xref: /freebsd/sys/kern/subr_sleepqueue.c (revision eb24e1491f9900e922c78e53af588f22a3e9535f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * Implementation of sleep queues used to hold queue of threads blocked on
30  * a wait channel.  Sleep queues are different from turnstiles in that wait
31  * channels are not owned by anyone, so there is no priority propagation.
32  * Sleep queues can also provide a timeout and can also be interrupted by
33  * signals.  That said, there are several similarities between the turnstile
34  * and sleep queue implementations.  (Note: turnstiles were implemented
35  * first.)  For example, both use a hash table of the same size where each
36  * bucket is referred to as a "chain" that contains both a spin lock and
37  * a linked list of queues.  An individual queue is located by using a hash
38  * to pick a chain, locking the chain, and then walking the chain searching
39  * for the queue.  This means that a wait channel object does not need to
40  * embed its queue head just as locks do not embed their turnstile queue
41  * head.  Threads also carry around a sleep queue that they lend to the
42  * wait channel when blocking.  Just as in turnstiles, the queue includes
43  * a free list of the sleep queues of other threads blocked on the same
44  * wait channel in the case of multiple waiters.
45  *
46  * Some additional functionality provided by sleep queues include the
47  * ability to set a timeout.  The timeout is managed using a per-thread
48  * callout that resumes a thread if it is asleep.  A thread may also
49  * catch signals while it is asleep (aka an interruptible sleep).  The
50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51  * sleep queues also provide some extra assertions.  One is not allowed to
52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53  * must consistently use the same lock to synchronize with a wait channel,
54  * though this check is currently only a warning for sleep/wakeup due to
55  * pre-existing abuse of that API.  The same lock must also be held when
56  * awakening threads, though that is currently only enforced for condition
57  * variables.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_sleepqueue_profiling.h"
64 #include "opt_ddb.h"
65 #include "opt_sched.h"
66 #include "opt_stack.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sdt.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/stack.h>
81 #include <sys/sysctl.h>
82 #include <sys/time.h>
83 #ifdef EPOCH_TRACE
84 #include <sys/epoch.h>
85 #endif
86 
87 #include <machine/atomic.h>
88 
89 #include <vm/uma.h>
90 
91 #ifdef DDB
92 #include <ddb/ddb.h>
93 #endif
94 
95 /*
96  * Constants for the hash table of sleep queue chains.
97  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
98  */
99 #ifndef SC_TABLESIZE
100 #define	SC_TABLESIZE	256
101 #endif
102 CTASSERT(powerof2(SC_TABLESIZE));
103 #define	SC_MASK		(SC_TABLESIZE - 1)
104 #define	SC_SHIFT	8
105 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
106 			    SC_MASK)
107 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
108 #define NR_SLEEPQS      2
109 /*
110  * There are two different lists of sleep queues.  Both lists are connected
111  * via the sq_hash entries.  The first list is the sleep queue chain list
112  * that a sleep queue is on when it is attached to a wait channel.  The
113  * second list is the free list hung off of a sleep queue that is attached
114  * to a wait channel.
115  *
116  * Each sleep queue also contains the wait channel it is attached to, the
117  * list of threads blocked on that wait channel, flags specific to the
118  * wait channel, and the lock used to synchronize with a wait channel.
119  * The flags are used to catch mismatches between the various consumers
120  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
121  * The lock pointer is only used when invariants are enabled for various
122  * debugging checks.
123  *
124  * Locking key:
125  *  c - sleep queue chain lock
126  */
127 struct sleepqueue {
128 	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
129 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
130 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
131 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
132 	const void	*sq_wchan;		/* (c) Wait channel. */
133 	int	sq_type;			/* (c) Queue type. */
134 #ifdef INVARIANTS
135 	struct lock_object *sq_lock;		/* (c) Associated lock. */
136 #endif
137 };
138 
139 struct sleepqueue_chain {
140 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
141 	struct mtx sc_lock;			/* Spin lock for this chain. */
142 #ifdef SLEEPQUEUE_PROFILING
143 	u_int	sc_depth;			/* Length of sc_queues. */
144 	u_int	sc_max_depth;			/* Max length of sc_queues. */
145 #endif
146 } __aligned(CACHE_LINE_SIZE);
147 
148 #ifdef SLEEPQUEUE_PROFILING
149 u_int sleepq_max_depth;
150 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
151 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
152     "sleepq chain stats");
153 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
154     0, "maxmimum depth achieved of a single chain");
155 
156 static void	sleepq_profile(const char *wmesg);
157 static int	prof_enabled;
158 #endif
159 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
160 static uma_zone_t sleepq_zone;
161 
162 /*
163  * Prototypes for non-exported routines.
164  */
165 static int	sleepq_catch_signals(const void *wchan, int pri);
166 static inline int sleepq_check_signals(void);
167 static inline int sleepq_check_timeout(void);
168 #ifdef INVARIANTS
169 static void	sleepq_dtor(void *mem, int size, void *arg);
170 #endif
171 static int	sleepq_init(void *mem, int size, int flags);
172 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
173 		    int pri, int srqflags);
174 static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
175 static void	sleepq_switch(const void *wchan, int pri);
176 static void	sleepq_timeout(void *arg);
177 
178 SDT_PROBE_DECLARE(sched, , , sleep);
179 SDT_PROBE_DECLARE(sched, , , wakeup);
180 
181 /*
182  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
183  * Note that it must happen after sleepinit() has been fully executed, so
184  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
185  */
186 #ifdef SLEEPQUEUE_PROFILING
187 static void
188 init_sleepqueue_profiling(void)
189 {
190 	char chain_name[10];
191 	struct sysctl_oid *chain_oid;
192 	u_int i;
193 
194 	for (i = 0; i < SC_TABLESIZE; i++) {
195 		snprintf(chain_name, sizeof(chain_name), "%u", i);
196 		chain_oid = SYSCTL_ADD_NODE(NULL,
197 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
198 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
199 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
200 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
201 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
202 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
203 		    NULL);
204 	}
205 }
206 
207 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
208     init_sleepqueue_profiling, NULL);
209 #endif
210 
211 /*
212  * Early initialization of sleep queues that is called from the sleepinit()
213  * SYSINIT.
214  */
215 void
216 init_sleepqueues(void)
217 {
218 	int i;
219 
220 	for (i = 0; i < SC_TABLESIZE; i++) {
221 		LIST_INIT(&sleepq_chains[i].sc_queues);
222 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
223 		    MTX_SPIN);
224 	}
225 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
226 #ifdef INVARIANTS
227 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
228 #else
229 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
230 #endif
231 
232 	thread0.td_sleepqueue = sleepq_alloc();
233 }
234 
235 /*
236  * Get a sleep queue for a new thread.
237  */
238 struct sleepqueue *
239 sleepq_alloc(void)
240 {
241 
242 	return (uma_zalloc(sleepq_zone, M_WAITOK));
243 }
244 
245 /*
246  * Free a sleep queue when a thread is destroyed.
247  */
248 void
249 sleepq_free(struct sleepqueue *sq)
250 {
251 
252 	uma_zfree(sleepq_zone, sq);
253 }
254 
255 /*
256  * Lock the sleep queue chain associated with the specified wait channel.
257  */
258 void
259 sleepq_lock(const void *wchan)
260 {
261 	struct sleepqueue_chain *sc;
262 
263 	sc = SC_LOOKUP(wchan);
264 	mtx_lock_spin(&sc->sc_lock);
265 }
266 
267 /*
268  * Look up the sleep queue associated with a given wait channel in the hash
269  * table locking the associated sleep queue chain.  If no queue is found in
270  * the table, NULL is returned.
271  */
272 struct sleepqueue *
273 sleepq_lookup(const void *wchan)
274 {
275 	struct sleepqueue_chain *sc;
276 	struct sleepqueue *sq;
277 
278 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
279 	sc = SC_LOOKUP(wchan);
280 	mtx_assert(&sc->sc_lock, MA_OWNED);
281 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
282 		if (sq->sq_wchan == wchan)
283 			return (sq);
284 	return (NULL);
285 }
286 
287 /*
288  * Unlock the sleep queue chain associated with a given wait channel.
289  */
290 void
291 sleepq_release(const void *wchan)
292 {
293 	struct sleepqueue_chain *sc;
294 
295 	sc = SC_LOOKUP(wchan);
296 	mtx_unlock_spin(&sc->sc_lock);
297 }
298 
299 /*
300  * Places the current thread on the sleep queue for the specified wait
301  * channel.  If INVARIANTS is enabled, then it associates the passed in
302  * lock with the sleepq to make sure it is held when that sleep queue is
303  * woken up.
304  */
305 void
306 sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg,
307     int flags, int queue)
308 {
309 	struct sleepqueue_chain *sc;
310 	struct sleepqueue *sq;
311 	struct thread *td;
312 
313 	td = curthread;
314 	sc = SC_LOOKUP(wchan);
315 	mtx_assert(&sc->sc_lock, MA_OWNED);
316 	MPASS(td->td_sleepqueue != NULL);
317 	MPASS(wchan != NULL);
318 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
319 
320 	/* If this thread is not allowed to sleep, die a horrible death. */
321 	if (__predict_false(!THREAD_CAN_SLEEP())) {
322 #ifdef EPOCH_TRACE
323 		epoch_trace_list(curthread);
324 #endif
325 		KASSERT(1,
326 		    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
327 		    __func__, td, wchan));
328 	}
329 
330 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
331 	sq = sleepq_lookup(wchan);
332 
333 	/*
334 	 * If the wait channel does not already have a sleep queue, use
335 	 * this thread's sleep queue.  Otherwise, insert the current thread
336 	 * into the sleep queue already in use by this wait channel.
337 	 */
338 	if (sq == NULL) {
339 #ifdef INVARIANTS
340 		int i;
341 
342 		sq = td->td_sleepqueue;
343 		for (i = 0; i < NR_SLEEPQS; i++) {
344 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
345 			    ("thread's sleep queue %d is not empty", i));
346 			KASSERT(sq->sq_blockedcnt[i] == 0,
347 			    ("thread's sleep queue %d count mismatches", i));
348 		}
349 		KASSERT(LIST_EMPTY(&sq->sq_free),
350 		    ("thread's sleep queue has a non-empty free list"));
351 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
352 		sq->sq_lock = lock;
353 #endif
354 #ifdef SLEEPQUEUE_PROFILING
355 		sc->sc_depth++;
356 		if (sc->sc_depth > sc->sc_max_depth) {
357 			sc->sc_max_depth = sc->sc_depth;
358 			if (sc->sc_max_depth > sleepq_max_depth)
359 				sleepq_max_depth = sc->sc_max_depth;
360 		}
361 #endif
362 		sq = td->td_sleepqueue;
363 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
364 		sq->sq_wchan = wchan;
365 		sq->sq_type = flags & SLEEPQ_TYPE;
366 	} else {
367 		MPASS(wchan == sq->sq_wchan);
368 		MPASS(lock == sq->sq_lock);
369 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
370 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
371 	}
372 	thread_lock(td);
373 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
374 	sq->sq_blockedcnt[queue]++;
375 	td->td_sleepqueue = NULL;
376 	td->td_sqqueue = queue;
377 	td->td_wchan = wchan;
378 	td->td_wmesg = wmesg;
379 	if (flags & SLEEPQ_INTERRUPTIBLE) {
380 		td->td_intrval = 0;
381 		td->td_flags |= TDF_SINTR;
382 	}
383 	td->td_flags &= ~TDF_TIMEOUT;
384 	thread_unlock(td);
385 }
386 
387 /*
388  * Sets a timeout that will remove the current thread from the specified
389  * sleep queue after timo ticks if the thread has not already been awakened.
390  */
391 void
392 sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr,
393     int flags)
394 {
395 	struct sleepqueue_chain *sc __unused;
396 	struct thread *td;
397 	sbintime_t pr1;
398 
399 	td = curthread;
400 	sc = SC_LOOKUP(wchan);
401 	mtx_assert(&sc->sc_lock, MA_OWNED);
402 	MPASS(TD_ON_SLEEPQ(td));
403 	MPASS(td->td_sleepqueue == NULL);
404 	MPASS(wchan != NULL);
405 	if (cold && td == &thread0)
406 		panic("timed sleep before timers are working");
407 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
408 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
409 	thread_lock(td);
410 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
411 	thread_unlock(td);
412 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
413 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
414 	    C_DIRECT_EXEC);
415 }
416 
417 /*
418  * Return the number of actual sleepers for the specified queue.
419  */
420 u_int
421 sleepq_sleepcnt(const void *wchan, int queue)
422 {
423 	struct sleepqueue *sq;
424 
425 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
426 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
427 	sq = sleepq_lookup(wchan);
428 	if (sq == NULL)
429 		return (0);
430 	return (sq->sq_blockedcnt[queue]);
431 }
432 
433 /*
434  * Marks the pending sleep of the current thread as interruptible and
435  * makes an initial check for pending signals before putting a thread
436  * to sleep. Enters and exits with the thread lock held.  Thread lock
437  * may have transitioned from the sleepq lock to a run lock.
438  */
439 static int
440 sleepq_catch_signals(const void *wchan, int pri)
441 {
442 	struct sleepqueue_chain *sc;
443 	struct sleepqueue *sq;
444 	struct thread *td;
445 	struct proc *p;
446 	struct sigacts *ps;
447 	int sig, ret;
448 
449 	ret = 0;
450 	td = curthread;
451 	p = curproc;
452 	sc = SC_LOOKUP(wchan);
453 	mtx_assert(&sc->sc_lock, MA_OWNED);
454 	MPASS(wchan != NULL);
455 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
456 		td->td_pflags &= ~TDP_WAKEUP;
457 		ret = EINTR;
458 		thread_lock(td);
459 		goto out;
460 	}
461 
462 	/*
463 	 * See if there are any pending signals or suspension requests for this
464 	 * thread.  If not, we can switch immediately.
465 	 */
466 	thread_lock(td);
467 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) {
468 		thread_unlock(td);
469 		mtx_unlock_spin(&sc->sc_lock);
470 		CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
471 			(void *)td, (long)p->p_pid, td->td_name);
472 		PROC_LOCK(p);
473 		/*
474 		 * Check for suspension first. Checking for signals and then
475 		 * suspending could result in a missed signal, since a signal
476 		 * can be delivered while this thread is suspended.
477 		 */
478 		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
479 			ret = thread_suspend_check(1);
480 			MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
481 			if (ret != 0) {
482 				PROC_UNLOCK(p);
483 				mtx_lock_spin(&sc->sc_lock);
484 				thread_lock(td);
485 				goto out;
486 			}
487 		}
488 		if ((td->td_flags & TDF_NEEDSIGCHK) != 0) {
489 			ps = p->p_sigacts;
490 			mtx_lock(&ps->ps_mtx);
491 			sig = cursig(td);
492 			if (sig == -1) {
493 				mtx_unlock(&ps->ps_mtx);
494 				KASSERT((td->td_flags & TDF_SBDRY) != 0,
495 				    ("lost TDF_SBDRY"));
496 				KASSERT(TD_SBDRY_INTR(td),
497 				    ("lost TDF_SERESTART of TDF_SEINTR"));
498 				KASSERT((td->td_flags &
499 				    (TDF_SEINTR | TDF_SERESTART)) !=
500 				    (TDF_SEINTR | TDF_SERESTART),
501 				    ("both TDF_SEINTR and TDF_SERESTART"));
502 				ret = TD_SBDRY_ERRNO(td);
503 			} else if (sig != 0) {
504 				ret = SIGISMEMBER(ps->ps_sigintr, sig) ?
505 				    EINTR : ERESTART;
506 				mtx_unlock(&ps->ps_mtx);
507 			} else {
508 				mtx_unlock(&ps->ps_mtx);
509 			}
510 
511 			/*
512 			 * Do not go into sleep if this thread was the
513 			 * ptrace(2) attach leader.  cursig() consumed
514 			 * SIGSTOP from PT_ATTACH, but we usually act
515 			 * on the signal by interrupting sleep, and
516 			 * should do that here as well.
517 			 */
518 			if ((td->td_dbgflags & TDB_FSTP) != 0) {
519 				if (ret == 0)
520 					ret = EINTR;
521 				td->td_dbgflags &= ~TDB_FSTP;
522 			}
523 		}
524 		/*
525 		 * Lock the per-process spinlock prior to dropping the PROC_LOCK
526 		 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
527 		 * thread_lock() are currently held in tdsendsignal().
528 		 */
529 		PROC_SLOCK(p);
530 		mtx_lock_spin(&sc->sc_lock);
531 		PROC_UNLOCK(p);
532 		thread_lock(td);
533 		PROC_SUNLOCK(p);
534 	}
535 	if (ret == 0) {
536 		sleepq_switch(wchan, pri);
537 		return (0);
538 	}
539 out:
540 	/*
541 	 * There were pending signals and this thread is still
542 	 * on the sleep queue, remove it from the sleep queue.
543 	 */
544 	if (TD_ON_SLEEPQ(td)) {
545 		sq = sleepq_lookup(wchan);
546 		sleepq_remove_thread(sq, td);
547 	}
548 	MPASS(td->td_lock != &sc->sc_lock);
549 	mtx_unlock_spin(&sc->sc_lock);
550 	thread_unlock(td);
551 
552 	return (ret);
553 }
554 
555 /*
556  * Switches to another thread if we are still asleep on a sleep queue.
557  * Returns with thread lock.
558  */
559 static void
560 sleepq_switch(const void *wchan, int pri)
561 {
562 	struct sleepqueue_chain *sc;
563 	struct sleepqueue *sq;
564 	struct thread *td;
565 	bool rtc_changed;
566 
567 	td = curthread;
568 	sc = SC_LOOKUP(wchan);
569 	mtx_assert(&sc->sc_lock, MA_OWNED);
570 	THREAD_LOCK_ASSERT(td, MA_OWNED);
571 
572 	/*
573 	 * If we have a sleep queue, then we've already been woken up, so
574 	 * just return.
575 	 */
576 	if (td->td_sleepqueue != NULL) {
577 		mtx_unlock_spin(&sc->sc_lock);
578 		thread_unlock(td);
579 		return;
580 	}
581 
582 	/*
583 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
584 	 * already but we are still on the sleep queue, so dequeue the
585 	 * thread and return.
586 	 *
587 	 * Do the same if the real-time clock has been adjusted since this
588 	 * thread calculated its timeout based on that clock.  This handles
589 	 * the following race:
590 	 * - The Ts thread needs to sleep until an absolute real-clock time.
591 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
592 	 *   reads the RTC, and calculates a sleep duration based on that time.
593 	 *   See umtxq_sleep() for an example.
594 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
595 	 *   threads that are sleeping until an absolute real-clock time.
596 	 *   See tc_setclock() and the POSIX specification of clock_settime().
597 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
598 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
599 	 * (The declaration of td_rtcgen refers to this comment.)
600 	 */
601 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
602 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
603 		if (rtc_changed) {
604 			td->td_rtcgen = 0;
605 		}
606 		MPASS(TD_ON_SLEEPQ(td));
607 		sq = sleepq_lookup(wchan);
608 		sleepq_remove_thread(sq, td);
609 		mtx_unlock_spin(&sc->sc_lock);
610 		thread_unlock(td);
611 		return;
612 	}
613 #ifdef SLEEPQUEUE_PROFILING
614 	if (prof_enabled)
615 		sleepq_profile(td->td_wmesg);
616 #endif
617 	MPASS(td->td_sleepqueue == NULL);
618 	sched_sleep(td, pri);
619 	thread_lock_set(td, &sc->sc_lock);
620 	SDT_PROBE0(sched, , , sleep);
621 	TD_SET_SLEEPING(td);
622 	mi_switch(SW_VOL | SWT_SLEEPQ);
623 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
624 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
625 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
626 }
627 
628 /*
629  * Check to see if we timed out.
630  */
631 static inline int
632 sleepq_check_timeout(void)
633 {
634 	struct thread *td;
635 	int res;
636 
637 	res = 0;
638 	td = curthread;
639 	if (td->td_sleeptimo != 0) {
640 		if (td->td_sleeptimo <= sbinuptime())
641 			res = EWOULDBLOCK;
642 		td->td_sleeptimo = 0;
643 	}
644 	return (res);
645 }
646 
647 /*
648  * Check to see if we were awoken by a signal.
649  */
650 static inline int
651 sleepq_check_signals(void)
652 {
653 	struct thread *td;
654 
655 	td = curthread;
656 	KASSERT((td->td_flags & TDF_SINTR) == 0,
657 	    ("thread %p still in interruptible sleep?", td));
658 
659 	return (td->td_intrval);
660 }
661 
662 /*
663  * Block the current thread until it is awakened from its sleep queue.
664  */
665 void
666 sleepq_wait(const void *wchan, int pri)
667 {
668 	struct thread *td;
669 
670 	td = curthread;
671 	MPASS(!(td->td_flags & TDF_SINTR));
672 	thread_lock(td);
673 	sleepq_switch(wchan, pri);
674 }
675 
676 /*
677  * Block the current thread until it is awakened from its sleep queue
678  * or it is interrupted by a signal.
679  */
680 int
681 sleepq_wait_sig(const void *wchan, int pri)
682 {
683 	int rcatch;
684 
685 	rcatch = sleepq_catch_signals(wchan, pri);
686 	if (rcatch)
687 		return (rcatch);
688 	return (sleepq_check_signals());
689 }
690 
691 /*
692  * Block the current thread until it is awakened from its sleep queue
693  * or it times out while waiting.
694  */
695 int
696 sleepq_timedwait(const void *wchan, int pri)
697 {
698 	struct thread *td;
699 
700 	td = curthread;
701 	MPASS(!(td->td_flags & TDF_SINTR));
702 
703 	thread_lock(td);
704 	sleepq_switch(wchan, pri);
705 
706 	return (sleepq_check_timeout());
707 }
708 
709 /*
710  * Block the current thread until it is awakened from its sleep queue,
711  * it is interrupted by a signal, or it times out waiting to be awakened.
712  */
713 int
714 sleepq_timedwait_sig(const void *wchan, int pri)
715 {
716 	int rcatch, rvalt, rvals;
717 
718 	rcatch = sleepq_catch_signals(wchan, pri);
719 	/* We must always call check_timeout() to clear sleeptimo. */
720 	rvalt = sleepq_check_timeout();
721 	rvals = sleepq_check_signals();
722 	if (rcatch)
723 		return (rcatch);
724 	if (rvals)
725 		return (rvals);
726 	return (rvalt);
727 }
728 
729 /*
730  * Returns the type of sleepqueue given a waitchannel.
731  */
732 int
733 sleepq_type(const void *wchan)
734 {
735 	struct sleepqueue *sq;
736 	int type;
737 
738 	MPASS(wchan != NULL);
739 
740 	sq = sleepq_lookup(wchan);
741 	if (sq == NULL)
742 		return (-1);
743 	type = sq->sq_type;
744 
745 	return (type);
746 }
747 
748 /*
749  * Removes a thread from a sleep queue and makes it
750  * runnable.
751  *
752  * Requires the sc chain locked on entry.  If SRQ_HOLD is specified it will
753  * be locked on return.  Returns without the thread lock held.
754  */
755 static int
756 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri,
757     int srqflags)
758 {
759 	struct sleepqueue_chain *sc;
760 	bool drop;
761 
762 	MPASS(td != NULL);
763 	MPASS(sq->sq_wchan != NULL);
764 	MPASS(td->td_wchan == sq->sq_wchan);
765 
766 	sc = SC_LOOKUP(sq->sq_wchan);
767 	mtx_assert(&sc->sc_lock, MA_OWNED);
768 
769 	/*
770 	 * Avoid recursing on the chain lock.  If the locks don't match we
771 	 * need to acquire the thread lock which setrunnable will drop for
772 	 * us.  In this case we need to drop the chain lock afterwards.
773 	 *
774 	 * There is no race that will make td_lock equal to sc_lock because
775 	 * we hold sc_lock.
776 	 */
777 	drop = false;
778 	if (!TD_IS_SLEEPING(td)) {
779 		thread_lock(td);
780 		drop = true;
781 	} else
782 		thread_lock_block_wait(td);
783 
784 	/* Remove thread from the sleepq. */
785 	sleepq_remove_thread(sq, td);
786 
787 	/* If we're done with the sleepqueue release it. */
788 	if ((srqflags & SRQ_HOLD) == 0 && drop)
789 		mtx_unlock_spin(&sc->sc_lock);
790 
791 	/* Adjust priority if requested. */
792 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
793 	if (pri != 0 && td->td_priority > pri &&
794 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
795 		sched_prio(td, pri);
796 
797 	/*
798 	 * Note that thread td might not be sleeping if it is running
799 	 * sleepq_catch_signals() on another CPU or is blocked on its
800 	 * proc lock to check signals.  There's no need to mark the
801 	 * thread runnable in that case.
802 	 */
803 	if (TD_IS_SLEEPING(td)) {
804 		MPASS(!drop);
805 		TD_CLR_SLEEPING(td);
806 		return (setrunnable(td, srqflags));
807 	}
808 	MPASS(drop);
809 	thread_unlock(td);
810 
811 	return (0);
812 }
813 
814 static void
815 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
816 {
817 	struct sleepqueue_chain *sc __unused;
818 
819 	MPASS(td != NULL);
820 	MPASS(sq->sq_wchan != NULL);
821 	MPASS(td->td_wchan == sq->sq_wchan);
822 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
823 	THREAD_LOCK_ASSERT(td, MA_OWNED);
824 	sc = SC_LOOKUP(sq->sq_wchan);
825 	mtx_assert(&sc->sc_lock, MA_OWNED);
826 
827 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
828 
829 	/* Remove the thread from the queue. */
830 	sq->sq_blockedcnt[td->td_sqqueue]--;
831 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
832 
833 	/*
834 	 * Get a sleep queue for this thread.  If this is the last waiter,
835 	 * use the queue itself and take it out of the chain, otherwise,
836 	 * remove a queue from the free list.
837 	 */
838 	if (LIST_EMPTY(&sq->sq_free)) {
839 		td->td_sleepqueue = sq;
840 #ifdef INVARIANTS
841 		sq->sq_wchan = NULL;
842 #endif
843 #ifdef SLEEPQUEUE_PROFILING
844 		sc->sc_depth--;
845 #endif
846 	} else
847 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
848 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
849 
850 	if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0)
851 		/*
852 		 * We ignore the situation where timeout subsystem was
853 		 * unable to stop our callout.  The struct thread is
854 		 * type-stable, the callout will use the correct
855 		 * memory when running.  The checks of the
856 		 * td_sleeptimo value in this function and in
857 		 * sleepq_timeout() ensure that the thread does not
858 		 * get spurious wakeups, even if the callout was reset
859 		 * or thread reused.
860 		 */
861 		callout_stop(&td->td_slpcallout);
862 
863 	td->td_wmesg = NULL;
864 	td->td_wchan = NULL;
865 	td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT);
866 
867 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
868 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
869 }
870 
871 #ifdef INVARIANTS
872 /*
873  * UMA zone item deallocator.
874  */
875 static void
876 sleepq_dtor(void *mem, int size, void *arg)
877 {
878 	struct sleepqueue *sq;
879 	int i;
880 
881 	sq = mem;
882 	for (i = 0; i < NR_SLEEPQS; i++) {
883 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
884 		MPASS(sq->sq_blockedcnt[i] == 0);
885 	}
886 }
887 #endif
888 
889 /*
890  * UMA zone item initializer.
891  */
892 static int
893 sleepq_init(void *mem, int size, int flags)
894 {
895 	struct sleepqueue *sq;
896 	int i;
897 
898 	bzero(mem, size);
899 	sq = mem;
900 	for (i = 0; i < NR_SLEEPQS; i++) {
901 		TAILQ_INIT(&sq->sq_blocked[i]);
902 		sq->sq_blockedcnt[i] = 0;
903 	}
904 	LIST_INIT(&sq->sq_free);
905 	return (0);
906 }
907 
908 /*
909  * Find thread sleeping on a wait channel and resume it.
910  */
911 int
912 sleepq_signal(const void *wchan, int flags, int pri, int queue)
913 {
914 	struct sleepqueue_chain *sc;
915 	struct sleepqueue *sq;
916 	struct threadqueue *head;
917 	struct thread *td, *besttd;
918 	int wakeup_swapper;
919 
920 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
921 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
922 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
923 	sq = sleepq_lookup(wchan);
924 	if (sq == NULL)
925 		return (0);
926 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
927 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
928 
929 	head = &sq->sq_blocked[queue];
930 	if (flags & SLEEPQ_UNFAIR) {
931 		/*
932 		 * Find the most recently sleeping thread, but try to
933 		 * skip threads still in process of context switch to
934 		 * avoid spinning on the thread lock.
935 		 */
936 		sc = SC_LOOKUP(wchan);
937 		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
938 		while (besttd->td_lock != &sc->sc_lock) {
939 			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
940 			if (td == NULL)
941 				break;
942 			besttd = td;
943 		}
944 	} else {
945 		/*
946 		 * Find the highest priority thread on the queue.  If there
947 		 * is a tie, use the thread that first appears in the queue
948 		 * as it has been sleeping the longest since threads are
949 		 * always added to the tail of sleep queues.
950 		 */
951 		besttd = td = TAILQ_FIRST(head);
952 		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
953 			if (td->td_priority < besttd->td_priority)
954 				besttd = td;
955 		}
956 	}
957 	MPASS(besttd != NULL);
958 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri, SRQ_HOLD);
959 	return (wakeup_swapper);
960 }
961 
962 static bool
963 match_any(struct thread *td __unused)
964 {
965 
966 	return (true);
967 }
968 
969 /*
970  * Resume all threads sleeping on a specified wait channel.
971  */
972 int
973 sleepq_broadcast(const void *wchan, int flags, int pri, int queue)
974 {
975 	struct sleepqueue *sq;
976 
977 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
978 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
979 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
980 	sq = sleepq_lookup(wchan);
981 	if (sq == NULL)
982 		return (0);
983 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
984 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
985 
986 	return (sleepq_remove_matching(sq, queue, match_any, pri));
987 }
988 
989 /*
990  * Resume threads on the sleep queue that match the given predicate.
991  */
992 int
993 sleepq_remove_matching(struct sleepqueue *sq, int queue,
994     bool (*matches)(struct thread *), int pri)
995 {
996 	struct thread *td, *tdn;
997 	int wakeup_swapper;
998 
999 	/*
1000 	 * The last thread will be given ownership of sq and may
1001 	 * re-enqueue itself before sleepq_resume_thread() returns,
1002 	 * so we must cache the "next" queue item at the beginning
1003 	 * of the final iteration.
1004 	 */
1005 	wakeup_swapper = 0;
1006 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
1007 		if (matches(td))
1008 			wakeup_swapper |= sleepq_resume_thread(sq, td, pri,
1009 			    SRQ_HOLD);
1010 	}
1011 
1012 	return (wakeup_swapper);
1013 }
1014 
1015 /*
1016  * Time sleeping threads out.  When the timeout expires, the thread is
1017  * removed from the sleep queue and made runnable if it is still asleep.
1018  */
1019 static void
1020 sleepq_timeout(void *arg)
1021 {
1022 	struct sleepqueue_chain *sc __unused;
1023 	struct sleepqueue *sq;
1024 	struct thread *td;
1025 	const void *wchan;
1026 	int wakeup_swapper;
1027 
1028 	td = arg;
1029 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1030 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1031 
1032 	thread_lock(td);
1033 	if (td->td_sleeptimo == 0 || td->td_sleeptimo > sbinuptime()) {
1034 		/*
1035 		 * The thread does not want a timeout (yet).
1036 		 */
1037 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1038 		/*
1039 		 * See if the thread is asleep and get the wait
1040 		 * channel if it is.
1041 		 */
1042 		wchan = td->td_wchan;
1043 		sc = SC_LOOKUP(wchan);
1044 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1045 		sq = sleepq_lookup(wchan);
1046 		MPASS(sq != NULL);
1047 		td->td_flags |= TDF_TIMEOUT;
1048 		wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1049 		if (wakeup_swapper)
1050 			kick_proc0();
1051 		return;
1052 	} else if (TD_ON_SLEEPQ(td)) {
1053 		/*
1054 		 * If the thread is on the SLEEPQ but isn't sleeping
1055 		 * yet, it can either be on another CPU in between
1056 		 * sleepq_add() and one of the sleepq_*wait*()
1057 		 * routines or it can be in sleepq_catch_signals().
1058 		 */
1059 		td->td_flags |= TDF_TIMEOUT;
1060 	}
1061 	thread_unlock(td);
1062 }
1063 
1064 /*
1065  * Resumes a specific thread from the sleep queue associated with a specific
1066  * wait channel if it is on that queue.
1067  */
1068 void
1069 sleepq_remove(struct thread *td, const void *wchan)
1070 {
1071 	struct sleepqueue_chain *sc;
1072 	struct sleepqueue *sq;
1073 	int wakeup_swapper;
1074 
1075 	/*
1076 	 * Look up the sleep queue for this wait channel, then re-check
1077 	 * that the thread is asleep on that channel, if it is not, then
1078 	 * bail.
1079 	 */
1080 	MPASS(wchan != NULL);
1081 	sc = SC_LOOKUP(wchan);
1082 	mtx_lock_spin(&sc->sc_lock);
1083 	/*
1084 	 * We can not lock the thread here as it may be sleeping on a
1085 	 * different sleepq.  However, holding the sleepq lock for this
1086 	 * wchan can guarantee that we do not miss a wakeup for this
1087 	 * channel.  The asserts below will catch any false positives.
1088 	 */
1089 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1090 		mtx_unlock_spin(&sc->sc_lock);
1091 		return;
1092 	}
1093 
1094 	/* Thread is asleep on sleep queue sq, so wake it up. */
1095 	sq = sleepq_lookup(wchan);
1096 	MPASS(sq != NULL);
1097 	MPASS(td->td_wchan == wchan);
1098 	wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1099 	if (wakeup_swapper)
1100 		kick_proc0();
1101 }
1102 
1103 /*
1104  * Abort a thread as if an interrupt had occurred.  Only abort
1105  * interruptible waits (unfortunately it isn't safe to abort others).
1106  *
1107  * Requires thread lock on entry, releases on return.
1108  */
1109 int
1110 sleepq_abort(struct thread *td, int intrval)
1111 {
1112 	struct sleepqueue *sq;
1113 	const void *wchan;
1114 
1115 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1116 	MPASS(TD_ON_SLEEPQ(td));
1117 	MPASS(td->td_flags & TDF_SINTR);
1118 	MPASS(intrval == EINTR || intrval == ERESTART);
1119 
1120 	/*
1121 	 * If the TDF_TIMEOUT flag is set, just leave. A
1122 	 * timeout is scheduled anyhow.
1123 	 */
1124 	if (td->td_flags & TDF_TIMEOUT) {
1125 		thread_unlock(td);
1126 		return (0);
1127 	}
1128 
1129 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1130 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1131 	td->td_intrval = intrval;
1132 
1133 	/*
1134 	 * If the thread has not slept yet it will find the signal in
1135 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1136 	 * we have to do it here.
1137 	 */
1138 	if (!TD_IS_SLEEPING(td)) {
1139 		thread_unlock(td);
1140 		return (0);
1141 	}
1142 	wchan = td->td_wchan;
1143 	MPASS(wchan != NULL);
1144 	sq = sleepq_lookup(wchan);
1145 	MPASS(sq != NULL);
1146 
1147 	/* Thread is asleep on sleep queue sq, so wake it up. */
1148 	return (sleepq_resume_thread(sq, td, 0, 0));
1149 }
1150 
1151 void
1152 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1153 {
1154 	struct sleepqueue_chain *sc;
1155 	struct sleepqueue *sq, *sq1;
1156 	int i, wakeup_swapper;
1157 
1158 	wakeup_swapper = 0;
1159 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1160 		if (LIST_EMPTY(&sc->sc_queues)) {
1161 			continue;
1162 		}
1163 		mtx_lock_spin(&sc->sc_lock);
1164 		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1165 			for (i = 0; i < NR_SLEEPQS; ++i) {
1166 				wakeup_swapper |= sleepq_remove_matching(sq, i,
1167 				    matches, 0);
1168 			}
1169 		}
1170 		mtx_unlock_spin(&sc->sc_lock);
1171 	}
1172 	if (wakeup_swapper) {
1173 		kick_proc0();
1174 	}
1175 }
1176 
1177 /*
1178  * Prints the stacks of all threads presently sleeping on wchan/queue to
1179  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1180  * printed.  Typically, this will equal the number of threads sleeping on the
1181  * queue, but may be less if sb overflowed before all stacks were printed.
1182  */
1183 #ifdef STACK
1184 int
1185 sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue,
1186     int *count_stacks_printed)
1187 {
1188 	struct thread *td, *td_next;
1189 	struct sleepqueue *sq;
1190 	struct stack **st;
1191 	struct sbuf **td_infos;
1192 	int i, stack_idx, error, stacks_to_allocate;
1193 	bool finished;
1194 
1195 	error = 0;
1196 	finished = false;
1197 
1198 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1199 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1200 
1201 	stacks_to_allocate = 10;
1202 	for (i = 0; i < 3 && !finished ; i++) {
1203 		/* We cannot malloc while holding the queue's spinlock, so
1204 		 * we do our mallocs now, and hope it is enough.  If it
1205 		 * isn't, we will free these, drop the lock, malloc more,
1206 		 * and try again, up to a point.  After that point we will
1207 		 * give up and report ENOMEM. We also cannot write to sb
1208 		 * during this time since the client may have set the
1209 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1210 		 * malloc as we print to it.  So we defer actually printing
1211 		 * to sb until after we drop the spinlock.
1212 		 */
1213 
1214 		/* Where we will store the stacks. */
1215 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1216 		    M_TEMP, M_WAITOK);
1217 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1218 		    stack_idx++)
1219 			st[stack_idx] = stack_create(M_WAITOK);
1220 
1221 		/* Where we will store the td name, tid, etc. */
1222 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1223 		    M_TEMP, M_WAITOK);
1224 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1225 		    stack_idx++)
1226 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1227 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1228 			    SBUF_FIXEDLEN);
1229 
1230 		sleepq_lock(wchan);
1231 		sq = sleepq_lookup(wchan);
1232 		if (sq == NULL) {
1233 			/* This sleepq does not exist; exit and return ENOENT. */
1234 			error = ENOENT;
1235 			finished = true;
1236 			sleepq_release(wchan);
1237 			goto loop_end;
1238 		}
1239 
1240 		stack_idx = 0;
1241 		/* Save thread info */
1242 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1243 		    td_next) {
1244 			if (stack_idx >= stacks_to_allocate)
1245 				goto loop_end;
1246 
1247 			/* Note the td_lock is equal to the sleepq_lock here. */
1248 			(void)stack_save_td(st[stack_idx], td);
1249 
1250 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1251 			    td->td_tid, td->td_name, td);
1252 
1253 			++stack_idx;
1254 		}
1255 
1256 		finished = true;
1257 		sleepq_release(wchan);
1258 
1259 		/* Print the stacks */
1260 		for (i = 0; i < stack_idx; i++) {
1261 			sbuf_finish(td_infos[i]);
1262 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1263 			stack_sbuf_print(sb, st[i]);
1264 			sbuf_printf(sb, "\n");
1265 
1266 			error = sbuf_error(sb);
1267 			if (error == 0)
1268 				*count_stacks_printed = stack_idx;
1269 		}
1270 
1271 loop_end:
1272 		if (!finished)
1273 			sleepq_release(wchan);
1274 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1275 		    stack_idx++)
1276 			stack_destroy(st[stack_idx]);
1277 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1278 		    stack_idx++)
1279 			sbuf_delete(td_infos[stack_idx]);
1280 		free(st, M_TEMP);
1281 		free(td_infos, M_TEMP);
1282 		stacks_to_allocate *= 10;
1283 	}
1284 
1285 	if (!finished && error == 0)
1286 		error = ENOMEM;
1287 
1288 	return (error);
1289 }
1290 #endif
1291 
1292 #ifdef SLEEPQUEUE_PROFILING
1293 #define	SLEEPQ_PROF_LOCATIONS	1024
1294 #define	SLEEPQ_SBUFSIZE		512
1295 struct sleepq_prof {
1296 	LIST_ENTRY(sleepq_prof) sp_link;
1297 	const char	*sp_wmesg;
1298 	long		sp_count;
1299 };
1300 
1301 LIST_HEAD(sqphead, sleepq_prof);
1302 
1303 struct sqphead sleepq_prof_free;
1304 struct sqphead sleepq_hash[SC_TABLESIZE];
1305 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1306 static struct mtx sleepq_prof_lock;
1307 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1308 
1309 static void
1310 sleepq_profile(const char *wmesg)
1311 {
1312 	struct sleepq_prof *sp;
1313 
1314 	mtx_lock_spin(&sleepq_prof_lock);
1315 	if (prof_enabled == 0)
1316 		goto unlock;
1317 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1318 		if (sp->sp_wmesg == wmesg)
1319 			goto done;
1320 	sp = LIST_FIRST(&sleepq_prof_free);
1321 	if (sp == NULL)
1322 		goto unlock;
1323 	sp->sp_wmesg = wmesg;
1324 	LIST_REMOVE(sp, sp_link);
1325 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1326 done:
1327 	sp->sp_count++;
1328 unlock:
1329 	mtx_unlock_spin(&sleepq_prof_lock);
1330 	return;
1331 }
1332 
1333 static void
1334 sleepq_prof_reset(void)
1335 {
1336 	struct sleepq_prof *sp;
1337 	int enabled;
1338 	int i;
1339 
1340 	mtx_lock_spin(&sleepq_prof_lock);
1341 	enabled = prof_enabled;
1342 	prof_enabled = 0;
1343 	for (i = 0; i < SC_TABLESIZE; i++)
1344 		LIST_INIT(&sleepq_hash[i]);
1345 	LIST_INIT(&sleepq_prof_free);
1346 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1347 		sp = &sleepq_profent[i];
1348 		sp->sp_wmesg = NULL;
1349 		sp->sp_count = 0;
1350 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1351 	}
1352 	prof_enabled = enabled;
1353 	mtx_unlock_spin(&sleepq_prof_lock);
1354 }
1355 
1356 static int
1357 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1358 {
1359 	int error, v;
1360 
1361 	v = prof_enabled;
1362 	error = sysctl_handle_int(oidp, &v, v, req);
1363 	if (error)
1364 		return (error);
1365 	if (req->newptr == NULL)
1366 		return (error);
1367 	if (v == prof_enabled)
1368 		return (0);
1369 	if (v == 1)
1370 		sleepq_prof_reset();
1371 	mtx_lock_spin(&sleepq_prof_lock);
1372 	prof_enabled = !!v;
1373 	mtx_unlock_spin(&sleepq_prof_lock);
1374 
1375 	return (0);
1376 }
1377 
1378 static int
1379 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1380 {
1381 	int error, v;
1382 
1383 	v = 0;
1384 	error = sysctl_handle_int(oidp, &v, 0, req);
1385 	if (error)
1386 		return (error);
1387 	if (req->newptr == NULL)
1388 		return (error);
1389 	if (v == 0)
1390 		return (0);
1391 	sleepq_prof_reset();
1392 
1393 	return (0);
1394 }
1395 
1396 static int
1397 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1398 {
1399 	struct sleepq_prof *sp;
1400 	struct sbuf *sb;
1401 	int enabled;
1402 	int error;
1403 	int i;
1404 
1405 	error = sysctl_wire_old_buffer(req, 0);
1406 	if (error != 0)
1407 		return (error);
1408 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1409 	sbuf_printf(sb, "\nwmesg\tcount\n");
1410 	enabled = prof_enabled;
1411 	mtx_lock_spin(&sleepq_prof_lock);
1412 	prof_enabled = 0;
1413 	mtx_unlock_spin(&sleepq_prof_lock);
1414 	for (i = 0; i < SC_TABLESIZE; i++) {
1415 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1416 			sbuf_printf(sb, "%s\t%ld\n",
1417 			    sp->sp_wmesg, sp->sp_count);
1418 		}
1419 	}
1420 	mtx_lock_spin(&sleepq_prof_lock);
1421 	prof_enabled = enabled;
1422 	mtx_unlock_spin(&sleepq_prof_lock);
1423 
1424 	error = sbuf_finish(sb);
1425 	sbuf_delete(sb);
1426 	return (error);
1427 }
1428 
1429 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1430     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1431 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1432     NULL, 0, reset_sleepq_prof_stats, "I",
1433     "Reset sleepqueue profiling statistics");
1434 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1435     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1436 #endif
1437 
1438 #ifdef DDB
1439 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1440 {
1441 	struct sleepqueue_chain *sc;
1442 	struct sleepqueue *sq;
1443 #ifdef INVARIANTS
1444 	struct lock_object *lock;
1445 #endif
1446 	struct thread *td;
1447 	void *wchan;
1448 	int i;
1449 
1450 	if (!have_addr)
1451 		return;
1452 
1453 	/*
1454 	 * First, see if there is an active sleep queue for the wait channel
1455 	 * indicated by the address.
1456 	 */
1457 	wchan = (void *)addr;
1458 	sc = SC_LOOKUP(wchan);
1459 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1460 		if (sq->sq_wchan == wchan)
1461 			goto found;
1462 
1463 	/*
1464 	 * Second, see if there is an active sleep queue at the address
1465 	 * indicated.
1466 	 */
1467 	for (i = 0; i < SC_TABLESIZE; i++)
1468 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1469 			if (sq == (struct sleepqueue *)addr)
1470 				goto found;
1471 		}
1472 
1473 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1474 	return;
1475 found:
1476 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1477 	db_printf("Queue type: %d\n", sq->sq_type);
1478 #ifdef INVARIANTS
1479 	if (sq->sq_lock) {
1480 		lock = sq->sq_lock;
1481 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1482 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1483 	}
1484 #endif
1485 	db_printf("Blocked threads:\n");
1486 	for (i = 0; i < NR_SLEEPQS; i++) {
1487 		db_printf("\nQueue[%d]:\n", i);
1488 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1489 			db_printf("\tempty\n");
1490 		else
1491 			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1492 				      td_slpq) {
1493 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1494 					  td->td_tid, td->td_proc->p_pid,
1495 					  td->td_name);
1496 			}
1497 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1498 	}
1499 }
1500 
1501 /* Alias 'show sleepqueue' to 'show sleepq'. */
1502 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1503 #endif
1504