chain *sc;
252 	struct sleepqueue *sq;
253 
254 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
255 	sc = SC_LOOKUP(wchan);
256 	mtx_assert(&sc->sc_lock, MA_OWNED);
257 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
258 		if (sq->sq_wchan == wchan)
259 			return (sq);
260 	return (NULL);
261 }
262 
263 /*
264  * Unlock the sleep queue chain associated with a given wait channel.
265  */
266 void
267 sleepq_release(void *wchan)
268 {
269 	struct sleepqueue_chain *sc;
270 
271 	sc = SC_LOOKUP(wchan);
272 	mtx_unlock_spin(&sc->sc_lock);
273 }
274 
275 /*
276  * Places the current thread on the sleep queue for the specified wait
277  * channel.  If INVARIANTS is enabled, then it associates the passed in
278  * lock with the sleepq to make sure it is held when that sleep queue is
279  * woken up.
280  */
281 void
282 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
283     int queue)
284 {
285 	struct sleepqueue_chain *sc;
286 	struct sleepqueue *sq;
287 	struct thread *td;
288 
289 	td = curthread;
290 	sc = SC_LOOKUP(wchan);
291 	mtx_assert(&sc->sc_lock, MA_OWNED);
292 	MPASS(td->td_sleepqueue != NULL);
293 	MPASS(wchan != NULL);
294 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
295 
296 	/* If this thread is not allowed to sleep, die a horrible death. */
297 	KASSERT(td->td_no_sleeping == 0,
298 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
299 	    __func__, td, wchan));
300 
301 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
302 	sq = sleepq_lookup(wchan);
303 
304 	/*
305 	 * If the wait channel does not already have a sleep queue, use
306 	 * this thread's sleep queue.  Otherwise, insert the current thread
307 	 * into the sleep queue already in use by this wait channel.
308 	 */
309 	if (sq == NULL) {
310 #ifdef INVARIANTS
311 		int i;
312 
313 		sq = td->td_sleepqueue;
314 		for (i = 0; i < NR_SLEEPQS; i++) {
315 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
316 			    ("thread's sleep queue %d is not empty", i));
317 			KASSERT(sq->sq_blockedcnt[i] == 0,
318 			    ("thread's sleep queue %d count mismatches", i));
319 		}
320 		KASSERT(LIST_EMPTY(&sq->sq_free),
321 		    ("thread's sleep queue has a non-empty free list"));
322 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
323 		sq->sq_lock = lock;
324 #endif
325 #ifdef SLEEPQUEUE_PROFILING
326 		sc->sc_depth++;
327 		if (sc->sc_depth > sc->sc_max_depth) {
328 			sc->sc_max_depth = sc->sc_depth;
329 			if (sc->sc_max_depth > sleepq_max_depth)
330 				sleepq_max_depth = sc->sc_max_depth;
331 		}
332 #endif
333 		sq = td->td_sleepqueue;
334 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
335 		sq->sq_wchan = wchan;
336 		sq->sq_type = flags & SLEEPQ_TYPE;
337 	} else {
338 		MPASS(wchan == sq->sq_wchan);
339 		MPASS(lock == sq->sq_lock);
340 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
341 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
342 	}
343 	thread_lock(td);
344 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
345 	sq->sq_blockedcnt[queue]++;
346 	td->td_sleepqueue = NULL;
347 	td->td_sqqueue = queue;
348 	td->td_wchan = wchan;
349 	td->td_wmesg = wmesg;
350 	if (flags & SLEEPQ_INTERRUPTIBLE) {
351 		td->td_flags |= TDF_SINTR;
352 		td->td_flags &= ~TDF_SLEEPABORT;
353 	}
354 	thread_unlock(td);
355 }
356 
357 /*
358  * Sets a timeout that will remove the current thread from the specified
359  * sleep queue after timo ticks if the thread has not already been awakened.
360  */
361 void
362 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
363     int flags)
364 {
365 	struct sleepqueue_chain *sc;
366 	struct thread *td;
367 
368 	td = curthread;
369 	sc = SC_LOOKUP(wchan);
370 	mtx_assert(&sc->sc_lock, MA_OWNED);
371 	MPASS(TD_ON_SLEEPQ(td));
372 	MPASS(td->td_sleepqueue == NULL);
373 	MPASS(wchan != NULL);
374 	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
375 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
376 }
377 
378 /*
379  * Return the number of actual sleepers for the specified queue.
380  */
381 u_int
382 sleepq_sleepcnt(void *wchan, int queue)
383 {
384 	struct sleepqueue *sq;
385 
386 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
387 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
388 	sq = sleepq_lookup(wchan);
389 	if (sq == NULL)
390 		return (0);
391 	return (sq->sq_blockedcnt[queue]);
392 }
393 
394 /*
395  * Marks the pending sleep of the current thread as interruptible and
396  * makes an initial check for pending signals before putting a thread
397  * to sleep. Enters and exits with the thread lock held.  Thread lock
398  * may have transitioned from the sleepq lock to a run lock.
399  */
400 static int
401 sleepq_catch_signals(void *wchan, int pri)
402 {
403 	struct sleepqueue_chain *sc;
404 	struct sleepqueue *sq;
405 	struct thread *td;
406 	struct proc *p;
407 	struct sigacts *ps;
408 	int sig, ret;
409 
410 	td = curthread;
411 	p = curproc;
412 	sc = SC_LOOKUP(wchan);
413 	mtx_assert(&sc->sc_lock, MA_OWNED);
414 	MPASS(wchan != NULL);
415 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
416 		td->td_pflags &= ~TDP_WAKEUP;
417 		ret = EINTR;
418 		thread_lock(td);
419 		goto out;
420 	}
421 
422 	/*
423 	 * See if there are any pending signals for this thread.  If not
424 	 * we can switch immediately.  Otherwise do the signal processing
425 	 * directly.
426 	 */
427 	thread_lock(td);
428 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
429 		sleepq_switch(wchan, pri);
430 		return (0);
431 	}
432 	thread_unlock(td);
433 	mtx_unlock_spin(&sc->sc_lock);
434 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
435 		(void *)td, (long)p->p_pid, td->td_name);
436 	PROC_LOCK(p);
437 	ps = p->p_sigacts;
438 	mtx_lock(&ps->ps_mtx);
439 	sig = cursig(td);
440 	if (sig == 0) {
441 		mtx_unlock(&ps->ps_mtx);
442 		ret = thread_suspend_check(1);
443 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
444 	} else {
445 		if (SIGISMEMBER(ps->ps_sigintr, sig))
446 			ret = EINTR;
447 		else
448 			ret = ERESTART;
449 		mtx_unlock(&ps->ps_mtx);
450 	}
451 	/*
452 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
453 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
454 	 * thread_lock() are currently held in tdsendsignal().
455 	 */
456 	PROC_SLOCK(p);
457 	mtx_lock_spin(&sc->sc_lock);
458 	PROC_UNLOCK(p);
459 	thread_lock(td);
460 	PROC_SUNLOCK(p);
461 	if (ret == 0) {
462 		sleepq_switch(wchan, pri);
463 		return (0);
464 	}
465 out:
466 	/*
467 	 * There were pending signals and this thread is still
468 	 * on the sleep queue, remove it from the sleep queue.
469 	 */
470 	if (TD_ON_SLEEPQ(td)) {
471 		sq = sleepq_lookup(wchan);
472 		if (sleepq_resume_thread(sq, td, 0)) {
473 #ifdef INVARIANTS
474 			/*
475 			 * This thread hasn't gone to sleep yet, so it
476 			 * should not be swapped out.
477 			 */
478 			panic("not waking up swapper");
479 #endif
480 		}
481 	}
482 	mtx_unlock_spin(&sc->sc_lock);
483 	MPASS(td->td_lock != &sc->sc_lock);
484 	return (ret);
485 }
486 
487 /*
488  * Switches to another thread if we are still asleep on a sleep queue.
489  * Returns with thread lock.
490  */
491 static void
492 sleepq_switch(void *wchan, int pri)
493 {
494 	struct sleepqueue_chain *sc;
495 	struct sleepqueue *sq;
496 	struct thread *td;
497 
498 	td = curthread;
499 	sc = SC_LOOKUP(wchan);
500 	mtx_assert(&sc->sc_lock, MA_OWNED);
501 	THREAD_LOCK_ASSERT(td, MA_OWNED);
502 
503 	/*
504 	 * If we have a sleep queue, then we've already been woken up, so
505 	 * just return.
506 	 */
507 	if (td->td_sleepqueue != NULL) {
508 		mtx_unlock_spin(&sc->sc_lock);
509 		return;
510 	}
511 
512 	/*
513 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
514 	 * already but we are still on the sleep queue, so dequeue the
515 	 * thread and return.
516 	 */
517 	if (td->td_flags & TDF_TIMEOUT) {
518 		MPASS(TD_ON_SLEEPQ(td));
519 		sq = sleepq_lookup(wchan);
520 		if (sleepq_resume_thread(sq, td, 0)) {
521 #ifdef INVARIANTS
522 			/*
523 			 * This thread hasn't gone to sleep yet, so it
524 			 * should not be swapped out.
525 			 */
526 			panic("not waking up swapper");
527 #endif
528 		}
529 		mtx_unlock_spin(&sc->sc_lock);
530 		return;
531 	}
532 #ifdef SLEEPQUEUE_PROFILING
533 	if (prof_enabled)
534 		sleepq_profile(td->td_wmesg);
535 #endif
536 	MPASS(td->td_sleepqueue == NULL);
537 	sched_sleep(td, pri);
538 	thread_lock_set(td, &sc->sc_lock);
539 	SDT_PROBE0(sched, , , sleep);
540 	TD_SET_SLEEPING(td);
541 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
542 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
543 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
544 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
545 }
546 
547 /*
548  * Check to see if we timed out.
549  */
550 static int
551 sleepq_check_timeout(void)
552 {
553 	struct thread *td;
554 
555 	td = curthread;
556 	THREAD_LOCK_ASSERT(td, MA_OWNED);
557 
558 	/*
559 	 * If TDF_TIMEOUT is set, we timed out.
560 	 */
561 	if (td->td_flags & TDF_TIMEOUT) {
562 		td->td_flags &= ~TDF_TIMEOUT;
563 		return (EWOULDBLOCK);
564 	}
565 
566 	/*
567 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
568 	 * already been woken up.
569 	 */
570 	if (td->td_flags & TDF_TIMOFAIL)
571 		td->td_flags &= ~TDF_TIMOFAIL;
572 
573 	/*
574 	 * If callout_stop() fails, then the timeout is running on
575 	 * another CPU, so synchronize with it to avoid having it
576 	 * accidentally wake up a subsequent sleep.
577 	 */
578 	else if (callout_stop(&td->td_slpcallout) == 0) {
579 		td->td_flags |= TDF_TIMEOUT;
580 		TD_SET_SLEEPING(td);
581 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
582 	}
583 	return (0);
584 }
585 
586 /*
587  * Check to see if we were awoken by a signal.
588  */
589 static int
590 sleepq_check_signals(void)
591 {
592 	struct thread *td;
593 
594 	td = curthread;
595 	THREAD_LOCK_ASSERT(td, MA_OWNED);
596 
597 	/* We are no longer in an interruptible sleep. */
598 	if (td->td_flags & TDF_SINTR)
599 		td->td_flags &= ~TDF_SINTR;
600 
601 	if (td->td_flags & TDF_SLEEPABORT) {
602 		td->td_flags &= ~TDF_SLEEPABORT;
603 		return (td->td_intrval);
604 	}
605 
606 	return (0);
607 }
608 
609 /*
610  * Block the current thread until it is awakened from its sleep queue.
611  */
612 void
613 sleepq_wait(void *wchan, int pri)
614 {
615 	struct thread *td;
616 
617 	td = curthread;
618 	MPASS(!(td->td_flags & TDF_SINTR));
619 	thread_lock(td);
620 	sleepq_switch(wchan, pri);
621 	thread_unlock(td);
622 }
623 
624 /*
625  * Block the current thread until it is awakened from its sleep queue
626  * or it is interrupted by a signal.
627  */
628 int
629 sleepq_wait_sig(void *wchan, int pri)
630 {
631 	int rcatch;
632 	int rval;
633 
634 	rcatch = sleepq_catch_signals(wchan, pri);
635 	rval = sleepq_check_signals();
636 	thread_unlock(curthread);
637 	if (rcatch)
638 		return (rcatch);
639 	return (rval);
640 }
641 
642 /*
643  * Block the current thread until it is awakened from its sleep queue
644  * or it times out while waiting.
645  */
646 int
647 sleepq_timedwait(void *wchan, int pri)
648 {
649 	struct thread *td;
650 	int rval;
651 
652 	td = curthread;
653 	MPASS(!(td->td_flags & TDF_SINTR));
654 	thread_lock(td);
655 	sleepq_switch(wchan, pri);
656 	rval = sleepq_check_timeout();
657 	thread_unlock(td);
658 
659 	return (rval);
660 }
661 
662 /*
663  * Block the current thread until it is awakened from its sleep queue,
664  * it is interrupted by a signal, or it times out waiting to be awakened.
665  */
666 int
667 sleepq_timedwait_sig(void *wchan, int pri)
668 {
669 	int rcatch, rvalt, rvals;
670 
671 	rcatch = sleepq_catch_signals(wchan, pri);
672 	rvalt = sleepq_check_timeout();
673 	rvals = sleepq_check_signals();
674 	thread_unlock(curthread);
675 	if (rcatch)
676 		return (rcatch);
677 	if (rvals)
678 		return (rvals);
679 	return (rvalt);
680 }
681 
682 /*
683  * Returns the type of sleepqueue given a waitchannel.
684  */
685 int
686 sleepq_type(void *wchan)
687 {
688 	struct sleepqueue *sq;
689 	int type;
690 
691 	MPASS(wchan != NULL);
692 
693 	sleepq_lock(wchan);
694 	sq = sleepq_lookup(wchan);
695 	if (sq == NULL) {
696 		sleepq_release(wchan);
697 		return (-1);
698 	}
699 	type = sq->sq_type;
700 	sleepq_release(wchan);
701 	return (type);
702 }
703 
704 /*
705  * Removes a thread from a sleep queue and makes it
706  * runnable.
707  */
708 static int
709 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
710 {
711 	struct sleepqueue_chain *sc;
712 
713 	MPASS(td != NULL);
714 	MPASS(sq->sq_wchan != NULL);
715 	MPASS(td->td_wchan == sq->sq_wchan);
716 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
717 	THREAD_LOCK_ASSERT(td, MA_OWNED);
718 	sc = SC_LOOKUP(sq->sq_wchan);
719 	mtx_assert(&sc->sc_lock, MA_OWNED);
720 
721 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
722 
723 	/* Remove the thread from the queue. */
724 	sq->sq_blockedcnt[td->td_sqqueue]--;
725 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
726 
727 	/*
728 	 * Get a sleep queue for this thread.  If this is the last waiter,
729 	 * use the queue itself and take it out of the chain, otherwise,
730 	 * remove a queue from the free list.
731 	 */
732 	if (LIST_EMPTY(&sq->sq_free)) {
733 		td->td_sleepqueue = sq;
734 #ifdef INVARIANTS
735 		sq->sq_wchan = NULL;
736 #endif
737 #ifdef SLEEPQUEUE_PROFILING
738 		sc->sc_depth--;
739 #endif
740 	} else
741 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
742 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
743 
744 	td->td_wmesg = NULL;
745 	td->td_wchan = NULL;
746 	td->td_flags &= ~TDF_SINTR;
747 
748 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
749 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
750 
751 	/* Adjust priority if requested. */
752 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
753 	if (pri != 0 && td->td_priority > pri &&
754 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
755 		sched_prio(td, pri);
756 
757 	/*
758 	 * Note that thread td might not be sleeping if it is running
759 	 * sleepq_catch_signals() on another CPU or is blocked on its
760 	 * proc lock to check signals.  There's no need to mark the
761 	 * thread runnable in that case.
762 	 */
763 	if (TD_IS_SLEEPING(td)) {
764 		TD_CLR_SLEEPING(td);
765 		return (setrunnable(td));
766 	}
767 	return (0);
768 }
769 
770 #ifdef INVARIANTS
771 /*
772  * UMA zone item deallocator.
773  */
774 static void
775 sleepq_dtor(void *mem, int size, void *arg)
776 {
777 	struct sleepqueue *sq;
778 	int i;
779 
780 	sq = mem;
781 	for (i = 0; i < NR_SLEEPQS; i++) {
782 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
783 		MPASS(sq->sq_blockedcnt[i] == 0);
784 	}
785 }
786 #endif
787 
788 /*
789  * UMA zone item initializer.
790  */
791 static int
792 sleepq_init(void *mem, int size, int flags)
793 {
794 	struct sleepqueue *sq;
795 	int i;
796 
797 	bzero(mem, size);
798 	sq = mem;
799 	for (i = 0; i < NR_SLEEPQS; i++) {
800 		TAILQ_INIT(&sq->sq_blocked[i]);
801 		sq->sq_blockedcnt[i] = 0;
802 	}
803 	LIST_INIT(&sq->sq_free);
804 	return (0);
805 }
806 
807 /*
808  * Find the highest priority thread sleeping on a wait channel and resume it.
809  */
810 int
811 sleepq_signal(void *wchan, int flags, int pri, int queue)
812 {
813 	struct sleepqueue *sq;
814 	struct thread *td, *besttd;
815 	int wakeup_swapper;
816 
817 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
818 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
819 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
820 	sq = sleepq_lookup(wchan);
821 	if (sq == NULL)
822 		return (0);
823 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
824 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
825 
826 	/*
827 	 * Find the highest priority thread on the queue.  If there is a
828 	 * tie, use the thread that first appears in the queue as it has
829 	 * been sleeping the longest since threads are always added to
830 	 * the tail of sleep queues.
831 	 */
832 	besttd = NULL;
833 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
834 		if (besttd == NULL || td->td_priority < besttd->td_priority)
835 			besttd = td;
836 	}
837 	MPASS(besttd != NULL);
838 	thread_lock(besttd);
839 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
840 	thread_unlock(besttd);
841 	return (wakeup_swapper);
842 }
843 
844 /*
845  * Resume all threads sleeping on a specified wait channel.
846  */
847 int
848 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
849 {
850 	struct sleepqueue *sq;
851 	struct thread *td, *tdn;
852 	int wakeup_swapper;
853 
854 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
855 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
856 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
857 	sq = sleepq_lookup(wchan);
858 	if (sq == NULL)
859 		return (0);
860 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
861 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
862 
863 	/* Resume all blocked threads on the sleep queue. */
864 	wakeup_swapper = 0;
865 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
866 		thread_lock(td);
867 		if (sleepq_resume_thread(sq, td, pri))
868 			wakeup_swapper = 1;
869 		thread_unlock(td);
870 	}
871 	return (wakeup_swapper);
872 }
873 
874 /*
875  * Time sleeping threads out.  When the timeout expires, the thread is
876  * removed from the sleep queue and made runnable if it is still asleep.
877  */
878 static void
879 sleepq_timeout(void *arg)
880 {
881 	struct sleepqueue_chain *sc;
882 	struct sleepqueue *sq;
883 	struct thread *td;
884 	void *wchan;
885 	int wakeup_swapper;
886 
887 	td = arg;
888 	wakeup_swapper = 0;
889 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
890 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
891 
892 	/*
893 	 * First, see if the thread is asleep and get the wait channel if
894 	 * it is.
895 	 */
896 	thread_lock(td);
897 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
898 		wchan = td->td_wchan;
899 		sc = SC_LOOKUP(wchan);
900 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
901 		sq = sleepq_lookup(wchan);
902 		MPASS(sq != NULL);
903 		td->td_flags |= TDF_TIMEOUT;
904 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
905 		thread_unlock(td);
906 		if (wakeup_swapper)
907 			kick_proc0();
908 		return;
909 	}
910 
911 	/*
912 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
913 	 * can either be on another CPU in between sleepq_add() and
914 	 * one of the sleepq_*wait*() routines or it can be in
915 	 * sleepq_catch_signals().
916 	 */
917 	if (TD_ON_SLEEPQ(td)) {
918 		td->td_flags |= TDF_TIMEOUT;
919 		thread_unlock(td);
920 		return;
921 	}
922 
923 	/*
924 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
925 	 * then the other thread has already yielded to us, so clear
926 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
927 	 * we know that the other thread is not on a sleep queue, but it
928 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
929 	 * to let it know that the timeout has already run and doesn't
930 	 * need to be canceled.
931 	 */
932 	if (td->td_flags & TDF_TIMEOUT) {
933 		MPASS(TD_IS_SLEEPING(td));
934 		td->td_flags &= ~TDF_TIMEOUT;
935 		TD_CLR_SLEEPING(td);
936 		wakeup_swapper = setrunnable(td);
937 	} else
938 		td->td_flags |= TDF_TIMOFAIL;
939 	thread_unlock(td);
940 	if (wakeup_swapper)
941 		kick_proc0();
942 }
943 
944 /*
945  * Resumes a specific thread from the sleep queue associated with a specific
946  * wait channel if it is on that queue.
947  */
948 void
949 sleepq_remove(struct thread *td, void *wchan)
950 {
951 	struct sleepqueue *sq;
952 	int wakeup_swapper;
953 
954 	/*
955 	 * Look up the sleep queue for this wait channel, then re-check
956 	 * that the thread is asleep on that channel, if it is not, then
957 	 * bail.
958 	 */
959 	MPASS(wchan != NULL);
960 	sleepq_lock(wchan);
961 	sq = sleepq_lookup(wchan);
962 	/*
963 	 * We can not lock the thread here as it may be sleeping on a
964 	 * different sleepq.  However, holding the sleepq lock for this
965 	 * wchan can guarantee that we do not miss a wakeup for this
966 	 * channel.  The asserts below will catch any false positives.
967 	 */
968 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
969 		sleepq_release(wchan);
970 		return;
971 	}
972 	/* Thread is asleep on sleep queue sq, so wake it up. */
973 	thread_lock(td);
974 	MPASS(sq != NULL);
975 	MPASS(td->td_wchan == wchan);
976 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
977 	thread_unlock(td);
978 	sleepq_release(wchan);
979 	if (wakeup_swapper)
980 		kick_proc0();
981 }
982 
983 /*
984  * Abort a thread as if an interrupt had occurred.  Only abort
985  * interruptible waits (unfortunately it isn't safe to abort others).
986  */
987 int
988 sleepq_abort(struct thread *td, int intrval)
989 {
990 	struct sleepqueue *sq;
991 	void *wchan;
992 
993 	THREAD_LOCK_ASSERT(td, MA_OWNED);
994 	MPASS(TD_ON_SLEEPQ(td));
995 	MPASS(td->td_flags & TDF_SINTR);
996 	MPASS(intrval == EINTR || intrval == ERESTART);
997 
998 	/*
999 	 * If the TDF_TIMEOUT flag is set, just leave. A
1000 	 * timeout is scheduled anyhow.
1001 	 */
1002 	if (td->td_flags & TDF_TIMEOUT)
1003 		return (0);
1004 
1005 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1006 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1007 	td->td_intrval = intrval;
1008 	td->td_flags |= TDF_SLEEPABORT;
1009 	/*
1010 	 * If the thread has not slept yet it will find the signal in
1011 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1012 	 * we have to do it here.
1013 	 */
1014 	if (!TD_IS_SLEEPING(td))
1015 		return (0);
1016 	wchan = td->td_wchan;
1017 	MPASS(wchan != NULL);
1018 	sq = sleepq_lookup(wchan);
1019 	MPASS(sq != NULL);
1020 
1021 	/* Thread is asleep on sleep queue sq, so wake it up. */
1022 	return (sleepq_resume_thread(sq, td, 0));
1023 }
1024 
1025 #ifdef SLEEPQUEUE_PROFILING
1026 #define	SLEEPQ_PROF_LOCATIONS	1024
1027 #define	SLEEPQ_SBUFSIZE		512
1028 struct sleepq_prof {
1029 	LIST_ENTRY(sleepq_prof) sp_link;
1030 	const char	*sp_wmesg;
1031 	long		sp_count;
1032 };
1033 
1034 LIST_HEAD(sqphead, sleepq_prof);
1035 
1036 struct sqphead sleepq_prof_free;
1037 struct sqphead sleepq_hash[SC_TABLESIZE];
1038 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1039 static struct mtx sleepq_prof_lock;
1040 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1041 
1042 static void
1043 sleepq_profile(const char *wmesg)
1044 {
1045 	struct sleepq_prof *sp;
1046 
1047 	mtx_lock_spin(&sleepq_prof_lock);
1048 	if (prof_enabled == 0)
1049 		goto unlock;
1050 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1051 		if (sp->sp_wmesg == wmesg)
1052 			goto done;
1053 	sp = LIST_FIRST(&sleepq_prof_free);
1054 	if (sp == NULL)
1055 		goto unlock;
1056 	sp->sp_wmesg = wmesg;
1057 	LIST_REMOVE(sp, sp_link);
1058 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1059 done:
1060 	sp->sp_count++;
1061 unlock:
1062 	mtx_unlock_spin(&sleepq_prof_lock);
1063 	return;
1064 }
1065 
1066 static void
1067 sleepq_prof_reset(void)
1068 {
1069 	struct sleepq_prof *sp;
1070 	int enabled;
1071 	int i;
1072 
1073 	mtx_lock_spin(&sleepq_prof_lock);
1074 	enabled = prof_enabled;
1075 	prof_enabled = 0;
1076 	for (i = 0; i < SC_TABLESIZE; i++)
1077 		LIST_INIT(&sleepq_hash[i]);
1078 	LIST_INIT(&sleepq_prof_free);
1079 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1080 		sp = &sleepq_profent[i];
1081 		sp->sp_wmesg = NULL;
1082 		sp->sp_count = 0;
1083 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1084 	}
1085 	prof_enabled = enabled;
1086 	mtx_unlock_spin(&sleepq_prof_lock);
1087 }
1088 
1089 static int
1090 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1091 {
1092 	int error, v;
1093 
1094 	v = prof_enabled;
1095 	error = sysctl_handle_int(oidp, &v, v, req);
1096 	if (error)
1097 		return (error);
1098 	if (req->newptr == NULL)
1099 		return (error);
1100 	if (v == prof_enabled)
1101 		return (0);
1102 	if (v == 1)
1103 		sleepq_prof_reset();
1104 	mtx_lock_spin(&sleepq_prof_lock);
1105 	prof_enabled = !!v;
1106 	mtx_unlock_spin(&sleepq_prof_lock);
1107 
1108 	return (0);
1109 }
1110 
1111 static int
1112 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1113 {
1114 	int error, v;
1115 
1116 	v = 0;
1117 	error = sysctl_handle_int(oidp, &v, 0, req);
1118 	if (error)
1119 		return (error);
1120 	if (req->newptr == NULL)
1121 		return (error);
1122 	if (v == 0)
1123 		return (0);
1124 	sleepq_prof_reset();
1125 
1126 	return (0);
1127 }
1128 
1129 static int
1130 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1131 {
1132 	struct sleepq_prof *sp;
1133 	struct sbuf *sb;
1134 	int enabled;
1135 	int error;
1136 	int i;
1137 
1138 	error = sysctl_wire_old_buffer(req, 0);
1139 	if (error != 0)
1140 		return (error);
1141 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1142 	sbuf_printf(sb, "\nwmesg\tcount\n");
1143 	enabled = prof_enabled;
1144 	mtx_lock_spin(&sleepq_prof_lock);
1145 	prof_enabled = 0;
1146 	mtx_unlock_spin(&sleepq_prof_lock);
1147 	for (i = 0; i < SC_TABLESIZE; i++) {
1148 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1149 			sbuf_printf(sb, "%s\t%ld\n",
1150 			    sp->sp_wmesg, sp->sp_count);
1151 		}
1152 	}
1153 	mtx_lock_spin(&sleepq_prof_lock);
1154 	prof_enabled = enabled;
1155 	mtx_unlock_spin(&sleepq_prof_lock);
1156 
1157 	error = sbuf_finish(sb);
1158 	sbuf_delete(sb);
1159 	return (error);
1160 }
1161 
1162 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1163     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1164 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1165     NULL, 0, reset_sleepq_prof_stats, "I",
1166     "Reset sleepqueue profiling statistics");
1167 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1168     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1169 #endif
1170 
1171 #ifdef DDB
1172 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1173 {
1174 	struct sleepqueue_chain *sc;
1175 	struct sleepqueue *sq;
1176 #ifdef INVARIANTS
1177 	struct lock_object *lock;
1178 #endif
1179 	struct thread *td;
1180 	void *wchan;
1181 	int i;
1182 
1183 	if (!have_addr)
1184 		return;
1185 
1186 	/*
1187 	 * First, see if there is an active sleep queue for the wait channel
1188 	 * indicated by the address.
1189 	 */
1190 	wchan = (void *)addr;
1191 	sc = SC_LOOKUP(wchan);
1192 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1193 		if (sq->sq_wchan == wchan)
1194 			goto found;
1195 
1196 	/*
1197 	 * Second, see if there is an active sleep queue at the address
1198 	 * indicated.
1199 	 */
1200 	for (i = 0; i < SC_TABLESIZE; i++)
1201 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1202 			if (sq == (struct sleepqueue *)addr)
1203 				goto found;
1204 		}
1205 
1206 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1207 	return;
1208 found:
1209 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1210 	db_printf("Queue type: %d\n", sq->sq_type);
1211 #ifdef INVARIANTS
1212 	if (sq->sq_lock) {
1213 		lock = sq->sq_lock;
1214 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1215 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1216 	}
1217 #endif
1218 	db_printf("Blocked threads:\n");
1219 	for (i = 0; i < NR_SLEEPQS; i++) {
1220 		db_printf("\nQueue[%d]:\n", i);
1221 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1222 			db_printf("\tempty\n");
1223 		else
1224 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1225 				      td_slpq) {
1226 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1227 					  td->td_tid, td->td_proc->p_pid,
1228 					  td->td_name);
1229 			}
1230 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1231 	}
1232 }
1233 
1234 /* Alias 'show sleepqueue' to 'show sleepq'. */
1235 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1236 #endif
1237