1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Implementation of sleep queues used to hold queue of threads blocked on 29 * a wait channel. Sleep queues different from turnstiles in that wait 30 * channels are not owned by anyone, so there is no priority propagation. 31 * Sleep queues can also provide a timeout and can also be interrupted by 32 * signals. That said, there are several similarities between the turnstile 33 * and sleep queue implementations. (Note: turnstiles were implemented 34 * first.) For example, both use a hash table of the same size where each 35 * bucket is referred to as a "chain" that contains both a spin lock and 36 * a linked list of queues. An individual queue is located by using a hash 37 * to pick a chain, locking the chain, and then walking the chain searching 38 * for the queue. This means that a wait channel object does not need to 39 * embed it's queue head just as locks do not embed their turnstile queue 40 * head. Threads also carry around a sleep queue that they lend to the 41 * wait channel when blocking. Just as in turnstiles, the queue includes 42 * a free list of the sleep queues of other threads blocked on the same 43 * wait channel in the case of multiple waiters. 44 * 45 * Some additional functionality provided by sleep queues include the 46 * ability to set a timeout. The timeout is managed using a per-thread 47 * callout that resumes a thread if it is asleep. A thread may also 48 * catch signals while it is asleep (aka an interruptible sleep). The 49 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 50 * sleep queues also provide some extra assertions. One is not allowed to 51 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 52 * must consistently use the same lock to synchronize with a wait channel, 53 * though this check is currently only a warning for sleep/wakeup due to 54 * pre-existing abuse of that API. The same lock must also be held when 55 * awakening threads, though that is currently only enforced for condition 56 * variables. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_sleepqueue_profiling.h" 63 #include "opt_ddb.h" 64 #include "opt_sched.h" 65 #include "opt_stack.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/sched.h> 76 #include <sys/sdt.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/stack.h> 80 #include <sys/sysctl.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 89 /* 90 * Constants for the hash table of sleep queue chains. 91 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 92 */ 93 #define SC_TABLESIZE 256 /* Must be power of 2. */ 94 #define SC_MASK (SC_TABLESIZE - 1) 95 #define SC_SHIFT 8 96 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 97 SC_MASK) 98 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 99 #define NR_SLEEPQS 2 100 /* 101 * There two different lists of sleep queues. Both lists are connected 102 * via the sq_hash entries. The first list is the sleep queue chain list 103 * that a sleep queue is on when it is attached to a wait channel. The 104 * second list is the free list hung off of a sleep queue that is attached 105 * to a wait channel. 106 * 107 * Each sleep queue also contains the wait channel it is attached to, the 108 * list of threads blocked on that wait channel, flags specific to the 109 * wait channel, and the lock used to synchronize with a wait channel. 110 * The flags are used to catch mismatches between the various consumers 111 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 112 * The lock pointer is only used when invariants are enabled for various 113 * debugging checks. 114 * 115 * Locking key: 116 * c - sleep queue chain lock 117 */ 118 struct sleepqueue { 119 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 120 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 123 void *sq_wchan; /* (c) Wait channel. */ 124 int sq_type; /* (c) Queue type. */ 125 #ifdef INVARIANTS 126 struct lock_object *sq_lock; /* (c) Associated lock. */ 127 #endif 128 }; 129 130 struct sleepqueue_chain { 131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 132 struct mtx sc_lock; /* Spin lock for this chain. */ 133 #ifdef SLEEPQUEUE_PROFILING 134 u_int sc_depth; /* Length of sc_queues. */ 135 u_int sc_max_depth; /* Max length of sc_queues. */ 136 #endif 137 }; 138 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sleepq_max_depth; 141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 143 "sleepq chain stats"); 144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 145 0, "maxmimum depth achieved of a single chain"); 146 147 static void sleepq_profile(const char *wmesg); 148 static int prof_enabled; 149 #endif 150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 151 static uma_zone_t sleepq_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static int sleepq_catch_signals(void *wchan, int pri); 157 static int sleepq_check_signals(void); 158 static int sleepq_check_timeout(void); 159 #ifdef INVARIANTS 160 static void sleepq_dtor(void *mem, int size, void *arg); 161 #endif 162 static int sleepq_init(void *mem, int size, int flags); 163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 164 int pri); 165 static void sleepq_switch(void *wchan, int pri); 166 static void sleepq_timeout(void *arg); 167 168 SDT_PROBE_DECLARE(sched, , , sleep); 169 SDT_PROBE_DECLARE(sched, , , wakeup); 170 171 /* 172 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 173 * Note that it must happen after sleepinit() has been fully executed, so 174 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 175 */ 176 #ifdef SLEEPQUEUE_PROFILING 177 static void 178 init_sleepqueue_profiling(void) 179 { 180 char chain_name[10]; 181 struct sysctl_oid *chain_oid; 182 u_int i; 183 184 for (i = 0; i < SC_TABLESIZE; i++) { 185 snprintf(chain_name, sizeof(chain_name), "%u", i); 186 chain_oid = SYSCTL_ADD_NODE(NULL, 187 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 188 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 189 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 190 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 191 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 192 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 193 NULL); 194 } 195 } 196 197 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 198 init_sleepqueue_profiling, NULL); 199 #endif 200 201 /* 202 * Early initialization of sleep queues that is called from the sleepinit() 203 * SYSINIT. 204 */ 205 void 206 init_sleepqueues(void) 207 { 208 int i; 209 210 for (i = 0; i < SC_TABLESIZE; i++) { 211 LIST_INIT(&sleepq_chains[i].sc_queues); 212 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 213 MTX_SPIN | MTX_RECURSE); 214 } 215 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 216 #ifdef INVARIANTS 217 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 218 #else 219 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 220 #endif 221 222 thread0.td_sleepqueue = sleepq_alloc(); 223 } 224 225 /* 226 * Get a sleep queue for a new thread. 227 */ 228 struct sleepqueue * 229 sleepq_alloc(void) 230 { 231 232 return (uma_zalloc(sleepq_zone, M_WAITOK)); 233 } 234 235 /* 236 * Free a sleep queue when a thread is destroyed. 237 */ 238 void 239 sleepq_free(struct sleepqueue *sq) 240 { 241 242 uma_zfree(sleepq_zone, sq); 243 } 244 245 /* 246 * Lock the sleep queue chain associated with the specified wait channel. 247 */ 248 void 249 sleepq_lock(void *wchan) 250 { 251 struct sleepqueue_chain *sc; 252 253 sc = SC_LOOKUP(wchan); 254 mtx_lock_spin(&sc->sc_lock); 255 } 256 257 /* 258 * Look up the sleep queue associated with a given wait channel in the hash 259 * table locking the associated sleep queue chain. If no queue is found in 260 * the table, NULL is returned. 261 */ 262 struct sleepqueue * 263 sleepq_lookup(void *wchan) 264 { 265 struct sleepqueue_chain *sc; 266 struct sleepqueue *sq; 267 268 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 269 sc = SC_LOOKUP(wchan); 270 mtx_assert(&sc->sc_lock, MA_OWNED); 271 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 272 if (sq->sq_wchan == wchan) 273 return (sq); 274 return (NULL); 275 } 276 277 /* 278 * Unlock the sleep queue chain associated with a given wait channel. 279 */ 280 void 281 sleepq_release(void *wchan) 282 { 283 struct sleepqueue_chain *sc; 284 285 sc = SC_LOOKUP(wchan); 286 mtx_unlock_spin(&sc->sc_lock); 287 } 288 289 /* 290 * Places the current thread on the sleep queue for the specified wait 291 * channel. If INVARIANTS is enabled, then it associates the passed in 292 * lock with the sleepq to make sure it is held when that sleep queue is 293 * woken up. 294 */ 295 void 296 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 297 int queue) 298 { 299 struct sleepqueue_chain *sc; 300 struct sleepqueue *sq; 301 struct thread *td; 302 303 td = curthread; 304 sc = SC_LOOKUP(wchan); 305 mtx_assert(&sc->sc_lock, MA_OWNED); 306 MPASS(td->td_sleepqueue != NULL); 307 MPASS(wchan != NULL); 308 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 309 310 /* If this thread is not allowed to sleep, die a horrible death. */ 311 KASSERT(td->td_no_sleeping == 0, 312 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 313 __func__, td, wchan)); 314 315 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 316 sq = sleepq_lookup(wchan); 317 318 /* 319 * If the wait channel does not already have a sleep queue, use 320 * this thread's sleep queue. Otherwise, insert the current thread 321 * into the sleep queue already in use by this wait channel. 322 */ 323 if (sq == NULL) { 324 #ifdef INVARIANTS 325 int i; 326 327 sq = td->td_sleepqueue; 328 for (i = 0; i < NR_SLEEPQS; i++) { 329 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 330 ("thread's sleep queue %d is not empty", i)); 331 KASSERT(sq->sq_blockedcnt[i] == 0, 332 ("thread's sleep queue %d count mismatches", i)); 333 } 334 KASSERT(LIST_EMPTY(&sq->sq_free), 335 ("thread's sleep queue has a non-empty free list")); 336 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 337 sq->sq_lock = lock; 338 #endif 339 #ifdef SLEEPQUEUE_PROFILING 340 sc->sc_depth++; 341 if (sc->sc_depth > sc->sc_max_depth) { 342 sc->sc_max_depth = sc->sc_depth; 343 if (sc->sc_max_depth > sleepq_max_depth) 344 sleepq_max_depth = sc->sc_max_depth; 345 } 346 #endif 347 sq = td->td_sleepqueue; 348 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 349 sq->sq_wchan = wchan; 350 sq->sq_type = flags & SLEEPQ_TYPE; 351 } else { 352 MPASS(wchan == sq->sq_wchan); 353 MPASS(lock == sq->sq_lock); 354 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 355 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 356 } 357 thread_lock(td); 358 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 359 sq->sq_blockedcnt[queue]++; 360 td->td_sleepqueue = NULL; 361 td->td_sqqueue = queue; 362 td->td_wchan = wchan; 363 td->td_wmesg = wmesg; 364 if (flags & SLEEPQ_INTERRUPTIBLE) { 365 td->td_flags |= TDF_SINTR; 366 td->td_flags &= ~TDF_SLEEPABORT; 367 } 368 thread_unlock(td); 369 } 370 371 /* 372 * Sets a timeout that will remove the current thread from the specified 373 * sleep queue after timo ticks if the thread has not already been awakened. 374 */ 375 void 376 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 377 int flags) 378 { 379 struct sleepqueue_chain *sc; 380 struct thread *td; 381 382 td = curthread; 383 sc = SC_LOOKUP(wchan); 384 mtx_assert(&sc->sc_lock, MA_OWNED); 385 MPASS(TD_ON_SLEEPQ(td)); 386 MPASS(td->td_sleepqueue == NULL); 387 MPASS(wchan != NULL); 388 if (cold) 389 panic("timed sleep before timers are working"); 390 callout_reset_sbt_on(&td->td_slpcallout, sbt, pr, 391 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC); 392 } 393 394 /* 395 * Return the number of actual sleepers for the specified queue. 396 */ 397 u_int 398 sleepq_sleepcnt(void *wchan, int queue) 399 { 400 struct sleepqueue *sq; 401 402 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 403 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 404 sq = sleepq_lookup(wchan); 405 if (sq == NULL) 406 return (0); 407 return (sq->sq_blockedcnt[queue]); 408 } 409 410 /* 411 * Marks the pending sleep of the current thread as interruptible and 412 * makes an initial check for pending signals before putting a thread 413 * to sleep. Enters and exits with the thread lock held. Thread lock 414 * may have transitioned from the sleepq lock to a run lock. 415 */ 416 static int 417 sleepq_catch_signals(void *wchan, int pri) 418 { 419 struct sleepqueue_chain *sc; 420 struct sleepqueue *sq; 421 struct thread *td; 422 struct proc *p; 423 struct sigacts *ps; 424 int sig, ret; 425 426 td = curthread; 427 p = curproc; 428 sc = SC_LOOKUP(wchan); 429 mtx_assert(&sc->sc_lock, MA_OWNED); 430 MPASS(wchan != NULL); 431 if ((td->td_pflags & TDP_WAKEUP) != 0) { 432 td->td_pflags &= ~TDP_WAKEUP; 433 ret = EINTR; 434 thread_lock(td); 435 goto out; 436 } 437 438 /* 439 * See if there are any pending signals for this thread. If not 440 * we can switch immediately. Otherwise do the signal processing 441 * directly. 442 */ 443 thread_lock(td); 444 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) { 445 sleepq_switch(wchan, pri); 446 return (0); 447 } 448 thread_unlock(td); 449 mtx_unlock_spin(&sc->sc_lock); 450 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 451 (void *)td, (long)p->p_pid, td->td_name); 452 PROC_LOCK(p); 453 ps = p->p_sigacts; 454 mtx_lock(&ps->ps_mtx); 455 sig = cursig(td); 456 if (sig == -1) { 457 mtx_unlock(&ps->ps_mtx); 458 KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY")); 459 KASSERT(TD_SBDRY_INTR(td), 460 ("lost TDF_SERESTART of TDF_SEINTR")); 461 KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 462 (TDF_SEINTR | TDF_SERESTART), 463 ("both TDF_SEINTR and TDF_SERESTART")); 464 ret = TD_SBDRY_ERRNO(td); 465 } else if (sig == 0) { 466 mtx_unlock(&ps->ps_mtx); 467 ret = thread_suspend_check(1); 468 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 469 } else { 470 if (SIGISMEMBER(ps->ps_sigintr, sig)) 471 ret = EINTR; 472 else 473 ret = ERESTART; 474 mtx_unlock(&ps->ps_mtx); 475 } 476 /* 477 * Lock the per-process spinlock prior to dropping the PROC_LOCK 478 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 479 * thread_lock() are currently held in tdsendsignal(). 480 */ 481 PROC_SLOCK(p); 482 mtx_lock_spin(&sc->sc_lock); 483 PROC_UNLOCK(p); 484 thread_lock(td); 485 PROC_SUNLOCK(p); 486 if (ret == 0) { 487 sleepq_switch(wchan, pri); 488 return (0); 489 } 490 out: 491 /* 492 * There were pending signals and this thread is still 493 * on the sleep queue, remove it from the sleep queue. 494 */ 495 if (TD_ON_SLEEPQ(td)) { 496 sq = sleepq_lookup(wchan); 497 if (sleepq_resume_thread(sq, td, 0)) { 498 #ifdef INVARIANTS 499 /* 500 * This thread hasn't gone to sleep yet, so it 501 * should not be swapped out. 502 */ 503 panic("not waking up swapper"); 504 #endif 505 } 506 } 507 mtx_unlock_spin(&sc->sc_lock); 508 MPASS(td->td_lock != &sc->sc_lock); 509 return (ret); 510 } 511 512 /* 513 * Switches to another thread if we are still asleep on a sleep queue. 514 * Returns with thread lock. 515 */ 516 static void 517 sleepq_switch(void *wchan, int pri) 518 { 519 struct sleepqueue_chain *sc; 520 struct sleepqueue *sq; 521 struct thread *td; 522 523 td = curthread; 524 sc = SC_LOOKUP(wchan); 525 mtx_assert(&sc->sc_lock, MA_OWNED); 526 THREAD_LOCK_ASSERT(td, MA_OWNED); 527 528 /* 529 * If we have a sleep queue, then we've already been woken up, so 530 * just return. 531 */ 532 if (td->td_sleepqueue != NULL) { 533 mtx_unlock_spin(&sc->sc_lock); 534 return; 535 } 536 537 /* 538 * If TDF_TIMEOUT is set, then our sleep has been timed out 539 * already but we are still on the sleep queue, so dequeue the 540 * thread and return. 541 */ 542 if (td->td_flags & TDF_TIMEOUT) { 543 MPASS(TD_ON_SLEEPQ(td)); 544 sq = sleepq_lookup(wchan); 545 if (sleepq_resume_thread(sq, td, 0)) { 546 #ifdef INVARIANTS 547 /* 548 * This thread hasn't gone to sleep yet, so it 549 * should not be swapped out. 550 */ 551 panic("not waking up swapper"); 552 #endif 553 } 554 mtx_unlock_spin(&sc->sc_lock); 555 return; 556 } 557 #ifdef SLEEPQUEUE_PROFILING 558 if (prof_enabled) 559 sleepq_profile(td->td_wmesg); 560 #endif 561 MPASS(td->td_sleepqueue == NULL); 562 sched_sleep(td, pri); 563 thread_lock_set(td, &sc->sc_lock); 564 SDT_PROBE0(sched, , , sleep); 565 TD_SET_SLEEPING(td); 566 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 567 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 568 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 569 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 570 } 571 572 /* 573 * Check to see if we timed out. 574 */ 575 static int 576 sleepq_check_timeout(void) 577 { 578 struct thread *td; 579 580 td = curthread; 581 THREAD_LOCK_ASSERT(td, MA_OWNED); 582 583 /* 584 * If TDF_TIMEOUT is set, we timed out. 585 */ 586 if (td->td_flags & TDF_TIMEOUT) { 587 td->td_flags &= ~TDF_TIMEOUT; 588 return (EWOULDBLOCK); 589 } 590 591 /* 592 * If TDF_TIMOFAIL is set, the timeout ran after we had 593 * already been woken up. 594 */ 595 if (td->td_flags & TDF_TIMOFAIL) 596 td->td_flags &= ~TDF_TIMOFAIL; 597 598 /* 599 * If callout_stop() fails, then the timeout is running on 600 * another CPU, so synchronize with it to avoid having it 601 * accidentally wake up a subsequent sleep. 602 */ 603 else if (_callout_stop_safe(&td->td_slpcallout, CS_EXECUTING, NULL) 604 == 0) { 605 td->td_flags |= TDF_TIMEOUT; 606 TD_SET_SLEEPING(td); 607 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL); 608 } 609 return (0); 610 } 611 612 /* 613 * Check to see if we were awoken by a signal. 614 */ 615 static int 616 sleepq_check_signals(void) 617 { 618 struct thread *td; 619 620 td = curthread; 621 THREAD_LOCK_ASSERT(td, MA_OWNED); 622 623 /* We are no longer in an interruptible sleep. */ 624 if (td->td_flags & TDF_SINTR) 625 td->td_flags &= ~TDF_SINTR; 626 627 if (td->td_flags & TDF_SLEEPABORT) { 628 td->td_flags &= ~TDF_SLEEPABORT; 629 return (td->td_intrval); 630 } 631 632 return (0); 633 } 634 635 /* 636 * Block the current thread until it is awakened from its sleep queue. 637 */ 638 void 639 sleepq_wait(void *wchan, int pri) 640 { 641 struct thread *td; 642 643 td = curthread; 644 MPASS(!(td->td_flags & TDF_SINTR)); 645 thread_lock(td); 646 sleepq_switch(wchan, pri); 647 thread_unlock(td); 648 } 649 650 /* 651 * Block the current thread until it is awakened from its sleep queue 652 * or it is interrupted by a signal. 653 */ 654 int 655 sleepq_wait_sig(void *wchan, int pri) 656 { 657 int rcatch; 658 int rval; 659 660 rcatch = sleepq_catch_signals(wchan, pri); 661 rval = sleepq_check_signals(); 662 thread_unlock(curthread); 663 if (rcatch) 664 return (rcatch); 665 return (rval); 666 } 667 668 /* 669 * Block the current thread until it is awakened from its sleep queue 670 * or it times out while waiting. 671 */ 672 int 673 sleepq_timedwait(void *wchan, int pri) 674 { 675 struct thread *td; 676 int rval; 677 678 td = curthread; 679 MPASS(!(td->td_flags & TDF_SINTR)); 680 thread_lock(td); 681 sleepq_switch(wchan, pri); 682 rval = sleepq_check_timeout(); 683 thread_unlock(td); 684 685 return (rval); 686 } 687 688 /* 689 * Block the current thread until it is awakened from its sleep queue, 690 * it is interrupted by a signal, or it times out waiting to be awakened. 691 */ 692 int 693 sleepq_timedwait_sig(void *wchan, int pri) 694 { 695 int rcatch, rvalt, rvals; 696 697 rcatch = sleepq_catch_signals(wchan, pri); 698 rvalt = sleepq_check_timeout(); 699 rvals = sleepq_check_signals(); 700 thread_unlock(curthread); 701 if (rcatch) 702 return (rcatch); 703 if (rvals) 704 return (rvals); 705 return (rvalt); 706 } 707 708 /* 709 * Returns the type of sleepqueue given a waitchannel. 710 */ 711 int 712 sleepq_type(void *wchan) 713 { 714 struct sleepqueue *sq; 715 int type; 716 717 MPASS(wchan != NULL); 718 719 sleepq_lock(wchan); 720 sq = sleepq_lookup(wchan); 721 if (sq == NULL) { 722 sleepq_release(wchan); 723 return (-1); 724 } 725 type = sq->sq_type; 726 sleepq_release(wchan); 727 return (type); 728 } 729 730 /* 731 * Removes a thread from a sleep queue and makes it 732 * runnable. 733 */ 734 static int 735 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 736 { 737 struct sleepqueue_chain *sc; 738 739 MPASS(td != NULL); 740 MPASS(sq->sq_wchan != NULL); 741 MPASS(td->td_wchan == sq->sq_wchan); 742 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 743 THREAD_LOCK_ASSERT(td, MA_OWNED); 744 sc = SC_LOOKUP(sq->sq_wchan); 745 mtx_assert(&sc->sc_lock, MA_OWNED); 746 747 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 748 749 /* Remove the thread from the queue. */ 750 sq->sq_blockedcnt[td->td_sqqueue]--; 751 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 752 753 /* 754 * Get a sleep queue for this thread. If this is the last waiter, 755 * use the queue itself and take it out of the chain, otherwise, 756 * remove a queue from the free list. 757 */ 758 if (LIST_EMPTY(&sq->sq_free)) { 759 td->td_sleepqueue = sq; 760 #ifdef INVARIANTS 761 sq->sq_wchan = NULL; 762 #endif 763 #ifdef SLEEPQUEUE_PROFILING 764 sc->sc_depth--; 765 #endif 766 } else 767 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 768 LIST_REMOVE(td->td_sleepqueue, sq_hash); 769 770 td->td_wmesg = NULL; 771 td->td_wchan = NULL; 772 td->td_flags &= ~TDF_SINTR; 773 774 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 775 (void *)td, (long)td->td_proc->p_pid, td->td_name); 776 777 /* Adjust priority if requested. */ 778 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 779 if (pri != 0 && td->td_priority > pri && 780 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 781 sched_prio(td, pri); 782 783 /* 784 * Note that thread td might not be sleeping if it is running 785 * sleepq_catch_signals() on another CPU or is blocked on its 786 * proc lock to check signals. There's no need to mark the 787 * thread runnable in that case. 788 */ 789 if (TD_IS_SLEEPING(td)) { 790 TD_CLR_SLEEPING(td); 791 return (setrunnable(td)); 792 } 793 return (0); 794 } 795 796 #ifdef INVARIANTS 797 /* 798 * UMA zone item deallocator. 799 */ 800 static void 801 sleepq_dtor(void *mem, int size, void *arg) 802 { 803 struct sleepqueue *sq; 804 int i; 805 806 sq = mem; 807 for (i = 0; i < NR_SLEEPQS; i++) { 808 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 809 MPASS(sq->sq_blockedcnt[i] == 0); 810 } 811 } 812 #endif 813 814 /* 815 * UMA zone item initializer. 816 */ 817 static int 818 sleepq_init(void *mem, int size, int flags) 819 { 820 struct sleepqueue *sq; 821 int i; 822 823 bzero(mem, size); 824 sq = mem; 825 for (i = 0; i < NR_SLEEPQS; i++) { 826 TAILQ_INIT(&sq->sq_blocked[i]); 827 sq->sq_blockedcnt[i] = 0; 828 } 829 LIST_INIT(&sq->sq_free); 830 return (0); 831 } 832 833 /* 834 * Find the highest priority thread sleeping on a wait channel and resume it. 835 */ 836 int 837 sleepq_signal(void *wchan, int flags, int pri, int queue) 838 { 839 struct sleepqueue *sq; 840 struct thread *td, *besttd; 841 int wakeup_swapper; 842 843 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 844 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 845 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 846 sq = sleepq_lookup(wchan); 847 if (sq == NULL) 848 return (0); 849 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 850 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 851 852 /* 853 * Find the highest priority thread on the queue. If there is a 854 * tie, use the thread that first appears in the queue as it has 855 * been sleeping the longest since threads are always added to 856 * the tail of sleep queues. 857 */ 858 besttd = NULL; 859 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 860 if (besttd == NULL || td->td_priority < besttd->td_priority) 861 besttd = td; 862 } 863 MPASS(besttd != NULL); 864 thread_lock(besttd); 865 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 866 thread_unlock(besttd); 867 return (wakeup_swapper); 868 } 869 870 /* 871 * Resume all threads sleeping on a specified wait channel. 872 */ 873 int 874 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 875 { 876 struct sleepqueue *sq; 877 struct thread *td; 878 int wakeup_swapper; 879 880 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 881 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 882 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 883 sq = sleepq_lookup(wchan); 884 if (sq == NULL) 885 return (0); 886 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 887 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 888 889 /* Resume all blocked threads on the sleep queue. */ 890 wakeup_swapper = 0; 891 while ((td = TAILQ_FIRST(&sq->sq_blocked[queue])) != NULL) { 892 thread_lock(td); 893 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 894 thread_unlock(td); 895 } 896 return (wakeup_swapper); 897 } 898 899 /* 900 * Time sleeping threads out. When the timeout expires, the thread is 901 * removed from the sleep queue and made runnable if it is still asleep. 902 */ 903 static void 904 sleepq_timeout(void *arg) 905 { 906 struct sleepqueue_chain *sc; 907 struct sleepqueue *sq; 908 struct thread *td; 909 void *wchan; 910 int wakeup_swapper; 911 912 td = arg; 913 wakeup_swapper = 0; 914 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 915 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 916 917 /* 918 * First, see if the thread is asleep and get the wait channel if 919 * it is. 920 */ 921 thread_lock(td); 922 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 923 wchan = td->td_wchan; 924 sc = SC_LOOKUP(wchan); 925 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 926 sq = sleepq_lookup(wchan); 927 MPASS(sq != NULL); 928 td->td_flags |= TDF_TIMEOUT; 929 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 930 thread_unlock(td); 931 if (wakeup_swapper) 932 kick_proc0(); 933 return; 934 } 935 936 /* 937 * If the thread is on the SLEEPQ but isn't sleeping yet, it 938 * can either be on another CPU in between sleepq_add() and 939 * one of the sleepq_*wait*() routines or it can be in 940 * sleepq_catch_signals(). 941 */ 942 if (TD_ON_SLEEPQ(td)) { 943 td->td_flags |= TDF_TIMEOUT; 944 thread_unlock(td); 945 return; 946 } 947 948 /* 949 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 950 * then the other thread has already yielded to us, so clear 951 * the flag and resume it. If TDF_TIMEOUT is not set, then the 952 * we know that the other thread is not on a sleep queue, but it 953 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 954 * to let it know that the timeout has already run and doesn't 955 * need to be canceled. 956 */ 957 if (td->td_flags & TDF_TIMEOUT) { 958 MPASS(TD_IS_SLEEPING(td)); 959 td->td_flags &= ~TDF_TIMEOUT; 960 TD_CLR_SLEEPING(td); 961 wakeup_swapper = setrunnable(td); 962 } else 963 td->td_flags |= TDF_TIMOFAIL; 964 thread_unlock(td); 965 if (wakeup_swapper) 966 kick_proc0(); 967 } 968 969 /* 970 * Resumes a specific thread from the sleep queue associated with a specific 971 * wait channel if it is on that queue. 972 */ 973 void 974 sleepq_remove(struct thread *td, void *wchan) 975 { 976 struct sleepqueue *sq; 977 int wakeup_swapper; 978 979 /* 980 * Look up the sleep queue for this wait channel, then re-check 981 * that the thread is asleep on that channel, if it is not, then 982 * bail. 983 */ 984 MPASS(wchan != NULL); 985 sleepq_lock(wchan); 986 sq = sleepq_lookup(wchan); 987 /* 988 * We can not lock the thread here as it may be sleeping on a 989 * different sleepq. However, holding the sleepq lock for this 990 * wchan can guarantee that we do not miss a wakeup for this 991 * channel. The asserts below will catch any false positives. 992 */ 993 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 994 sleepq_release(wchan); 995 return; 996 } 997 /* Thread is asleep on sleep queue sq, so wake it up. */ 998 thread_lock(td); 999 MPASS(sq != NULL); 1000 MPASS(td->td_wchan == wchan); 1001 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1002 thread_unlock(td); 1003 sleepq_release(wchan); 1004 if (wakeup_swapper) 1005 kick_proc0(); 1006 } 1007 1008 /* 1009 * Abort a thread as if an interrupt had occurred. Only abort 1010 * interruptible waits (unfortunately it isn't safe to abort others). 1011 */ 1012 int 1013 sleepq_abort(struct thread *td, int intrval) 1014 { 1015 struct sleepqueue *sq; 1016 void *wchan; 1017 1018 THREAD_LOCK_ASSERT(td, MA_OWNED); 1019 MPASS(TD_ON_SLEEPQ(td)); 1020 MPASS(td->td_flags & TDF_SINTR); 1021 MPASS(intrval == EINTR || intrval == ERESTART); 1022 1023 /* 1024 * If the TDF_TIMEOUT flag is set, just leave. A 1025 * timeout is scheduled anyhow. 1026 */ 1027 if (td->td_flags & TDF_TIMEOUT) 1028 return (0); 1029 1030 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1031 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1032 td->td_intrval = intrval; 1033 td->td_flags |= TDF_SLEEPABORT; 1034 /* 1035 * If the thread has not slept yet it will find the signal in 1036 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1037 * we have to do it here. 1038 */ 1039 if (!TD_IS_SLEEPING(td)) 1040 return (0); 1041 wchan = td->td_wchan; 1042 MPASS(wchan != NULL); 1043 sq = sleepq_lookup(wchan); 1044 MPASS(sq != NULL); 1045 1046 /* Thread is asleep on sleep queue sq, so wake it up. */ 1047 return (sleepq_resume_thread(sq, td, 0)); 1048 } 1049 1050 /* 1051 * Prints the stacks of all threads presently sleeping on wchan/queue to 1052 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1053 * printed. Typically, this will equal the number of threads sleeping on the 1054 * queue, but may be less if sb overflowed before all stacks were printed. 1055 */ 1056 #ifdef STACK 1057 int 1058 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1059 int *count_stacks_printed) 1060 { 1061 struct thread *td, *td_next; 1062 struct sleepqueue *sq; 1063 struct stack **st; 1064 struct sbuf **td_infos; 1065 int i, stack_idx, error, stacks_to_allocate; 1066 bool finished, partial_print; 1067 1068 error = 0; 1069 finished = false; 1070 partial_print = false; 1071 1072 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1073 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1074 1075 stacks_to_allocate = 10; 1076 for (i = 0; i < 3 && !finished ; i++) { 1077 /* We cannot malloc while holding the queue's spinlock, so 1078 * we do our mallocs now, and hope it is enough. If it 1079 * isn't, we will free these, drop the lock, malloc more, 1080 * and try again, up to a point. After that point we will 1081 * give up and report ENOMEM. We also cannot write to sb 1082 * during this time since the client may have set the 1083 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1084 * malloc as we print to it. So we defer actually printing 1085 * to sb until after we drop the spinlock. 1086 */ 1087 1088 /* Where we will store the stacks. */ 1089 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1090 M_TEMP, M_WAITOK); 1091 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1092 stack_idx++) 1093 st[stack_idx] = stack_create(); 1094 1095 /* Where we will store the td name, tid, etc. */ 1096 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1097 M_TEMP, M_WAITOK); 1098 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1099 stack_idx++) 1100 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1101 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1102 SBUF_FIXEDLEN); 1103 1104 sleepq_lock(wchan); 1105 sq = sleepq_lookup(wchan); 1106 if (sq == NULL) { 1107 /* This sleepq does not exist; exit and return ENOENT. */ 1108 error = ENOENT; 1109 finished = true; 1110 sleepq_release(wchan); 1111 goto loop_end; 1112 } 1113 1114 stack_idx = 0; 1115 /* Save thread info */ 1116 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1117 td_next) { 1118 if (stack_idx >= stacks_to_allocate) 1119 goto loop_end; 1120 1121 /* Note the td_lock is equal to the sleepq_lock here. */ 1122 stack_save_td(st[stack_idx], td); 1123 1124 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1125 td->td_tid, td->td_name, td); 1126 1127 ++stack_idx; 1128 } 1129 1130 finished = true; 1131 sleepq_release(wchan); 1132 1133 /* Print the stacks */ 1134 for (i = 0; i < stack_idx; i++) { 1135 sbuf_finish(td_infos[i]); 1136 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1137 stack_sbuf_print(sb, st[i]); 1138 sbuf_printf(sb, "\n"); 1139 1140 error = sbuf_error(sb); 1141 if (error == 0) 1142 *count_stacks_printed = stack_idx; 1143 } 1144 1145 loop_end: 1146 if (!finished) 1147 sleepq_release(wchan); 1148 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1149 stack_idx++) 1150 stack_destroy(st[stack_idx]); 1151 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1152 stack_idx++) 1153 sbuf_delete(td_infos[stack_idx]); 1154 free(st, M_TEMP); 1155 free(td_infos, M_TEMP); 1156 stacks_to_allocate *= 10; 1157 } 1158 1159 if (!finished && error == 0) 1160 error = ENOMEM; 1161 1162 return (error); 1163 } 1164 #endif 1165 1166 #ifdef SLEEPQUEUE_PROFILING 1167 #define SLEEPQ_PROF_LOCATIONS 1024 1168 #define SLEEPQ_SBUFSIZE 512 1169 struct sleepq_prof { 1170 LIST_ENTRY(sleepq_prof) sp_link; 1171 const char *sp_wmesg; 1172 long sp_count; 1173 }; 1174 1175 LIST_HEAD(sqphead, sleepq_prof); 1176 1177 struct sqphead sleepq_prof_free; 1178 struct sqphead sleepq_hash[SC_TABLESIZE]; 1179 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1180 static struct mtx sleepq_prof_lock; 1181 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1182 1183 static void 1184 sleepq_profile(const char *wmesg) 1185 { 1186 struct sleepq_prof *sp; 1187 1188 mtx_lock_spin(&sleepq_prof_lock); 1189 if (prof_enabled == 0) 1190 goto unlock; 1191 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1192 if (sp->sp_wmesg == wmesg) 1193 goto done; 1194 sp = LIST_FIRST(&sleepq_prof_free); 1195 if (sp == NULL) 1196 goto unlock; 1197 sp->sp_wmesg = wmesg; 1198 LIST_REMOVE(sp, sp_link); 1199 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1200 done: 1201 sp->sp_count++; 1202 unlock: 1203 mtx_unlock_spin(&sleepq_prof_lock); 1204 return; 1205 } 1206 1207 static void 1208 sleepq_prof_reset(void) 1209 { 1210 struct sleepq_prof *sp; 1211 int enabled; 1212 int i; 1213 1214 mtx_lock_spin(&sleepq_prof_lock); 1215 enabled = prof_enabled; 1216 prof_enabled = 0; 1217 for (i = 0; i < SC_TABLESIZE; i++) 1218 LIST_INIT(&sleepq_hash[i]); 1219 LIST_INIT(&sleepq_prof_free); 1220 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1221 sp = &sleepq_profent[i]; 1222 sp->sp_wmesg = NULL; 1223 sp->sp_count = 0; 1224 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1225 } 1226 prof_enabled = enabled; 1227 mtx_unlock_spin(&sleepq_prof_lock); 1228 } 1229 1230 static int 1231 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1232 { 1233 int error, v; 1234 1235 v = prof_enabled; 1236 error = sysctl_handle_int(oidp, &v, v, req); 1237 if (error) 1238 return (error); 1239 if (req->newptr == NULL) 1240 return (error); 1241 if (v == prof_enabled) 1242 return (0); 1243 if (v == 1) 1244 sleepq_prof_reset(); 1245 mtx_lock_spin(&sleepq_prof_lock); 1246 prof_enabled = !!v; 1247 mtx_unlock_spin(&sleepq_prof_lock); 1248 1249 return (0); 1250 } 1251 1252 static int 1253 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1254 { 1255 int error, v; 1256 1257 v = 0; 1258 error = sysctl_handle_int(oidp, &v, 0, req); 1259 if (error) 1260 return (error); 1261 if (req->newptr == NULL) 1262 return (error); 1263 if (v == 0) 1264 return (0); 1265 sleepq_prof_reset(); 1266 1267 return (0); 1268 } 1269 1270 static int 1271 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1272 { 1273 struct sleepq_prof *sp; 1274 struct sbuf *sb; 1275 int enabled; 1276 int error; 1277 int i; 1278 1279 error = sysctl_wire_old_buffer(req, 0); 1280 if (error != 0) 1281 return (error); 1282 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1283 sbuf_printf(sb, "\nwmesg\tcount\n"); 1284 enabled = prof_enabled; 1285 mtx_lock_spin(&sleepq_prof_lock); 1286 prof_enabled = 0; 1287 mtx_unlock_spin(&sleepq_prof_lock); 1288 for (i = 0; i < SC_TABLESIZE; i++) { 1289 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1290 sbuf_printf(sb, "%s\t%ld\n", 1291 sp->sp_wmesg, sp->sp_count); 1292 } 1293 } 1294 mtx_lock_spin(&sleepq_prof_lock); 1295 prof_enabled = enabled; 1296 mtx_unlock_spin(&sleepq_prof_lock); 1297 1298 error = sbuf_finish(sb); 1299 sbuf_delete(sb); 1300 return (error); 1301 } 1302 1303 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1304 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1305 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1306 NULL, 0, reset_sleepq_prof_stats, "I", 1307 "Reset sleepqueue profiling statistics"); 1308 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1309 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1310 #endif 1311 1312 #ifdef DDB 1313 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1314 { 1315 struct sleepqueue_chain *sc; 1316 struct sleepqueue *sq; 1317 #ifdef INVARIANTS 1318 struct lock_object *lock; 1319 #endif 1320 struct thread *td; 1321 void *wchan; 1322 int i; 1323 1324 if (!have_addr) 1325 return; 1326 1327 /* 1328 * First, see if there is an active sleep queue for the wait channel 1329 * indicated by the address. 1330 */ 1331 wchan = (void *)addr; 1332 sc = SC_LOOKUP(wchan); 1333 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1334 if (sq->sq_wchan == wchan) 1335 goto found; 1336 1337 /* 1338 * Second, see if there is an active sleep queue at the address 1339 * indicated. 1340 */ 1341 for (i = 0; i < SC_TABLESIZE; i++) 1342 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1343 if (sq == (struct sleepqueue *)addr) 1344 goto found; 1345 } 1346 1347 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1348 return; 1349 found: 1350 db_printf("Wait channel: %p\n", sq->sq_wchan); 1351 db_printf("Queue type: %d\n", sq->sq_type); 1352 #ifdef INVARIANTS 1353 if (sq->sq_lock) { 1354 lock = sq->sq_lock; 1355 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1356 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1357 } 1358 #endif 1359 db_printf("Blocked threads:\n"); 1360 for (i = 0; i < NR_SLEEPQS; i++) { 1361 db_printf("\nQueue[%d]:\n", i); 1362 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1363 db_printf("\tempty\n"); 1364 else 1365 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1366 td_slpq) { 1367 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1368 td->td_tid, td->td_proc->p_pid, 1369 td->td_name); 1370 } 1371 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1372 } 1373 } 1374 1375 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1376 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1377 #endif 1378