xref: /freebsd/sys/kern/subr_sleepqueue.c (revision f18d3c411697ff46d85e579a72be54ca0cc67dd0)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_sched.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/lock.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/sdt.h>
79 #include <sys/signalvar.h>
80 #include <sys/sleepqueue.h>
81 #include <sys/sysctl.h>
82 
83 #include <vm/uma.h>
84 
85 #ifdef DDB
86 #include <ddb/ddb.h>
87 #endif
88 
89 /*
90  * Constants for the hash table of sleep queue chains.
91  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
92  */
93 #define	SC_TABLESIZE	256			/* Must be power of 2. */
94 #define	SC_MASK		(SC_TABLESIZE - 1)
95 #define	SC_SHIFT	8
96 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
97 			    SC_MASK)
98 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
99 #define NR_SLEEPQS      2
100 /*
101  * There two different lists of sleep queues.  Both lists are connected
102  * via the sq_hash entries.  The first list is the sleep queue chain list
103  * that a sleep queue is on when it is attached to a wait channel.  The
104  * second list is the free list hung off of a sleep queue that is attached
105  * to a wait channel.
106  *
107  * Each sleep queue also contains the wait channel it is attached to, the
108  * list of threads blocked on that wait channel, flags specific to the
109  * wait channel, and the lock used to synchronize with a wait channel.
110  * The flags are used to catch mismatches between the various consumers
111  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
112  * The lock pointer is only used when invariants are enabled for various
113  * debugging checks.
114  *
115  * Locking key:
116  *  c - sleep queue chain lock
117  */
118 struct sleepqueue {
119 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
120 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
121 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
122 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
123 	void	*sq_wchan;			/* (c) Wait channel. */
124 	int	sq_type;			/* (c) Queue type. */
125 #ifdef INVARIANTS
126 	struct lock_object *sq_lock;		/* (c) Associated lock. */
127 #endif
128 };
129 
130 struct sleepqueue_chain {
131 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
132 	struct mtx sc_lock;			/* Spin lock for this chain. */
133 #ifdef SLEEPQUEUE_PROFILING
134 	u_int	sc_depth;			/* Length of sc_queues. */
135 	u_int	sc_max_depth;			/* Max length of sc_queues. */
136 #endif
137 };
138 
139 #ifdef SLEEPQUEUE_PROFILING
140 u_int sleepq_max_depth;
141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
143     "sleepq chain stats");
144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
145     0, "maxmimum depth achieved of a single chain");
146 
147 static void	sleepq_profile(const char *wmesg);
148 static int	prof_enabled;
149 #endif
150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
151 static uma_zone_t sleepq_zone;
152 
153 /*
154  * Prototypes for non-exported routines.
155  */
156 static int	sleepq_catch_signals(void *wchan, int pri);
157 static int	sleepq_check_signals(void);
158 static int	sleepq_check_timeout(void);
159 #ifdef INVARIANTS
160 static void	sleepq_dtor(void *mem, int size, void *arg);
161 #endif
162 static int	sleepq_init(void *mem, int size, int flags);
163 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
164 		    int pri);
165 static void	sleepq_switch(void *wchan, int pri);
166 static void	sleepq_timeout(void *arg);
167 
168 SDT_PROBE_DECLARE(sched, , , sleep);
169 SDT_PROBE_DECLARE(sched, , , wakeup);
170 
171 /*
172  * Early initialization of sleep queues that is called from the sleepinit()
173  * SYSINIT.
174  */
175 void
176 init_sleepqueues(void)
177 {
178 #ifdef SLEEPQUEUE_PROFILING
179 	struct sysctl_oid *chain_oid;
180 	char chain_name[10];
181 #endif
182 	int i;
183 
184 	for (i = 0; i < SC_TABLESIZE; i++) {
185 		LIST_INIT(&sleepq_chains[i].sc_queues);
186 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
187 		    MTX_SPIN | MTX_RECURSE);
188 #ifdef SLEEPQUEUE_PROFILING
189 		snprintf(chain_name, sizeof(chain_name), "%d", i);
190 		chain_oid = SYSCTL_ADD_NODE(NULL,
191 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
192 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
193 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
194 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
195 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
196 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
197 		    NULL);
198 #endif
199 	}
200 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
201 #ifdef INVARIANTS
202 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
203 #else
204 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
205 #endif
206 
207 	thread0.td_sleepqueue = sleepq_alloc();
208 }
209 
210 /*
211  * Get a sleep queue for a new thread.
212  */
213 struct sleepqueue *
214 sleepq_alloc(void)
215 {
216 
217 	return (uma_zalloc(sleepq_zone, M_WAITOK));
218 }
219 
220 /*
221  * Free a sleep queue when a thread is destroyed.
222  */
223 void
224 sleepq_free(struct sleepqueue *sq)
225 {
226 
227 	uma_zfree(sleepq_zone, sq);
228 }
229 
230 /*
231  * Lock the sleep queue chain associated with the specified wait channel.
232  */
233 void
234 sleepq_lock(void *wchan)
235 {
236 	struct sleepqueue_chain *sc;
237 
238 	sc = SC_LOOKUP(wchan);
239 	mtx_lock_spin(&sc->sc_lock);
240 }
241 
242 /*
243  * Look up the sleep queue associated with a given wait channel in the hash
244  * table locking the associated sleep queue chain.  If no queue is found in
245  * the table, NULL is returned.
246  */
247 struct sleepqueue *
248 sleepq_lookup(void *wchan)
249 {
250 	struct sleepqueue_chain *sc;
251 	struct sleepqueue *sq;
252 
253 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
254 	sc = SC_LOOKUP(wchan);
255 	mtx_assert(&sc->sc_lock, MA_OWNED);
256 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
257 		if (sq->sq_wchan == wchan)
258 			return (sq);
259 	return (NULL);
260 }
261 
262 /*
263  * Unlock the sleep queue chain associated with a given wait channel.
264  */
265 void
266 sleepq_release(void *wchan)
267 {
268 	struct sleepqueue_chain *sc;
269 
270 	sc = SC_LOOKUP(wchan);
271 	mtx_unlock_spin(&sc->sc_lock);
272 }
273 
274 /*
275  * Places the current thread on the sleep queue for the specified wait
276  * channel.  If INVARIANTS is enabled, then it associates the passed in
277  * lock with the sleepq to make sure it is held when that sleep queue is
278  * woken up.
279  */
280 void
281 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
282     int queue)
283 {
284 	struct sleepqueue_chain *sc;
285 	struct sleepqueue *sq;
286 	struct thread *td;
287 
288 	td = curthread;
289 	sc = SC_LOOKUP(wchan);
290 	mtx_assert(&sc->sc_lock, MA_OWNED);
291 	MPASS(td->td_sleepqueue != NULL);
292 	MPASS(wchan != NULL);
293 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
294 
295 	/* If this thread is not allowed to sleep, die a horrible death. */
296 	KASSERT(td->td_no_sleeping == 0,
297 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
298 	    __func__, td, wchan));
299 
300 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
301 	sq = sleepq_lookup(wchan);
302 
303 	/*
304 	 * If the wait channel does not already have a sleep queue, use
305 	 * this thread's sleep queue.  Otherwise, insert the current thread
306 	 * into the sleep queue already in use by this wait channel.
307 	 */
308 	if (sq == NULL) {
309 #ifdef INVARIANTS
310 		int i;
311 
312 		sq = td->td_sleepqueue;
313 		for (i = 0; i < NR_SLEEPQS; i++) {
314 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
315 			    ("thread's sleep queue %d is not empty", i));
316 			KASSERT(sq->sq_blockedcnt[i] == 0,
317 			    ("thread's sleep queue %d count mismatches", i));
318 		}
319 		KASSERT(LIST_EMPTY(&sq->sq_free),
320 		    ("thread's sleep queue has a non-empty free list"));
321 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
322 		sq->sq_lock = lock;
323 #endif
324 #ifdef SLEEPQUEUE_PROFILING
325 		sc->sc_depth++;
326 		if (sc->sc_depth > sc->sc_max_depth) {
327 			sc->sc_max_depth = sc->sc_depth;
328 			if (sc->sc_max_depth > sleepq_max_depth)
329 				sleepq_max_depth = sc->sc_max_depth;
330 		}
331 #endif
332 		sq = td->td_sleepqueue;
333 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
334 		sq->sq_wchan = wchan;
335 		sq->sq_type = flags & SLEEPQ_TYPE;
336 	} else {
337 		MPASS(wchan == sq->sq_wchan);
338 		MPASS(lock == sq->sq_lock);
339 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
340 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
341 	}
342 	thread_lock(td);
343 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
344 	sq->sq_blockedcnt[queue]++;
345 	td->td_sleepqueue = NULL;
346 	td->td_sqqueue = queue;
347 	td->td_wchan = wchan;
348 	td->td_wmesg = wmesg;
349 	if (flags & SLEEPQ_INTERRUPTIBLE) {
350 		td->td_flags |= TDF_SINTR;
351 		td->td_flags &= ~TDF_SLEEPABORT;
352 	}
353 	thread_unlock(td);
354 }
355 
356 /*
357  * Sets a timeout that will remove the current thread from the specified
358  * sleep queue after timo ticks if the thread has not already been awakened.
359  */
360 void
361 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
362     int flags)
363 {
364 	struct sleepqueue_chain *sc;
365 	struct thread *td;
366 
367 	td = curthread;
368 	sc = SC_LOOKUP(wchan);
369 	mtx_assert(&sc->sc_lock, MA_OWNED);
370 	MPASS(TD_ON_SLEEPQ(td));
371 	MPASS(td->td_sleepqueue == NULL);
372 	MPASS(wchan != NULL);
373 	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
374 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
375 }
376 
377 /*
378  * Return the number of actual sleepers for the specified queue.
379  */
380 u_int
381 sleepq_sleepcnt(void *wchan, int queue)
382 {
383 	struct sleepqueue *sq;
384 
385 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
386 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
387 	sq = sleepq_lookup(wchan);
388 	if (sq == NULL)
389 		return (0);
390 	return (sq->sq_blockedcnt[queue]);
391 }
392 
393 /*
394  * Marks the pending sleep of the current thread as interruptible and
395  * makes an initial check for pending signals before putting a thread
396  * to sleep. Enters and exits with the thread lock held.  Thread lock
397  * may have transitioned from the sleepq lock to a run lock.
398  */
399 static int
400 sleepq_catch_signals(void *wchan, int pri)
401 {
402 	struct sleepqueue_chain *sc;
403 	struct sleepqueue *sq;
404 	struct thread *td;
405 	struct proc *p;
406 	struct sigacts *ps;
407 	int sig, ret;
408 
409 	td = curthread;
410 	p = curproc;
411 	sc = SC_LOOKUP(wchan);
412 	mtx_assert(&sc->sc_lock, MA_OWNED);
413 	MPASS(wchan != NULL);
414 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
415 		td->td_pflags &= ~TDP_WAKEUP;
416 		ret = EINTR;
417 		thread_lock(td);
418 		goto out;
419 	}
420 
421 	/*
422 	 * See if there are any pending signals for this thread.  If not
423 	 * we can switch immediately.  Otherwise do the signal processing
424 	 * directly.
425 	 */
426 	thread_lock(td);
427 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
428 		sleepq_switch(wchan, pri);
429 		return (0);
430 	}
431 	thread_unlock(td);
432 	mtx_unlock_spin(&sc->sc_lock);
433 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
434 		(void *)td, (long)p->p_pid, td->td_name);
435 	PROC_LOCK(p);
436 	ps = p->p_sigacts;
437 	mtx_lock(&ps->ps_mtx);
438 	sig = cursig(td);
439 	if (sig == 0) {
440 		mtx_unlock(&ps->ps_mtx);
441 		ret = thread_suspend_check(1);
442 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
443 	} else {
444 		if (SIGISMEMBER(ps->ps_sigintr, sig))
445 			ret = EINTR;
446 		else
447 			ret = ERESTART;
448 		mtx_unlock(&ps->ps_mtx);
449 	}
450 	/*
451 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
452 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
453 	 * thread_lock() are currently held in tdsendsignal().
454 	 */
455 	PROC_SLOCK(p);
456 	mtx_lock_spin(&sc->sc_lock);
457 	PROC_UNLOCK(p);
458 	thread_lock(td);
459 	PROC_SUNLOCK(p);
460 	if (ret == 0) {
461 		sleepq_switch(wchan, pri);
462 		return (0);
463 	}
464 out:
465 	/*
466 	 * There were pending signals and this thread is still
467 	 * on the sleep queue, remove it from the sleep queue.
468 	 */
469 	if (TD_ON_SLEEPQ(td)) {
470 		sq = sleepq_lookup(wchan);
471 		if (sleepq_resume_thread(sq, td, 0)) {
472 #ifdef INVARIANTS
473 			/*
474 			 * This thread hasn't gone to sleep yet, so it
475 			 * should not be swapped out.
476 			 */
477 			panic("not waking up swapper");
478 #endif
479 		}
480 	}
481 	mtx_unlock_spin(&sc->sc_lock);
482 	MPASS(td->td_lock != &sc->sc_lock);
483 	return (ret);
484 }
485 
486 /*
487  * Switches to another thread if we are still asleep on a sleep queue.
488  * Returns with thread lock.
489  */
490 static void
491 sleepq_switch(void *wchan, int pri)
492 {
493 	struct sleepqueue_chain *sc;
494 	struct sleepqueue *sq;
495 	struct thread *td;
496 
497 	td = curthread;
498 	sc = SC_LOOKUP(wchan);
499 	mtx_assert(&sc->sc_lock, MA_OWNED);
500 	THREAD_LOCK_ASSERT(td, MA_OWNED);
501 
502 	/*
503 	 * If we have a sleep queue, then we've already been woken up, so
504 	 * just return.
505 	 */
506 	if (td->td_sleepqueue != NULL) {
507 		mtx_unlock_spin(&sc->sc_lock);
508 		return;
509 	}
510 
511 	/*
512 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
513 	 * already but we are still on the sleep queue, so dequeue the
514 	 * thread and return.
515 	 */
516 	if (td->td_flags & TDF_TIMEOUT) {
517 		MPASS(TD_ON_SLEEPQ(td));
518 		sq = sleepq_lookup(wchan);
519 		if (sleepq_resume_thread(sq, td, 0)) {
520 #ifdef INVARIANTS
521 			/*
522 			 * This thread hasn't gone to sleep yet, so it
523 			 * should not be swapped out.
524 			 */
525 			panic("not waking up swapper");
526 #endif
527 		}
528 		mtx_unlock_spin(&sc->sc_lock);
529 		return;
530 	}
531 #ifdef SLEEPQUEUE_PROFILING
532 	if (prof_enabled)
533 		sleepq_profile(td->td_wmesg);
534 #endif
535 	MPASS(td->td_sleepqueue == NULL);
536 	sched_sleep(td, pri);
537 	thread_lock_set(td, &sc->sc_lock);
538 	SDT_PROBE0(sched, , , sleep);
539 	TD_SET_SLEEPING(td);
540 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
541 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
542 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
543 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
544 }
545 
546 /*
547  * Check to see if we timed out.
548  */
549 static int
550 sleepq_check_timeout(void)
551 {
552 	struct thread *td;
553 
554 	td = curthread;
555 	THREAD_LOCK_ASSERT(td, MA_OWNED);
556 
557 	/*
558 	 * If TDF_TIMEOUT is set, we timed out.
559 	 */
560 	if (td->td_flags & TDF_TIMEOUT) {
561 		td->td_flags &= ~TDF_TIMEOUT;
562 		return (EWOULDBLOCK);
563 	}
564 
565 	/*
566 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
567 	 * already been woken up.
568 	 */
569 	if (td->td_flags & TDF_TIMOFAIL)
570 		td->td_flags &= ~TDF_TIMOFAIL;
571 
572 	/*
573 	 * If callout_stop() fails, then the timeout is running on
574 	 * another CPU, so synchronize with it to avoid having it
575 	 * accidentally wake up a subsequent sleep.
576 	 */
577 	else if (callout_stop(&td->td_slpcallout) == 0) {
578 		td->td_flags |= TDF_TIMEOUT;
579 		TD_SET_SLEEPING(td);
580 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
581 	}
582 	return (0);
583 }
584 
585 /*
586  * Check to see if we were awoken by a signal.
587  */
588 static int
589 sleepq_check_signals(void)
590 {
591 	struct thread *td;
592 
593 	td = curthread;
594 	THREAD_LOCK_ASSERT(td, MA_OWNED);
595 
596 	/* We are no longer in an interruptible sleep. */
597 	if (td->td_flags & TDF_SINTR)
598 		td->td_flags &= ~TDF_SINTR;
599 
600 	if (td->td_flags & TDF_SLEEPABORT) {
601 		td->td_flags &= ~TDF_SLEEPABORT;
602 		return (td->td_intrval);
603 	}
604 
605 	return (0);
606 }
607 
608 /*
609  * Block the current thread until it is awakened from its sleep queue.
610  */
611 void
612 sleepq_wait(void *wchan, int pri)
613 {
614 	struct thread *td;
615 
616 	td = curthread;
617 	MPASS(!(td->td_flags & TDF_SINTR));
618 	thread_lock(td);
619 	sleepq_switch(wchan, pri);
620 	thread_unlock(td);
621 }
622 
623 /*
624  * Block the current thread until it is awakened from its sleep queue
625  * or it is interrupted by a signal.
626  */
627 int
628 sleepq_wait_sig(void *wchan, int pri)
629 {
630 	int rcatch;
631 	int rval;
632 
633 	rcatch = sleepq_catch_signals(wchan, pri);
634 	rval = sleepq_check_signals();
635 	thread_unlock(curthread);
636 	if (rcatch)
637 		return (rcatch);
638 	return (rval);
639 }
640 
641 /*
642  * Block the current thread until it is awakened from its sleep queue
643  * or it times out while waiting.
644  */
645 int
646 sleepq_timedwait(void *wchan, int pri)
647 {
648 	struct thread *td;
649 	int rval;
650 
651 	td = curthread;
652 	MPASS(!(td->td_flags & TDF_SINTR));
653 	thread_lock(td);
654 	sleepq_switch(wchan, pri);
655 	rval = sleepq_check_timeout();
656 	thread_unlock(td);
657 
658 	return (rval);
659 }
660 
661 /*
662  * Block the current thread until it is awakened from its sleep queue,
663  * it is interrupted by a signal, or it times out waiting to be awakened.
664  */
665 int
666 sleepq_timedwait_sig(void *wchan, int pri)
667 {
668 	int rcatch, rvalt, rvals;
669 
670 	rcatch = sleepq_catch_signals(wchan, pri);
671 	rvalt = sleepq_check_timeout();
672 	rvals = sleepq_check_signals();
673 	thread_unlock(curthread);
674 	if (rcatch)
675 		return (rcatch);
676 	if (rvals)
677 		return (rvals);
678 	return (rvalt);
679 }
680 
681 /*
682  * Returns the type of sleepqueue given a waitchannel.
683  */
684 int
685 sleepq_type(void *wchan)
686 {
687 	struct sleepqueue *sq;
688 	int type;
689 
690 	MPASS(wchan != NULL);
691 
692 	sleepq_lock(wchan);
693 	sq = sleepq_lookup(wchan);
694 	if (sq == NULL) {
695 		sleepq_release(wchan);
696 		return (-1);
697 	}
698 	type = sq->sq_type;
699 	sleepq_release(wchan);
700 	return (type);
701 }
702 
703 /*
704  * Removes a thread from a sleep queue and makes it
705  * runnable.
706  */
707 static int
708 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
709 {
710 	struct sleepqueue_chain *sc;
711 
712 	MPASS(td != NULL);
713 	MPASS(sq->sq_wchan != NULL);
714 	MPASS(td->td_wchan == sq->sq_wchan);
715 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
716 	THREAD_LOCK_ASSERT(td, MA_OWNED);
717 	sc = SC_LOOKUP(sq->sq_wchan);
718 	mtx_assert(&sc->sc_lock, MA_OWNED);
719 
720 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
721 
722 	/* Remove the thread from the queue. */
723 	sq->sq_blockedcnt[td->td_sqqueue]--;
724 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
725 
726 	/*
727 	 * Get a sleep queue for this thread.  If this is the last waiter,
728 	 * use the queue itself and take it out of the chain, otherwise,
729 	 * remove a queue from the free list.
730 	 */
731 	if (LIST_EMPTY(&sq->sq_free)) {
732 		td->td_sleepqueue = sq;
733 #ifdef INVARIANTS
734 		sq->sq_wchan = NULL;
735 #endif
736 #ifdef SLEEPQUEUE_PROFILING
737 		sc->sc_depth--;
738 #endif
739 	} else
740 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
741 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
742 
743 	td->td_wmesg = NULL;
744 	td->td_wchan = NULL;
745 	td->td_flags &= ~TDF_SINTR;
746 
747 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
748 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
749 
750 	/* Adjust priority if requested. */
751 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
752 	if (pri != 0 && td->td_priority > pri &&
753 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
754 		sched_prio(td, pri);
755 
756 	/*
757 	 * Note that thread td might not be sleeping if it is running
758 	 * sleepq_catch_signals() on another CPU or is blocked on its
759 	 * proc lock to check signals.  There's no need to mark the
760 	 * thread runnable in that case.
761 	 */
762 	if (TD_IS_SLEEPING(td)) {
763 		TD_CLR_SLEEPING(td);
764 		return (setrunnable(td));
765 	}
766 	return (0);
767 }
768 
769 #ifdef INVARIANTS
770 /*
771  * UMA zone item deallocator.
772  */
773 static void
774 sleepq_dtor(void *mem, int size, void *arg)
775 {
776 	struct sleepqueue *sq;
777 	int i;
778 
779 	sq = mem;
780 	for (i = 0; i < NR_SLEEPQS; i++) {
781 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
782 		MPASS(sq->sq_blockedcnt[i] == 0);
783 	}
784 }
785 #endif
786 
787 /*
788  * UMA zone item initializer.
789  */
790 static int
791 sleepq_init(void *mem, int size, int flags)
792 {
793 	struct sleepqueue *sq;
794 	int i;
795 
796 	bzero(mem, size);
797 	sq = mem;
798 	for (i = 0; i < NR_SLEEPQS; i++) {
799 		TAILQ_INIT(&sq->sq_blocked[i]);
800 		sq->sq_blockedcnt[i] = 0;
801 	}
802 	LIST_INIT(&sq->sq_free);
803 	return (0);
804 }
805 
806 /*
807  * Find the highest priority thread sleeping on a wait channel and resume it.
808  */
809 int
810 sleepq_signal(void *wchan, int flags, int pri, int queue)
811 {
812 	struct sleepqueue *sq;
813 	struct thread *td, *besttd;
814 	int wakeup_swapper;
815 
816 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
817 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
818 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
819 	sq = sleepq_lookup(wchan);
820 	if (sq == NULL)
821 		return (0);
822 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
823 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
824 
825 	/*
826 	 * Find the highest priority thread on the queue.  If there is a
827 	 * tie, use the thread that first appears in the queue as it has
828 	 * been sleeping the longest since threads are always added to
829 	 * the tail of sleep queues.
830 	 */
831 	besttd = NULL;
832 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
833 		if (besttd == NULL || td->td_priority < besttd->td_priority)
834 			besttd = td;
835 	}
836 	MPASS(besttd != NULL);
837 	thread_lock(besttd);
838 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
839 	thread_unlock(besttd);
840 	return (wakeup_swapper);
841 }
842 
843 /*
844  * Resume all threads sleeping on a specified wait channel.
845  */
846 int
847 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
848 {
849 	struct sleepqueue *sq;
850 	struct thread *td, *tdn;
851 	int wakeup_swapper;
852 
853 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
854 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
855 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
856 	sq = sleepq_lookup(wchan);
857 	if (sq == NULL)
858 		return (0);
859 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
860 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
861 
862 	/* Resume all blocked threads on the sleep queue. */
863 	wakeup_swapper = 0;
864 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
865 		thread_lock(td);
866 		if (sleepq_resume_thread(sq, td, pri))
867 			wakeup_swapper = 1;
868 		thread_unlock(td);
869 	}
870 	return (wakeup_swapper);
871 }
872 
873 /*
874  * Time sleeping threads out.  When the timeout expires, the thread is
875  * removed from the sleep queue and made runnable if it is still asleep.
876  */
877 static void
878 sleepq_timeout(void *arg)
879 {
880 	struct sleepqueue_chain *sc;
881 	struct sleepqueue *sq;
882 	struct thread *td;
883 	void *wchan;
884 	int wakeup_swapper;
885 
886 	td = arg;
887 	wakeup_swapper = 0;
888 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
889 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
890 
891 	/*
892 	 * First, see if the thread is asleep and get the wait channel if
893 	 * it is.
894 	 */
895 	thread_lock(td);
896 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
897 		wchan = td->td_wchan;
898 		sc = SC_LOOKUP(wchan);
899 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
900 		sq = sleepq_lookup(wchan);
901 		MPASS(sq != NULL);
902 		td->td_flags |= TDF_TIMEOUT;
903 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
904 		thread_unlock(td);
905 		if (wakeup_swapper)
906 			kick_proc0();
907 		return;
908 	}
909 
910 	/*
911 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
912 	 * can either be on another CPU in between sleepq_add() and
913 	 * one of the sleepq_*wait*() routines or it can be in
914 	 * sleepq_catch_signals().
915 	 */
916 	if (TD_ON_SLEEPQ(td)) {
917 		td->td_flags |= TDF_TIMEOUT;
918 		thread_unlock(td);
919 		return;
920 	}
921 
922 	/*
923 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
924 	 * then the other thread has already yielded to us, so clear
925 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
926 	 * we know that the other thread is not on a sleep queue, but it
927 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
928 	 * to let it know that the timeout has already run and doesn't
929 	 * need to be canceled.
930 	 */
931 	if (td->td_flags & TDF_TIMEOUT) {
932 		MPASS(TD_IS_SLEEPING(td));
933 		td->td_flags &= ~TDF_TIMEOUT;
934 		TD_CLR_SLEEPING(td);
935 		wakeup_swapper = setrunnable(td);
936 	} else
937 		td->td_flags |= TDF_TIMOFAIL;
938 	thread_unlock(td);
939 	if (wakeup_swapper)
940 		kick_proc0();
941 }
942 
943 /*
944  * Resumes a specific thread from the sleep queue associated with a specific
945  * wait channel if it is on that queue.
946  */
947 void
948 sleepq_remove(struct thread *td, void *wchan)
949 {
950 	struct sleepqueue *sq;
951 	int wakeup_swapper;
952 
953 	/*
954 	 * Look up the sleep queue for this wait channel, then re-check
955 	 * that the thread is asleep on that channel, if it is not, then
956 	 * bail.
957 	 */
958 	MPASS(wchan != NULL);
959 	sleepq_lock(wchan);
960 	sq = sleepq_lookup(wchan);
961 	/*
962 	 * We can not lock the thread here as it may be sleeping on a
963 	 * different sleepq.  However, holding the sleepq lock for this
964 	 * wchan can guarantee that we do not miss a wakeup for this
965 	 * channel.  The asserts below will catch any false positives.
966 	 */
967 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
968 		sleepq_release(wchan);
969 		return;
970 	}
971 	/* Thread is asleep on sleep queue sq, so wake it up. */
972 	thread_lock(td);
973 	MPASS(sq != NULL);
974 	MPASS(td->td_wchan == wchan);
975 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
976 	thread_unlock(td);
977 	sleepq_release(wchan);
978 	if (wakeup_swapper)
979 		kick_proc0();
980 }
981 
982 /*
983  * Abort a thread as if an interrupt had occurred.  Only abort
984  * interruptible waits (unfortunately it isn't safe to abort others).
985  */
986 int
987 sleepq_abort(struct thread *td, int intrval)
988 {
989 	struct sleepqueue *sq;
990 	void *wchan;
991 
992 	THREAD_LOCK_ASSERT(td, MA_OWNED);
993 	MPASS(TD_ON_SLEEPQ(td));
994 	MPASS(td->td_flags & TDF_SINTR);
995 	MPASS(intrval == EINTR || intrval == ERESTART);
996 
997 	/*
998 	 * If the TDF_TIMEOUT flag is set, just leave. A
999 	 * timeout is scheduled anyhow.
1000 	 */
1001 	if (td->td_flags & TDF_TIMEOUT)
1002 		return (0);
1003 
1004 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1005 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1006 	td->td_intrval = intrval;
1007 	td->td_flags |= TDF_SLEEPABORT;
1008 	/*
1009 	 * If the thread has not slept yet it will find the signal in
1010 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1011 	 * we have to do it here.
1012 	 */
1013 	if (!TD_IS_SLEEPING(td))
1014 		return (0);
1015 	wchan = td->td_wchan;
1016 	MPASS(wchan != NULL);
1017 	sq = sleepq_lookup(wchan);
1018 	MPASS(sq != NULL);
1019 
1020 	/* Thread is asleep on sleep queue sq, so wake it up. */
1021 	return (sleepq_resume_thread(sq, td, 0));
1022 }
1023 
1024 #ifdef SLEEPQUEUE_PROFILING
1025 #define	SLEEPQ_PROF_LOCATIONS	1024
1026 #define	SLEEPQ_SBUFSIZE		512
1027 struct sleepq_prof {
1028 	LIST_ENTRY(sleepq_prof) sp_link;
1029 	const char	*sp_wmesg;
1030 	long		sp_count;
1031 };
1032 
1033 LIST_HEAD(sqphead, sleepq_prof);
1034 
1035 struct sqphead sleepq_prof_free;
1036 struct sqphead sleepq_hash[SC_TABLESIZE];
1037 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1038 static struct mtx sleepq_prof_lock;
1039 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1040 
1041 static void
1042 sleepq_profile(const char *wmesg)
1043 {
1044 	struct sleepq_prof *sp;
1045 
1046 	mtx_lock_spin(&sleepq_prof_lock);
1047 	if (prof_enabled == 0)
1048 		goto unlock;
1049 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1050 		if (sp->sp_wmesg == wmesg)
1051 			goto done;
1052 	sp = LIST_FIRST(&sleepq_prof_free);
1053 	if (sp == NULL)
1054 		goto unlock;
1055 	sp->sp_wmesg = wmesg;
1056 	LIST_REMOVE(sp, sp_link);
1057 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1058 done:
1059 	sp->sp_count++;
1060 unlock:
1061 	mtx_unlock_spin(&sleepq_prof_lock);
1062 	return;
1063 }
1064 
1065 static void
1066 sleepq_prof_reset(void)
1067 {
1068 	struct sleepq_prof *sp;
1069 	int enabled;
1070 	int i;
1071 
1072 	mtx_lock_spin(&sleepq_prof_lock);
1073 	enabled = prof_enabled;
1074 	prof_enabled = 0;
1075 	for (i = 0; i < SC_TABLESIZE; i++)
1076 		LIST_INIT(&sleepq_hash[i]);
1077 	LIST_INIT(&sleepq_prof_free);
1078 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1079 		sp = &sleepq_profent[i];
1080 		sp->sp_wmesg = NULL;
1081 		sp->sp_count = 0;
1082 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1083 	}
1084 	prof_enabled = enabled;
1085 	mtx_unlock_spin(&sleepq_prof_lock);
1086 }
1087 
1088 static int
1089 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1090 {
1091 	int error, v;
1092 
1093 	v = prof_enabled;
1094 	error = sysctl_handle_int(oidp, &v, v, req);
1095 	if (error)
1096 		return (error);
1097 	if (req->newptr == NULL)
1098 		return (error);
1099 	if (v == prof_enabled)
1100 		return (0);
1101 	if (v == 1)
1102 		sleepq_prof_reset();
1103 	mtx_lock_spin(&sleepq_prof_lock);
1104 	prof_enabled = !!v;
1105 	mtx_unlock_spin(&sleepq_prof_lock);
1106 
1107 	return (0);
1108 }
1109 
1110 static int
1111 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1112 {
1113 	int error, v;
1114 
1115 	v = 0;
1116 	error = sysctl_handle_int(oidp, &v, 0, req);
1117 	if (error)
1118 		return (error);
1119 	if (req->newptr == NULL)
1120 		return (error);
1121 	if (v == 0)
1122 		return (0);
1123 	sleepq_prof_reset();
1124 
1125 	return (0);
1126 }
1127 
1128 static int
1129 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1130 {
1131 	struct sleepq_prof *sp;
1132 	struct sbuf *sb;
1133 	int enabled;
1134 	int error;
1135 	int i;
1136 
1137 	error = sysctl_wire_old_buffer(req, 0);
1138 	if (error != 0)
1139 		return (error);
1140 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1141 	sbuf_printf(sb, "\nwmesg\tcount\n");
1142 	enabled = prof_enabled;
1143 	mtx_lock_spin(&sleepq_prof_lock);
1144 	prof_enabled = 0;
1145 	mtx_unlock_spin(&sleepq_prof_lock);
1146 	for (i = 0; i < SC_TABLESIZE; i++) {
1147 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1148 			sbuf_printf(sb, "%s\t%ld\n",
1149 			    sp->sp_wmesg, sp->sp_count);
1150 		}
1151 	}
1152 	mtx_lock_spin(&sleepq_prof_lock);
1153 	prof_enabled = enabled;
1154 	mtx_unlock_spin(&sleepq_prof_lock);
1155 
1156 	error = sbuf_finish(sb);
1157 	sbuf_delete(sb);
1158 	return (error);
1159 }
1160 
1161 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1162     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1163 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1164     NULL, 0, reset_sleepq_prof_stats, "I",
1165     "Reset sleepqueue profiling statistics");
1166 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1167     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1168 #endif
1169 
1170 #ifdef DDB
1171 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1172 {
1173 	struct sleepqueue_chain *sc;
1174 	struct sleepqueue *sq;
1175 #ifdef INVARIANTS
1176 	struct lock_object *lock;
1177 #endif
1178 	struct thread *td;
1179 	void *wchan;
1180 	int i;
1181 
1182 	if (!have_addr)
1183 		return;
1184 
1185 	/*
1186 	 * First, see if there is an active sleep queue for the wait channel
1187 	 * indicated by the address.
1188 	 */
1189 	wchan = (void *)addr;
1190 	sc = SC_LOOKUP(wchan);
1191 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1192 		if (sq->sq_wchan == wchan)
1193 			goto found;
1194 
1195 	/*
1196 	 * Second, see if there is an active sleep queue at the address
1197 	 * indicated.
1198 	 */
1199 	for (i = 0; i < SC_TABLESIZE; i++)
1200 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1201 			if (sq == (struct sleepqueue *)addr)
1202 				goto found;
1203 		}
1204 
1205 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1206 	return;
1207 found:
1208 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1209 	db_printf("Queue type: %d\n", sq->sq_type);
1210 #ifdef INVARIANTS
1211 	if (sq->sq_lock) {
1212 		lock = sq->sq_lock;
1213 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1214 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1215 	}
1216 #endif
1217 	db_printf("Blocked threads:\n");
1218 	for (i = 0; i < NR_SLEEPQS; i++) {
1219 		db_printf("\nQueue[%d]:\n", i);
1220 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1221 			db_printf("\tempty\n");
1222 		else
1223 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1224 				      td_slpq) {
1225 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1226 					  td->td_tid, td->td_proc->p_pid,
1227 					  td->td_name);
1228 			}
1229 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1230 	}
1231 }
1232 
1233 /* Alias 'show sleepqueue' to 'show sleepq'. */
1234 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1235 #endif
1236