xref: /freebsd/sys/kern/subr_sleepqueue.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * Implementation of sleep queues used to hold queue of threads blocked on
30  * a wait channel.  Sleep queues are different from turnstiles in that wait
31  * channels are not owned by anyone, so there is no priority propagation.
32  * Sleep queues can also provide a timeout and can also be interrupted by
33  * signals.  That said, there are several similarities between the turnstile
34  * and sleep queue implementations.  (Note: turnstiles were implemented
35  * first.)  For example, both use a hash table of the same size where each
36  * bucket is referred to as a "chain" that contains both a spin lock and
37  * a linked list of queues.  An individual queue is located by using a hash
38  * to pick a chain, locking the chain, and then walking the chain searching
39  * for the queue.  This means that a wait channel object does not need to
40  * embed its queue head just as locks do not embed their turnstile queue
41  * head.  Threads also carry around a sleep queue that they lend to the
42  * wait channel when blocking.  Just as in turnstiles, the queue includes
43  * a free list of the sleep queues of other threads blocked on the same
44  * wait channel in the case of multiple waiters.
45  *
46  * Some additional functionality provided by sleep queues include the
47  * ability to set a timeout.  The timeout is managed using a per-thread
48  * callout that resumes a thread if it is asleep.  A thread may also
49  * catch signals while it is asleep (aka an interruptible sleep).  The
50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51  * sleep queues also provide some extra assertions.  One is not allowed to
52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53  * must consistently use the same lock to synchronize with a wait channel,
54  * though this check is currently only a warning for sleep/wakeup due to
55  * pre-existing abuse of that API.  The same lock must also be held when
56  * awakening threads, though that is currently only enforced for condition
57  * variables.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_sleepqueue_profiling.h"
64 #include "opt_ddb.h"
65 #include "opt_sched.h"
66 #include "opt_stack.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sdt.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/stack.h>
81 #include <sys/sysctl.h>
82 #include <sys/time.h>
83 #ifdef EPOCH_TRACE
84 #include <sys/epoch.h>
85 #endif
86 
87 #include <machine/atomic.h>
88 
89 #include <vm/uma.h>
90 
91 #ifdef DDB
92 #include <ddb/ddb.h>
93 #endif
94 
95 /*
96  * Constants for the hash table of sleep queue chains.
97  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
98  */
99 #ifndef SC_TABLESIZE
100 #define	SC_TABLESIZE	256
101 #endif
102 CTASSERT(powerof2(SC_TABLESIZE));
103 #define	SC_MASK		(SC_TABLESIZE - 1)
104 #define	SC_SHIFT	8
105 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
106 			    SC_MASK)
107 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
108 #define NR_SLEEPQS      2
109 /*
110  * There are two different lists of sleep queues.  Both lists are connected
111  * via the sq_hash entries.  The first list is the sleep queue chain list
112  * that a sleep queue is on when it is attached to a wait channel.  The
113  * second list is the free list hung off of a sleep queue that is attached
114  * to a wait channel.
115  *
116  * Each sleep queue also contains the wait channel it is attached to, the
117  * list of threads blocked on that wait channel, flags specific to the
118  * wait channel, and the lock used to synchronize with a wait channel.
119  * The flags are used to catch mismatches between the various consumers
120  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
121  * The lock pointer is only used when invariants are enabled for various
122  * debugging checks.
123  *
124  * Locking key:
125  *  c - sleep queue chain lock
126  */
127 struct sleepqueue {
128 	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
129 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
130 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
131 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
132 	const void	*sq_wchan;		/* (c) Wait channel. */
133 	int	sq_type;			/* (c) Queue type. */
134 #ifdef INVARIANTS
135 	struct lock_object *sq_lock;		/* (c) Associated lock. */
136 #endif
137 };
138 
139 struct sleepqueue_chain {
140 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
141 	struct mtx sc_lock;			/* Spin lock for this chain. */
142 #ifdef SLEEPQUEUE_PROFILING
143 	u_int	sc_depth;			/* Length of sc_queues. */
144 	u_int	sc_max_depth;			/* Max length of sc_queues. */
145 #endif
146 } __aligned(CACHE_LINE_SIZE);
147 
148 #ifdef SLEEPQUEUE_PROFILING
149 u_int sleepq_max_depth;
150 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
151     "sleepq profiling");
152 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains,
153     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
154     "sleepq chain stats");
155 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
156     0, "maxmimum depth achieved of a single chain");
157 
158 static void	sleepq_profile(const char *wmesg);
159 static int	prof_enabled;
160 #endif
161 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
162 static uma_zone_t sleepq_zone;
163 
164 /*
165  * Prototypes for non-exported routines.
166  */
167 static int	sleepq_catch_signals(const void *wchan, int pri);
168 static inline int sleepq_check_signals(void);
169 static inline int sleepq_check_timeout(void);
170 #ifdef INVARIANTS
171 static void	sleepq_dtor(void *mem, int size, void *arg);
172 #endif
173 static int	sleepq_init(void *mem, int size, int flags);
174 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
175 		    int pri, int srqflags);
176 static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
177 static void	sleepq_switch(const void *wchan, int pri);
178 static void	sleepq_timeout(void *arg);
179 
180 SDT_PROBE_DECLARE(sched, , , sleep);
181 SDT_PROBE_DECLARE(sched, , , wakeup);
182 
183 /*
184  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
185  * Note that it must happen after sleepinit() has been fully executed, so
186  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
187  */
188 #ifdef SLEEPQUEUE_PROFILING
189 static void
190 init_sleepqueue_profiling(void)
191 {
192 	char chain_name[10];
193 	struct sysctl_oid *chain_oid;
194 	u_int i;
195 
196 	for (i = 0; i < SC_TABLESIZE; i++) {
197 		snprintf(chain_name, sizeof(chain_name), "%u", i);
198 		chain_oid = SYSCTL_ADD_NODE(NULL,
199 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
200 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
201 		    "sleepq chain stats");
202 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
203 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
204 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
205 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
206 		    NULL);
207 	}
208 }
209 
210 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
211     init_sleepqueue_profiling, NULL);
212 #endif
213 
214 /*
215  * Early initialization of sleep queues that is called from the sleepinit()
216  * SYSINIT.
217  */
218 void
219 init_sleepqueues(void)
220 {
221 	int i;
222 
223 	for (i = 0; i < SC_TABLESIZE; i++) {
224 		LIST_INIT(&sleepq_chains[i].sc_queues);
225 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
226 		    MTX_SPIN);
227 	}
228 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
229 #ifdef INVARIANTS
230 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
231 #else
232 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
233 #endif
234 
235 	thread0.td_sleepqueue = sleepq_alloc();
236 }
237 
238 /*
239  * Get a sleep queue for a new thread.
240  */
241 struct sleepqueue *
242 sleepq_alloc(void)
243 {
244 
245 	return (uma_zalloc(sleepq_zone, M_WAITOK));
246 }
247 
248 /*
249  * Free a sleep queue when a thread is destroyed.
250  */
251 void
252 sleepq_free(struct sleepqueue *sq)
253 {
254 
255 	uma_zfree(sleepq_zone, sq);
256 }
257 
258 /*
259  * Lock the sleep queue chain associated with the specified wait channel.
260  */
261 void
262 sleepq_lock(const void *wchan)
263 {
264 	struct sleepqueue_chain *sc;
265 
266 	sc = SC_LOOKUP(wchan);
267 	mtx_lock_spin(&sc->sc_lock);
268 }
269 
270 /*
271  * Look up the sleep queue associated with a given wait channel in the hash
272  * table locking the associated sleep queue chain.  If no queue is found in
273  * the table, NULL is returned.
274  */
275 struct sleepqueue *
276 sleepq_lookup(const void *wchan)
277 {
278 	struct sleepqueue_chain *sc;
279 	struct sleepqueue *sq;
280 
281 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
282 	sc = SC_LOOKUP(wchan);
283 	mtx_assert(&sc->sc_lock, MA_OWNED);
284 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
285 		if (sq->sq_wchan == wchan)
286 			return (sq);
287 	return (NULL);
288 }
289 
290 /*
291  * Unlock the sleep queue chain associated with a given wait channel.
292  */
293 void
294 sleepq_release(const void *wchan)
295 {
296 	struct sleepqueue_chain *sc;
297 
298 	sc = SC_LOOKUP(wchan);
299 	mtx_unlock_spin(&sc->sc_lock);
300 }
301 
302 /*
303  * Places the current thread on the sleep queue for the specified wait
304  * channel.  If INVARIANTS is enabled, then it associates the passed in
305  * lock with the sleepq to make sure it is held when that sleep queue is
306  * woken up.
307  */
308 void
309 sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg,
310     int flags, int queue)
311 {
312 	struct sleepqueue_chain *sc;
313 	struct sleepqueue *sq;
314 	struct thread *td;
315 
316 	td = curthread;
317 	sc = SC_LOOKUP(wchan);
318 	mtx_assert(&sc->sc_lock, MA_OWNED);
319 	MPASS(td->td_sleepqueue != NULL);
320 	MPASS(wchan != NULL);
321 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
322 
323 	/* If this thread is not allowed to sleep, die a horrible death. */
324 	if (__predict_false(!THREAD_CAN_SLEEP())) {
325 #ifdef EPOCH_TRACE
326 		epoch_trace_list(curthread);
327 #endif
328 		KASSERT(0,
329 		    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
330 		    __func__, td, wchan));
331 	}
332 
333 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
334 	sq = sleepq_lookup(wchan);
335 
336 	/*
337 	 * If the wait channel does not already have a sleep queue, use
338 	 * this thread's sleep queue.  Otherwise, insert the current thread
339 	 * into the sleep queue already in use by this wait channel.
340 	 */
341 	if (sq == NULL) {
342 #ifdef INVARIANTS
343 		int i;
344 
345 		sq = td->td_sleepqueue;
346 		for (i = 0; i < NR_SLEEPQS; i++) {
347 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
348 			    ("thread's sleep queue %d is not empty", i));
349 			KASSERT(sq->sq_blockedcnt[i] == 0,
350 			    ("thread's sleep queue %d count mismatches", i));
351 		}
352 		KASSERT(LIST_EMPTY(&sq->sq_free),
353 		    ("thread's sleep queue has a non-empty free list"));
354 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
355 		sq->sq_lock = lock;
356 #endif
357 #ifdef SLEEPQUEUE_PROFILING
358 		sc->sc_depth++;
359 		if (sc->sc_depth > sc->sc_max_depth) {
360 			sc->sc_max_depth = sc->sc_depth;
361 			if (sc->sc_max_depth > sleepq_max_depth)
362 				sleepq_max_depth = sc->sc_max_depth;
363 		}
364 #endif
365 		sq = td->td_sleepqueue;
366 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
367 		sq->sq_wchan = wchan;
368 		sq->sq_type = flags & SLEEPQ_TYPE;
369 	} else {
370 		MPASS(wchan == sq->sq_wchan);
371 		MPASS(lock == sq->sq_lock);
372 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
373 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
374 	}
375 	thread_lock(td);
376 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
377 	sq->sq_blockedcnt[queue]++;
378 	td->td_sleepqueue = NULL;
379 	td->td_sqqueue = queue;
380 	td->td_wchan = wchan;
381 	td->td_wmesg = wmesg;
382 	if (flags & SLEEPQ_INTERRUPTIBLE) {
383 		td->td_intrval = 0;
384 		td->td_flags |= TDF_SINTR;
385 	}
386 	td->td_flags &= ~TDF_TIMEOUT;
387 	thread_unlock(td);
388 }
389 
390 /*
391  * Sets a timeout that will remove the current thread from the specified
392  * sleep queue after timo ticks if the thread has not already been awakened.
393  */
394 void
395 sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr,
396     int flags)
397 {
398 	struct sleepqueue_chain *sc __unused;
399 	struct thread *td;
400 	sbintime_t pr1;
401 
402 	td = curthread;
403 	sc = SC_LOOKUP(wchan);
404 	mtx_assert(&sc->sc_lock, MA_OWNED);
405 	MPASS(TD_ON_SLEEPQ(td));
406 	MPASS(td->td_sleepqueue == NULL);
407 	MPASS(wchan != NULL);
408 	if (cold && td == &thread0)
409 		panic("timed sleep before timers are working");
410 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
411 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
412 	thread_lock(td);
413 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
414 	thread_unlock(td);
415 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
416 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
417 	    C_DIRECT_EXEC);
418 }
419 
420 /*
421  * Return the number of actual sleepers for the specified queue.
422  */
423 u_int
424 sleepq_sleepcnt(const void *wchan, int queue)
425 {
426 	struct sleepqueue *sq;
427 
428 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
429 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
430 	sq = sleepq_lookup(wchan);
431 	if (sq == NULL)
432 		return (0);
433 	return (sq->sq_blockedcnt[queue]);
434 }
435 
436 static int
437 sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc)
438 {
439 	struct proc *p;
440 	int ret;
441 
442 	mtx_assert(&sc->sc_lock, MA_OWNED);
443 
444 	ret = 0;
445 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
446 		td->td_pflags &= ~TDP_WAKEUP;
447 		ret = EINTR;
448 		thread_lock(td);
449 		return (0);
450 	}
451 
452 	/*
453 	 * See if there are any pending signals or suspension requests for this
454 	 * thread.  If not, we can switch immediately.
455 	 */
456 	thread_lock(td);
457 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
458 		return (0);
459 
460 	thread_unlock(td);
461 	mtx_unlock_spin(&sc->sc_lock);
462 
463 	p = td->td_proc;
464 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
465 		(void *)td, (long)p->p_pid, td->td_name);
466 	PROC_LOCK(p);
467 
468 	/*
469 	 * Check for suspension first. Checking for signals and then
470 	 * suspending could result in a missed signal, since a signal
471 	 * can be delivered while this thread is suspended.
472 	 */
473 	ret = sig_ast_checksusp(td);
474 	if (ret != 0) {
475 		PROC_UNLOCK(p);
476 		mtx_lock_spin(&sc->sc_lock);
477 		thread_lock(td);
478 		return (ret);
479 	}
480 
481 	ret = sig_ast_needsigchk(td);
482 
483 	/*
484 	 * Lock the per-process spinlock prior to dropping the
485 	 * PROC_LOCK to avoid a signal delivery race.
486 	 * PROC_LOCK, PROC_SLOCK, and thread_lock() are
487 	 * currently held in tdsendsignal().
488 	 */
489 	PROC_SLOCK(p);
490 	mtx_lock_spin(&sc->sc_lock);
491 	PROC_UNLOCK(p);
492 	thread_lock(td);
493 	PROC_SUNLOCK(p);
494 
495 	return (ret);
496 }
497 
498 /*
499  * Marks the pending sleep of the current thread as interruptible and
500  * makes an initial check for pending signals before putting a thread
501  * to sleep. Enters and exits with the thread lock held.  Thread lock
502  * may have transitioned from the sleepq lock to a run lock.
503  */
504 static int
505 sleepq_catch_signals(const void *wchan, int pri)
506 {
507 	struct thread *td;
508 	struct sleepqueue_chain *sc;
509 	struct sleepqueue *sq;
510 	int ret;
511 
512 	sc = SC_LOOKUP(wchan);
513 	mtx_assert(&sc->sc_lock, MA_OWNED);
514 	MPASS(wchan != NULL);
515 	td = curthread;
516 
517 	ret = sleepq_check_ast_sc_locked(td, sc);
518 	THREAD_LOCK_ASSERT(td, MA_OWNED);
519 	mtx_assert(&sc->sc_lock, MA_OWNED);
520 
521 	if (ret == 0) {
522 		/*
523 		 * No pending signals and no suspension requests found.
524 		 * Switch the thread off the cpu.
525 		 */
526 		sleepq_switch(wchan, pri);
527 	} else {
528 		/*
529 		 * There were pending signals and this thread is still
530 		 * on the sleep queue, remove it from the sleep queue.
531 		 */
532 		if (TD_ON_SLEEPQ(td)) {
533 			sq = sleepq_lookup(wchan);
534 			sleepq_remove_thread(sq, td);
535 		}
536 		MPASS(td->td_lock != &sc->sc_lock);
537 		mtx_unlock_spin(&sc->sc_lock);
538 		thread_unlock(td);
539 	}
540 	return (ret);
541 }
542 
543 /*
544  * Switches to another thread if we are still asleep on a sleep queue.
545  * Returns with thread lock.
546  */
547 static void
548 sleepq_switch(const void *wchan, int pri)
549 {
550 	struct sleepqueue_chain *sc;
551 	struct sleepqueue *sq;
552 	struct thread *td;
553 	bool rtc_changed;
554 
555 	td = curthread;
556 	sc = SC_LOOKUP(wchan);
557 	mtx_assert(&sc->sc_lock, MA_OWNED);
558 	THREAD_LOCK_ASSERT(td, MA_OWNED);
559 
560 	/*
561 	 * If we have a sleep queue, then we've already been woken up, so
562 	 * just return.
563 	 */
564 	if (td->td_sleepqueue != NULL) {
565 		mtx_unlock_spin(&sc->sc_lock);
566 		thread_unlock(td);
567 		return;
568 	}
569 
570 	/*
571 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
572 	 * already but we are still on the sleep queue, so dequeue the
573 	 * thread and return.
574 	 *
575 	 * Do the same if the real-time clock has been adjusted since this
576 	 * thread calculated its timeout based on that clock.  This handles
577 	 * the following race:
578 	 * - The Ts thread needs to sleep until an absolute real-clock time.
579 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
580 	 *   reads the RTC, and calculates a sleep duration based on that time.
581 	 *   See umtxq_sleep() for an example.
582 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
583 	 *   threads that are sleeping until an absolute real-clock time.
584 	 *   See tc_setclock() and the POSIX specification of clock_settime().
585 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
586 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
587 	 * (The declaration of td_rtcgen refers to this comment.)
588 	 */
589 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
590 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
591 		if (rtc_changed) {
592 			td->td_rtcgen = 0;
593 		}
594 		MPASS(TD_ON_SLEEPQ(td));
595 		sq = sleepq_lookup(wchan);
596 		sleepq_remove_thread(sq, td);
597 		mtx_unlock_spin(&sc->sc_lock);
598 		thread_unlock(td);
599 		return;
600 	}
601 #ifdef SLEEPQUEUE_PROFILING
602 	if (prof_enabled)
603 		sleepq_profile(td->td_wmesg);
604 #endif
605 	MPASS(td->td_sleepqueue == NULL);
606 	sched_sleep(td, pri);
607 	thread_lock_set(td, &sc->sc_lock);
608 	SDT_PROBE0(sched, , , sleep);
609 	TD_SET_SLEEPING(td);
610 	mi_switch(SW_VOL | SWT_SLEEPQ);
611 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
612 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
613 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
614 }
615 
616 /*
617  * Check to see if we timed out.
618  */
619 static inline int
620 sleepq_check_timeout(void)
621 {
622 	struct thread *td;
623 	int res;
624 
625 	res = 0;
626 	td = curthread;
627 	if (td->td_sleeptimo != 0) {
628 		if (td->td_sleeptimo <= sbinuptime())
629 			res = EWOULDBLOCK;
630 		td->td_sleeptimo = 0;
631 	}
632 	return (res);
633 }
634 
635 /*
636  * Check to see if we were awoken by a signal.
637  */
638 static inline int
639 sleepq_check_signals(void)
640 {
641 	struct thread *td;
642 
643 	td = curthread;
644 	KASSERT((td->td_flags & TDF_SINTR) == 0,
645 	    ("thread %p still in interruptible sleep?", td));
646 
647 	return (td->td_intrval);
648 }
649 
650 /*
651  * Block the current thread until it is awakened from its sleep queue.
652  */
653 void
654 sleepq_wait(const void *wchan, int pri)
655 {
656 	struct thread *td;
657 
658 	td = curthread;
659 	MPASS(!(td->td_flags & TDF_SINTR));
660 	thread_lock(td);
661 	sleepq_switch(wchan, pri);
662 }
663 
664 /*
665  * Block the current thread until it is awakened from its sleep queue
666  * or it is interrupted by a signal.
667  */
668 int
669 sleepq_wait_sig(const void *wchan, int pri)
670 {
671 	int rcatch;
672 
673 	rcatch = sleepq_catch_signals(wchan, pri);
674 	if (rcatch)
675 		return (rcatch);
676 	return (sleepq_check_signals());
677 }
678 
679 /*
680  * Block the current thread until it is awakened from its sleep queue
681  * or it times out while waiting.
682  */
683 int
684 sleepq_timedwait(const void *wchan, int pri)
685 {
686 	struct thread *td;
687 
688 	td = curthread;
689 	MPASS(!(td->td_flags & TDF_SINTR));
690 
691 	thread_lock(td);
692 	sleepq_switch(wchan, pri);
693 
694 	return (sleepq_check_timeout());
695 }
696 
697 /*
698  * Block the current thread until it is awakened from its sleep queue,
699  * it is interrupted by a signal, or it times out waiting to be awakened.
700  */
701 int
702 sleepq_timedwait_sig(const void *wchan, int pri)
703 {
704 	int rcatch, rvalt, rvals;
705 
706 	rcatch = sleepq_catch_signals(wchan, pri);
707 	/* We must always call check_timeout() to clear sleeptimo. */
708 	rvalt = sleepq_check_timeout();
709 	rvals = sleepq_check_signals();
710 	if (rcatch)
711 		return (rcatch);
712 	if (rvals)
713 		return (rvals);
714 	return (rvalt);
715 }
716 
717 /*
718  * Returns the type of sleepqueue given a waitchannel.
719  */
720 int
721 sleepq_type(const void *wchan)
722 {
723 	struct sleepqueue *sq;
724 	int type;
725 
726 	MPASS(wchan != NULL);
727 
728 	sq = sleepq_lookup(wchan);
729 	if (sq == NULL)
730 		return (-1);
731 	type = sq->sq_type;
732 
733 	return (type);
734 }
735 
736 /*
737  * Removes a thread from a sleep queue and makes it
738  * runnable.
739  *
740  * Requires the sc chain locked on entry.  If SRQ_HOLD is specified it will
741  * be locked on return.  Returns without the thread lock held.
742  */
743 static int
744 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri,
745     int srqflags)
746 {
747 	struct sleepqueue_chain *sc;
748 	bool drop;
749 
750 	MPASS(td != NULL);
751 	MPASS(sq->sq_wchan != NULL);
752 	MPASS(td->td_wchan == sq->sq_wchan);
753 
754 	sc = SC_LOOKUP(sq->sq_wchan);
755 	mtx_assert(&sc->sc_lock, MA_OWNED);
756 
757 	/*
758 	 * Avoid recursing on the chain lock.  If the locks don't match we
759 	 * need to acquire the thread lock which setrunnable will drop for
760 	 * us.  In this case we need to drop the chain lock afterwards.
761 	 *
762 	 * There is no race that will make td_lock equal to sc_lock because
763 	 * we hold sc_lock.
764 	 */
765 	drop = false;
766 	if (!TD_IS_SLEEPING(td)) {
767 		thread_lock(td);
768 		drop = true;
769 	} else
770 		thread_lock_block_wait(td);
771 
772 	/* Remove thread from the sleepq. */
773 	sleepq_remove_thread(sq, td);
774 
775 	/* If we're done with the sleepqueue release it. */
776 	if ((srqflags & SRQ_HOLD) == 0 && drop)
777 		mtx_unlock_spin(&sc->sc_lock);
778 
779 	/* Adjust priority if requested. */
780 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
781 	if (pri != 0 && td->td_priority > pri &&
782 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
783 		sched_prio(td, pri);
784 
785 	/*
786 	 * Note that thread td might not be sleeping if it is running
787 	 * sleepq_catch_signals() on another CPU or is blocked on its
788 	 * proc lock to check signals.  There's no need to mark the
789 	 * thread runnable in that case.
790 	 */
791 	if (TD_IS_SLEEPING(td)) {
792 		MPASS(!drop);
793 		TD_CLR_SLEEPING(td);
794 		return (setrunnable(td, srqflags));
795 	}
796 	MPASS(drop);
797 	thread_unlock(td);
798 
799 	return (0);
800 }
801 
802 static void
803 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
804 {
805 	struct sleepqueue_chain *sc __unused;
806 
807 	MPASS(td != NULL);
808 	MPASS(sq->sq_wchan != NULL);
809 	MPASS(td->td_wchan == sq->sq_wchan);
810 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
811 	THREAD_LOCK_ASSERT(td, MA_OWNED);
812 	sc = SC_LOOKUP(sq->sq_wchan);
813 	mtx_assert(&sc->sc_lock, MA_OWNED);
814 
815 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
816 
817 	/* Remove the thread from the queue. */
818 	sq->sq_blockedcnt[td->td_sqqueue]--;
819 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
820 
821 	/*
822 	 * Get a sleep queue for this thread.  If this is the last waiter,
823 	 * use the queue itself and take it out of the chain, otherwise,
824 	 * remove a queue from the free list.
825 	 */
826 	if (LIST_EMPTY(&sq->sq_free)) {
827 		td->td_sleepqueue = sq;
828 #ifdef INVARIANTS
829 		sq->sq_wchan = NULL;
830 #endif
831 #ifdef SLEEPQUEUE_PROFILING
832 		sc->sc_depth--;
833 #endif
834 	} else
835 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
836 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
837 
838 	if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0)
839 		/*
840 		 * We ignore the situation where timeout subsystem was
841 		 * unable to stop our callout.  The struct thread is
842 		 * type-stable, the callout will use the correct
843 		 * memory when running.  The checks of the
844 		 * td_sleeptimo value in this function and in
845 		 * sleepq_timeout() ensure that the thread does not
846 		 * get spurious wakeups, even if the callout was reset
847 		 * or thread reused.
848 		 */
849 		callout_stop(&td->td_slpcallout);
850 
851 	td->td_wmesg = NULL;
852 	td->td_wchan = NULL;
853 	td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT);
854 
855 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
856 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
857 }
858 
859 #ifdef INVARIANTS
860 /*
861  * UMA zone item deallocator.
862  */
863 static void
864 sleepq_dtor(void *mem, int size, void *arg)
865 {
866 	struct sleepqueue *sq;
867 	int i;
868 
869 	sq = mem;
870 	for (i = 0; i < NR_SLEEPQS; i++) {
871 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
872 		MPASS(sq->sq_blockedcnt[i] == 0);
873 	}
874 }
875 #endif
876 
877 /*
878  * UMA zone item initializer.
879  */
880 static int
881 sleepq_init(void *mem, int size, int flags)
882 {
883 	struct sleepqueue *sq;
884 	int i;
885 
886 	bzero(mem, size);
887 	sq = mem;
888 	for (i = 0; i < NR_SLEEPQS; i++) {
889 		TAILQ_INIT(&sq->sq_blocked[i]);
890 		sq->sq_blockedcnt[i] = 0;
891 	}
892 	LIST_INIT(&sq->sq_free);
893 	return (0);
894 }
895 
896 /*
897  * Find thread sleeping on a wait channel and resume it.
898  */
899 int
900 sleepq_signal(const void *wchan, int flags, int pri, int queue)
901 {
902 	struct sleepqueue_chain *sc;
903 	struct sleepqueue *sq;
904 	struct threadqueue *head;
905 	struct thread *td, *besttd;
906 	int wakeup_swapper;
907 
908 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
909 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
910 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
911 	sq = sleepq_lookup(wchan);
912 	if (sq == NULL)
913 		return (0);
914 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
915 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
916 
917 	head = &sq->sq_blocked[queue];
918 	if (flags & SLEEPQ_UNFAIR) {
919 		/*
920 		 * Find the most recently sleeping thread, but try to
921 		 * skip threads still in process of context switch to
922 		 * avoid spinning on the thread lock.
923 		 */
924 		sc = SC_LOOKUP(wchan);
925 		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
926 		while (besttd->td_lock != &sc->sc_lock) {
927 			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
928 			if (td == NULL)
929 				break;
930 			besttd = td;
931 		}
932 	} else {
933 		/*
934 		 * Find the highest priority thread on the queue.  If there
935 		 * is a tie, use the thread that first appears in the queue
936 		 * as it has been sleeping the longest since threads are
937 		 * always added to the tail of sleep queues.
938 		 */
939 		besttd = td = TAILQ_FIRST(head);
940 		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
941 			if (td->td_priority < besttd->td_priority)
942 				besttd = td;
943 		}
944 	}
945 	MPASS(besttd != NULL);
946 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri, SRQ_HOLD);
947 	return (wakeup_swapper);
948 }
949 
950 static bool
951 match_any(struct thread *td __unused)
952 {
953 
954 	return (true);
955 }
956 
957 /*
958  * Resume all threads sleeping on a specified wait channel.
959  */
960 int
961 sleepq_broadcast(const void *wchan, int flags, int pri, int queue)
962 {
963 	struct sleepqueue *sq;
964 
965 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
966 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
967 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
968 	sq = sleepq_lookup(wchan);
969 	if (sq == NULL)
970 		return (0);
971 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
972 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
973 
974 	return (sleepq_remove_matching(sq, queue, match_any, pri));
975 }
976 
977 /*
978  * Resume threads on the sleep queue that match the given predicate.
979  */
980 int
981 sleepq_remove_matching(struct sleepqueue *sq, int queue,
982     bool (*matches)(struct thread *), int pri)
983 {
984 	struct thread *td, *tdn;
985 	int wakeup_swapper;
986 
987 	/*
988 	 * The last thread will be given ownership of sq and may
989 	 * re-enqueue itself before sleepq_resume_thread() returns,
990 	 * so we must cache the "next" queue item at the beginning
991 	 * of the final iteration.
992 	 */
993 	wakeup_swapper = 0;
994 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
995 		if (matches(td))
996 			wakeup_swapper |= sleepq_resume_thread(sq, td, pri,
997 			    SRQ_HOLD);
998 	}
999 
1000 	return (wakeup_swapper);
1001 }
1002 
1003 /*
1004  * Time sleeping threads out.  When the timeout expires, the thread is
1005  * removed from the sleep queue and made runnable if it is still asleep.
1006  */
1007 static void
1008 sleepq_timeout(void *arg)
1009 {
1010 	struct sleepqueue_chain *sc __unused;
1011 	struct sleepqueue *sq;
1012 	struct thread *td;
1013 	const void *wchan;
1014 	int wakeup_swapper;
1015 
1016 	td = arg;
1017 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1018 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1019 
1020 	thread_lock(td);
1021 	if (td->td_sleeptimo == 0 || td->td_sleeptimo > sbinuptime()) {
1022 		/*
1023 		 * The thread does not want a timeout (yet).
1024 		 */
1025 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1026 		/*
1027 		 * See if the thread is asleep and get the wait
1028 		 * channel if it is.
1029 		 */
1030 		wchan = td->td_wchan;
1031 		sc = SC_LOOKUP(wchan);
1032 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1033 		sq = sleepq_lookup(wchan);
1034 		MPASS(sq != NULL);
1035 		td->td_flags |= TDF_TIMEOUT;
1036 		wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1037 		if (wakeup_swapper)
1038 			kick_proc0();
1039 		return;
1040 	} else if (TD_ON_SLEEPQ(td)) {
1041 		/*
1042 		 * If the thread is on the SLEEPQ but isn't sleeping
1043 		 * yet, it can either be on another CPU in between
1044 		 * sleepq_add() and one of the sleepq_*wait*()
1045 		 * routines or it can be in sleepq_catch_signals().
1046 		 */
1047 		td->td_flags |= TDF_TIMEOUT;
1048 	}
1049 	thread_unlock(td);
1050 }
1051 
1052 /*
1053  * Resumes a specific thread from the sleep queue associated with a specific
1054  * wait channel if it is on that queue.
1055  */
1056 void
1057 sleepq_remove(struct thread *td, const void *wchan)
1058 {
1059 	struct sleepqueue_chain *sc;
1060 	struct sleepqueue *sq;
1061 	int wakeup_swapper;
1062 
1063 	/*
1064 	 * Look up the sleep queue for this wait channel, then re-check
1065 	 * that the thread is asleep on that channel, if it is not, then
1066 	 * bail.
1067 	 */
1068 	MPASS(wchan != NULL);
1069 	sc = SC_LOOKUP(wchan);
1070 	mtx_lock_spin(&sc->sc_lock);
1071 	/*
1072 	 * We can not lock the thread here as it may be sleeping on a
1073 	 * different sleepq.  However, holding the sleepq lock for this
1074 	 * wchan can guarantee that we do not miss a wakeup for this
1075 	 * channel.  The asserts below will catch any false positives.
1076 	 */
1077 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1078 		mtx_unlock_spin(&sc->sc_lock);
1079 		return;
1080 	}
1081 
1082 	/* Thread is asleep on sleep queue sq, so wake it up. */
1083 	sq = sleepq_lookup(wchan);
1084 	MPASS(sq != NULL);
1085 	MPASS(td->td_wchan == wchan);
1086 	wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1087 	if (wakeup_swapper)
1088 		kick_proc0();
1089 }
1090 
1091 /*
1092  * Abort a thread as if an interrupt had occurred.  Only abort
1093  * interruptible waits (unfortunately it isn't safe to abort others).
1094  *
1095  * Requires thread lock on entry, releases on return.
1096  */
1097 int
1098 sleepq_abort(struct thread *td, int intrval)
1099 {
1100 	struct sleepqueue *sq;
1101 	const void *wchan;
1102 
1103 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1104 	MPASS(TD_ON_SLEEPQ(td));
1105 	MPASS(td->td_flags & TDF_SINTR);
1106 	MPASS(intrval == EINTR || intrval == ERESTART);
1107 
1108 	/*
1109 	 * If the TDF_TIMEOUT flag is set, just leave. A
1110 	 * timeout is scheduled anyhow.
1111 	 */
1112 	if (td->td_flags & TDF_TIMEOUT) {
1113 		thread_unlock(td);
1114 		return (0);
1115 	}
1116 
1117 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1118 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1119 	td->td_intrval = intrval;
1120 
1121 	/*
1122 	 * If the thread has not slept yet it will find the signal in
1123 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1124 	 * we have to do it here.
1125 	 */
1126 	if (!TD_IS_SLEEPING(td)) {
1127 		thread_unlock(td);
1128 		return (0);
1129 	}
1130 	wchan = td->td_wchan;
1131 	MPASS(wchan != NULL);
1132 	sq = sleepq_lookup(wchan);
1133 	MPASS(sq != NULL);
1134 
1135 	/* Thread is asleep on sleep queue sq, so wake it up. */
1136 	return (sleepq_resume_thread(sq, td, 0, 0));
1137 }
1138 
1139 void
1140 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1141 {
1142 	struct sleepqueue_chain *sc;
1143 	struct sleepqueue *sq, *sq1;
1144 	int i, wakeup_swapper;
1145 
1146 	wakeup_swapper = 0;
1147 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1148 		if (LIST_EMPTY(&sc->sc_queues)) {
1149 			continue;
1150 		}
1151 		mtx_lock_spin(&sc->sc_lock);
1152 		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1153 			for (i = 0; i < NR_SLEEPQS; ++i) {
1154 				wakeup_swapper |= sleepq_remove_matching(sq, i,
1155 				    matches, 0);
1156 			}
1157 		}
1158 		mtx_unlock_spin(&sc->sc_lock);
1159 	}
1160 	if (wakeup_swapper) {
1161 		kick_proc0();
1162 	}
1163 }
1164 
1165 /*
1166  * Prints the stacks of all threads presently sleeping on wchan/queue to
1167  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1168  * printed.  Typically, this will equal the number of threads sleeping on the
1169  * queue, but may be less if sb overflowed before all stacks were printed.
1170  */
1171 #ifdef STACK
1172 int
1173 sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue,
1174     int *count_stacks_printed)
1175 {
1176 	struct thread *td, *td_next;
1177 	struct sleepqueue *sq;
1178 	struct stack **st;
1179 	struct sbuf **td_infos;
1180 	int i, stack_idx, error, stacks_to_allocate;
1181 	bool finished;
1182 
1183 	error = 0;
1184 	finished = false;
1185 
1186 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1187 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1188 
1189 	stacks_to_allocate = 10;
1190 	for (i = 0; i < 3 && !finished ; i++) {
1191 		/* We cannot malloc while holding the queue's spinlock, so
1192 		 * we do our mallocs now, and hope it is enough.  If it
1193 		 * isn't, we will free these, drop the lock, malloc more,
1194 		 * and try again, up to a point.  After that point we will
1195 		 * give up and report ENOMEM. We also cannot write to sb
1196 		 * during this time since the client may have set the
1197 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1198 		 * malloc as we print to it.  So we defer actually printing
1199 		 * to sb until after we drop the spinlock.
1200 		 */
1201 
1202 		/* Where we will store the stacks. */
1203 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1204 		    M_TEMP, M_WAITOK);
1205 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1206 		    stack_idx++)
1207 			st[stack_idx] = stack_create(M_WAITOK);
1208 
1209 		/* Where we will store the td name, tid, etc. */
1210 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1211 		    M_TEMP, M_WAITOK);
1212 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1213 		    stack_idx++)
1214 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1215 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1216 			    SBUF_FIXEDLEN);
1217 
1218 		sleepq_lock(wchan);
1219 		sq = sleepq_lookup(wchan);
1220 		if (sq == NULL) {
1221 			/* This sleepq does not exist; exit and return ENOENT. */
1222 			error = ENOENT;
1223 			finished = true;
1224 			sleepq_release(wchan);
1225 			goto loop_end;
1226 		}
1227 
1228 		stack_idx = 0;
1229 		/* Save thread info */
1230 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1231 		    td_next) {
1232 			if (stack_idx >= stacks_to_allocate)
1233 				goto loop_end;
1234 
1235 			/* Note the td_lock is equal to the sleepq_lock here. */
1236 			(void)stack_save_td(st[stack_idx], td);
1237 
1238 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1239 			    td->td_tid, td->td_name, td);
1240 
1241 			++stack_idx;
1242 		}
1243 
1244 		finished = true;
1245 		sleepq_release(wchan);
1246 
1247 		/* Print the stacks */
1248 		for (i = 0; i < stack_idx; i++) {
1249 			sbuf_finish(td_infos[i]);
1250 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1251 			stack_sbuf_print(sb, st[i]);
1252 			sbuf_printf(sb, "\n");
1253 
1254 			error = sbuf_error(sb);
1255 			if (error == 0)
1256 				*count_stacks_printed = stack_idx;
1257 		}
1258 
1259 loop_end:
1260 		if (!finished)
1261 			sleepq_release(wchan);
1262 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1263 		    stack_idx++)
1264 			stack_destroy(st[stack_idx]);
1265 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1266 		    stack_idx++)
1267 			sbuf_delete(td_infos[stack_idx]);
1268 		free(st, M_TEMP);
1269 		free(td_infos, M_TEMP);
1270 		stacks_to_allocate *= 10;
1271 	}
1272 
1273 	if (!finished && error == 0)
1274 		error = ENOMEM;
1275 
1276 	return (error);
1277 }
1278 #endif
1279 
1280 #ifdef SLEEPQUEUE_PROFILING
1281 #define	SLEEPQ_PROF_LOCATIONS	1024
1282 #define	SLEEPQ_SBUFSIZE		512
1283 struct sleepq_prof {
1284 	LIST_ENTRY(sleepq_prof) sp_link;
1285 	const char	*sp_wmesg;
1286 	long		sp_count;
1287 };
1288 
1289 LIST_HEAD(sqphead, sleepq_prof);
1290 
1291 struct sqphead sleepq_prof_free;
1292 struct sqphead sleepq_hash[SC_TABLESIZE];
1293 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1294 static struct mtx sleepq_prof_lock;
1295 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1296 
1297 static void
1298 sleepq_profile(const char *wmesg)
1299 {
1300 	struct sleepq_prof *sp;
1301 
1302 	mtx_lock_spin(&sleepq_prof_lock);
1303 	if (prof_enabled == 0)
1304 		goto unlock;
1305 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1306 		if (sp->sp_wmesg == wmesg)
1307 			goto done;
1308 	sp = LIST_FIRST(&sleepq_prof_free);
1309 	if (sp == NULL)
1310 		goto unlock;
1311 	sp->sp_wmesg = wmesg;
1312 	LIST_REMOVE(sp, sp_link);
1313 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1314 done:
1315 	sp->sp_count++;
1316 unlock:
1317 	mtx_unlock_spin(&sleepq_prof_lock);
1318 	return;
1319 }
1320 
1321 static void
1322 sleepq_prof_reset(void)
1323 {
1324 	struct sleepq_prof *sp;
1325 	int enabled;
1326 	int i;
1327 
1328 	mtx_lock_spin(&sleepq_prof_lock);
1329 	enabled = prof_enabled;
1330 	prof_enabled = 0;
1331 	for (i = 0; i < SC_TABLESIZE; i++)
1332 		LIST_INIT(&sleepq_hash[i]);
1333 	LIST_INIT(&sleepq_prof_free);
1334 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1335 		sp = &sleepq_profent[i];
1336 		sp->sp_wmesg = NULL;
1337 		sp->sp_count = 0;
1338 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1339 	}
1340 	prof_enabled = enabled;
1341 	mtx_unlock_spin(&sleepq_prof_lock);
1342 }
1343 
1344 static int
1345 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1346 {
1347 	int error, v;
1348 
1349 	v = prof_enabled;
1350 	error = sysctl_handle_int(oidp, &v, v, req);
1351 	if (error)
1352 		return (error);
1353 	if (req->newptr == NULL)
1354 		return (error);
1355 	if (v == prof_enabled)
1356 		return (0);
1357 	if (v == 1)
1358 		sleepq_prof_reset();
1359 	mtx_lock_spin(&sleepq_prof_lock);
1360 	prof_enabled = !!v;
1361 	mtx_unlock_spin(&sleepq_prof_lock);
1362 
1363 	return (0);
1364 }
1365 
1366 static int
1367 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1368 {
1369 	int error, v;
1370 
1371 	v = 0;
1372 	error = sysctl_handle_int(oidp, &v, 0, req);
1373 	if (error)
1374 		return (error);
1375 	if (req->newptr == NULL)
1376 		return (error);
1377 	if (v == 0)
1378 		return (0);
1379 	sleepq_prof_reset();
1380 
1381 	return (0);
1382 }
1383 
1384 static int
1385 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1386 {
1387 	struct sleepq_prof *sp;
1388 	struct sbuf *sb;
1389 	int enabled;
1390 	int error;
1391 	int i;
1392 
1393 	error = sysctl_wire_old_buffer(req, 0);
1394 	if (error != 0)
1395 		return (error);
1396 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1397 	sbuf_printf(sb, "\nwmesg\tcount\n");
1398 	enabled = prof_enabled;
1399 	mtx_lock_spin(&sleepq_prof_lock);
1400 	prof_enabled = 0;
1401 	mtx_unlock_spin(&sleepq_prof_lock);
1402 	for (i = 0; i < SC_TABLESIZE; i++) {
1403 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1404 			sbuf_printf(sb, "%s\t%ld\n",
1405 			    sp->sp_wmesg, sp->sp_count);
1406 		}
1407 	}
1408 	mtx_lock_spin(&sleepq_prof_lock);
1409 	prof_enabled = enabled;
1410 	mtx_unlock_spin(&sleepq_prof_lock);
1411 
1412 	error = sbuf_finish(sb);
1413 	sbuf_delete(sb);
1414 	return (error);
1415 }
1416 
1417 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats,
1418     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
1419     dump_sleepq_prof_stats, "A",
1420     "Sleepqueue profiling statistics");
1421 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset,
1422     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1423     reset_sleepq_prof_stats, "I",
1424     "Reset sleepqueue profiling statistics");
1425 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable,
1426     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1427     enable_sleepq_prof, "I",
1428     "Enable sleepqueue profiling");
1429 #endif
1430 
1431 #ifdef DDB
1432 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1433 {
1434 	struct sleepqueue_chain *sc;
1435 	struct sleepqueue *sq;
1436 #ifdef INVARIANTS
1437 	struct lock_object *lock;
1438 #endif
1439 	struct thread *td;
1440 	void *wchan;
1441 	int i;
1442 
1443 	if (!have_addr)
1444 		return;
1445 
1446 	/*
1447 	 * First, see if there is an active sleep queue for the wait channel
1448 	 * indicated by the address.
1449 	 */
1450 	wchan = (void *)addr;
1451 	sc = SC_LOOKUP(wchan);
1452 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1453 		if (sq->sq_wchan == wchan)
1454 			goto found;
1455 
1456 	/*
1457 	 * Second, see if there is an active sleep queue at the address
1458 	 * indicated.
1459 	 */
1460 	for (i = 0; i < SC_TABLESIZE; i++)
1461 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1462 			if (sq == (struct sleepqueue *)addr)
1463 				goto found;
1464 		}
1465 
1466 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1467 	return;
1468 found:
1469 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1470 	db_printf("Queue type: %d\n", sq->sq_type);
1471 #ifdef INVARIANTS
1472 	if (sq->sq_lock) {
1473 		lock = sq->sq_lock;
1474 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1475 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1476 	}
1477 #endif
1478 	db_printf("Blocked threads:\n");
1479 	for (i = 0; i < NR_SLEEPQS; i++) {
1480 		db_printf("\nQueue[%d]:\n", i);
1481 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1482 			db_printf("\tempty\n");
1483 		else
1484 			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1485 				      td_slpq) {
1486 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1487 					  td->td_tid, td->td_proc->p_pid,
1488 					  td->td_name);
1489 			}
1490 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1491 	}
1492 }
1493 
1494 /* Alias 'show sleepqueue' to 'show sleepq'. */
1495 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1496 #endif
1497