xref: /freebsd/sys/kern/subr_sleepqueue.c (revision dda5b39711dab90ae1c5624bdd6ff7453177df31)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Implementation of sleep queues used to hold queue of threads blocked on
29  * a wait channel.  Sleep queues different from turnstiles in that wait
30  * channels are not owned by anyone, so there is no priority propagation.
31  * Sleep queues can also provide a timeout and can also be interrupted by
32  * signals.  That said, there are several similarities between the turnstile
33  * and sleep queue implementations.  (Note: turnstiles were implemented
34  * first.)  For example, both use a hash table of the same size where each
35  * bucket is referred to as a "chain" that contains both a spin lock and
36  * a linked list of queues.  An individual queue is located by using a hash
37  * to pick a chain, locking the chain, and then walking the chain searching
38  * for the queue.  This means that a wait channel object does not need to
39  * embed it's queue head just as locks do not embed their turnstile queue
40  * head.  Threads also carry around a sleep queue that they lend to the
41  * wait channel when blocking.  Just as in turnstiles, the queue includes
42  * a free list of the sleep queues of other threads blocked on the same
43  * wait channel in the case of multiple waiters.
44  *
45  * Some additional functionality provided by sleep queues include the
46  * ability to set a timeout.  The timeout is managed using a per-thread
47  * callout that resumes a thread if it is asleep.  A thread may also
48  * catch signals while it is asleep (aka an interruptible sleep).  The
49  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50  * sleep queues also provide some extra assertions.  One is not allowed to
51  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52  * must consistently use the same lock to synchronize with a wait channel,
53  * though this check is currently only a warning for sleep/wakeup due to
54  * pre-existing abuse of that API.  The same lock must also be held when
55  * awakening threads, though that is currently only enforced for condition
56  * variables.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_sleepqueue_profiling.h"
63 #include "opt_ddb.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/lock.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/sbuf.h>
74 #include <sys/sched.h>
75 #include <sys/sdt.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/sysctl.h>
79 
80 #include <vm/uma.h>
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #endif
85 
86 /*
87  * Constants for the hash table of sleep queue chains.
88  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
89  */
90 #define	SC_TABLESIZE	256			/* Must be power of 2. */
91 #define	SC_MASK		(SC_TABLESIZE - 1)
92 #define	SC_SHIFT	8
93 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
94 			    SC_MASK)
95 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
96 #define NR_SLEEPQS      2
97 /*
98  * There two different lists of sleep queues.  Both lists are connected
99  * via the sq_hash entries.  The first list is the sleep queue chain list
100  * that a sleep queue is on when it is attached to a wait channel.  The
101  * second list is the free list hung off of a sleep queue that is attached
102  * to a wait channel.
103  *
104  * Each sleep queue also contains the wait channel it is attached to, the
105  * list of threads blocked on that wait channel, flags specific to the
106  * wait channel, and the lock used to synchronize with a wait channel.
107  * The flags are used to catch mismatches between the various consumers
108  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
109  * The lock pointer is only used when invariants are enabled for various
110  * debugging checks.
111  *
112  * Locking key:
113  *  c - sleep queue chain lock
114  */
115 struct sleepqueue {
116 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
117 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
118 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
119 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
120 	void	*sq_wchan;			/* (c) Wait channel. */
121 	int	sq_type;			/* (c) Queue type. */
122 #ifdef INVARIANTS
123 	struct lock_object *sq_lock;		/* (c) Associated lock. */
124 #endif
125 };
126 
127 struct sleepqueue_chain {
128 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
129 	struct mtx sc_lock;			/* Spin lock for this chain. */
130 #ifdef SLEEPQUEUE_PROFILING
131 	u_int	sc_depth;			/* Length of sc_queues. */
132 	u_int	sc_max_depth;			/* Max length of sc_queues. */
133 #endif
134 };
135 
136 #ifdef SLEEPQUEUE_PROFILING
137 u_int sleepq_max_depth;
138 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
139 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
140     "sleepq chain stats");
141 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
142     0, "maxmimum depth achieved of a single chain");
143 
144 static void	sleepq_profile(const char *wmesg);
145 static int	prof_enabled;
146 #endif
147 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
148 static uma_zone_t sleepq_zone;
149 
150 /*
151  * Prototypes for non-exported routines.
152  */
153 static int	sleepq_catch_signals(void *wchan, int pri);
154 static int	sleepq_check_signals(void);
155 static int	sleepq_check_timeout(void);
156 #ifdef INVARIANTS
157 static void	sleepq_dtor(void *mem, int size, void *arg);
158 #endif
159 static int	sleepq_init(void *mem, int size, int flags);
160 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
161 		    int pri);
162 static void	sleepq_switch(void *wchan, int pri);
163 static void	sleepq_timeout(void *arg);
164 
165 SDT_PROBE_DECLARE(sched, , , sleep);
166 SDT_PROBE_DECLARE(sched, , , wakeup);
167 
168 /*
169  * Early initialization of sleep queues that is called from the sleepinit()
170  * SYSINIT.
171  */
172 void
173 init_sleepqueues(void)
174 {
175 #ifdef SLEEPQUEUE_PROFILING
176 	struct sysctl_oid *chain_oid;
177 	char chain_name[10];
178 #endif
179 	int i;
180 
181 	for (i = 0; i < SC_TABLESIZE; i++) {
182 		LIST_INIT(&sleepq_chains[i].sc_queues);
183 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
184 		    MTX_SPIN | MTX_RECURSE);
185 #ifdef SLEEPQUEUE_PROFILING
186 		snprintf(chain_name, sizeof(chain_name), "%d", i);
187 		chain_oid = SYSCTL_ADD_NODE(NULL,
188 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
189 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
190 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
191 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
192 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
193 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
194 		    NULL);
195 #endif
196 	}
197 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
198 #ifdef INVARIANTS
199 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
200 #else
201 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
202 #endif
203 
204 	thread0.td_sleepqueue = sleepq_alloc();
205 }
206 
207 /*
208  * Get a sleep queue for a new thread.
209  */
210 struct sleepqueue *
211 sleepq_alloc(void)
212 {
213 
214 	return (uma_zalloc(sleepq_zone, M_WAITOK));
215 }
216 
217 /*
218  * Free a sleep queue when a thread is destroyed.
219  */
220 void
221 sleepq_free(struct sleepqueue *sq)
222 {
223 
224 	uma_zfree(sleepq_zone, sq);
225 }
226 
227 /*
228  * Lock the sleep queue chain associated with the specified wait channel.
229  */
230 void
231 sleepq_lock(void *wchan)
232 {
233 	struct sleepqueue_chain *sc;
234 
235 	sc = SC_LOOKUP(wchan);
236 	mtx_lock_spin(&sc->sc_lock);
237 }
238 
239 /*
240  * Look up the sleep queue associated with a given wait channel in the hash
241  * table locking the associated sleep queue chain.  If no queue is found in
242  * the table, NULL is returned.
243  */
244 struct sleepqueue *
245 sleepq_lookup(void *wchan)
246 {
247 	struct sleepqueue_chain *sc;
248 	struct sleepqueue *sq;
249 
250 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
251 	sc = SC_LOOKUP(wchan);
252 	mtx_assert(&sc->sc_lock, MA_OWNED);
253 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
254 		if (sq->sq_wchan == wchan)
255 			return (sq);
256 	return (NULL);
257 }
258 
259 /*
260  * Unlock the sleep queue chain associated with a given wait channel.
261  */
262 void
263 sleepq_release(void *wchan)
264 {
265 	struct sleepqueue_chain *sc;
266 
267 	sc = SC_LOOKUP(wchan);
268 	mtx_unlock_spin(&sc->sc_lock);
269 }
270 
271 /*
272  * Places the current thread on the sleep queue for the specified wait
273  * channel.  If INVARIANTS is enabled, then it associates the passed in
274  * lock with the sleepq to make sure it is held when that sleep queue is
275  * woken up.
276  */
277 void
278 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
279     int queue)
280 {
281 	struct sleepqueue_chain *sc;
282 	struct sleepqueue *sq;
283 	struct thread *td;
284 
285 	td = curthread;
286 	sc = SC_LOOKUP(wchan);
287 	mtx_assert(&sc->sc_lock, MA_OWNED);
288 	MPASS(td->td_sleepqueue != NULL);
289 	MPASS(wchan != NULL);
290 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
291 
292 	/* If this thread is not allowed to sleep, die a horrible death. */
293 	KASSERT(td->td_no_sleeping == 0,
294 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
295 	    __func__, td, wchan));
296 
297 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
298 	sq = sleepq_lookup(wchan);
299 
300 	/*
301 	 * If the wait channel does not already have a sleep queue, use
302 	 * this thread's sleep queue.  Otherwise, insert the current thread
303 	 * into the sleep queue already in use by this wait channel.
304 	 */
305 	if (sq == NULL) {
306 #ifdef INVARIANTS
307 		int i;
308 
309 		sq = td->td_sleepqueue;
310 		for (i = 0; i < NR_SLEEPQS; i++) {
311 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
312 			    ("thread's sleep queue %d is not empty", i));
313 			KASSERT(sq->sq_blockedcnt[i] == 0,
314 			    ("thread's sleep queue %d count mismatches", i));
315 		}
316 		KASSERT(LIST_EMPTY(&sq->sq_free),
317 		    ("thread's sleep queue has a non-empty free list"));
318 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
319 		sq->sq_lock = lock;
320 #endif
321 #ifdef SLEEPQUEUE_PROFILING
322 		sc->sc_depth++;
323 		if (sc->sc_depth > sc->sc_max_depth) {
324 			sc->sc_max_depth = sc->sc_depth;
325 			if (sc->sc_max_depth > sleepq_max_depth)
326 				sleepq_max_depth = sc->sc_max_depth;
327 		}
328 #endif
329 		sq = td->td_sleepqueue;
330 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
331 		sq->sq_wchan = wchan;
332 		sq->sq_type = flags & SLEEPQ_TYPE;
333 	} else {
334 		MPASS(wchan == sq->sq_wchan);
335 		MPASS(lock == sq->sq_lock);
336 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
337 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
338 	}
339 	thread_lock(td);
340 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
341 	sq->sq_blockedcnt[queue]++;
342 	td->td_sleepqueue = NULL;
343 	td->td_sqqueue = queue;
344 	td->td_wchan = wchan;
345 	td->td_wmesg = wmesg;
346 	if (flags & SLEEPQ_INTERRUPTIBLE) {
347 		td->td_flags |= TDF_SINTR;
348 		td->td_flags &= ~TDF_SLEEPABORT;
349 	}
350 	thread_unlock(td);
351 }
352 
353 /*
354  * Sets a timeout that will remove the current thread from the specified
355  * sleep queue after timo ticks if the thread has not already been awakened.
356  */
357 void
358 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
359     int flags)
360 {
361 	struct sleepqueue_chain *sc;
362 	struct thread *td;
363 
364 	td = curthread;
365 	sc = SC_LOOKUP(wchan);
366 	mtx_assert(&sc->sc_lock, MA_OWNED);
367 	MPASS(TD_ON_SLEEPQ(td));
368 	MPASS(td->td_sleepqueue == NULL);
369 	MPASS(wchan != NULL);
370 	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
371 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
372 }
373 
374 /*
375  * Return the number of actual sleepers for the specified queue.
376  */
377 u_int
378 sleepq_sleepcnt(void *wchan, int queue)
379 {
380 	struct sleepqueue *sq;
381 
382 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
383 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
384 	sq = sleepq_lookup(wchan);
385 	if (sq == NULL)
386 		return (0);
387 	return (sq->sq_blockedcnt[queue]);
388 }
389 
390 /*
391  * Marks the pending sleep of the current thread as interruptible and
392  * makes an initial check for pending signals before putting a thread
393  * to sleep. Enters and exits with the thread lock held.  Thread lock
394  * may have transitioned from the sleepq lock to a run lock.
395  */
396 static int
397 sleepq_catch_signals(void *wchan, int pri)
398 {
399 	struct sleepqueue_chain *sc;
400 	struct sleepqueue *sq;
401 	struct thread *td;
402 	struct proc *p;
403 	struct sigacts *ps;
404 	int sig, ret;
405 
406 	td = curthread;
407 	p = curproc;
408 	sc = SC_LOOKUP(wchan);
409 	mtx_assert(&sc->sc_lock, MA_OWNED);
410 	MPASS(wchan != NULL);
411 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
412 		td->td_pflags &= ~TDP_WAKEUP;
413 		ret = EINTR;
414 		thread_lock(td);
415 		goto out;
416 	}
417 
418 	/*
419 	 * See if there are any pending signals for this thread.  If not
420 	 * we can switch immediately.  Otherwise do the signal processing
421 	 * directly.
422 	 */
423 	thread_lock(td);
424 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
425 		sleepq_switch(wchan, pri);
426 		return (0);
427 	}
428 	thread_unlock(td);
429 	mtx_unlock_spin(&sc->sc_lock);
430 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
431 		(void *)td, (long)p->p_pid, td->td_name);
432 	PROC_LOCK(p);
433 	ps = p->p_sigacts;
434 	mtx_lock(&ps->ps_mtx);
435 	sig = cursig(td);
436 	if (sig == 0) {
437 		mtx_unlock(&ps->ps_mtx);
438 		ret = thread_suspend_check(1);
439 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
440 	} else {
441 		if (SIGISMEMBER(ps->ps_sigintr, sig))
442 			ret = EINTR;
443 		else
444 			ret = ERESTART;
445 		mtx_unlock(&ps->ps_mtx);
446 	}
447 	/*
448 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
449 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
450 	 * thread_lock() are currently held in tdsendsignal().
451 	 */
452 	PROC_SLOCK(p);
453 	mtx_lock_spin(&sc->sc_lock);
454 	PROC_UNLOCK(p);
455 	thread_lock(td);
456 	PROC_SUNLOCK(p);
457 	if (ret == 0) {
458 		sleepq_switch(wchan, pri);
459 		return (0);
460 	}
461 out:
462 	/*
463 	 * There were pending signals and this thread is still
464 	 * on the sleep queue, remove it from the sleep queue.
465 	 */
466 	if (TD_ON_SLEEPQ(td)) {
467 		sq = sleepq_lookup(wchan);
468 		if (sleepq_resume_thread(sq, td, 0)) {
469 #ifdef INVARIANTS
470 			/*
471 			 * This thread hasn't gone to sleep yet, so it
472 			 * should not be swapped out.
473 			 */
474 			panic("not waking up swapper");
475 #endif
476 		}
477 	}
478 	mtx_unlock_spin(&sc->sc_lock);
479 	MPASS(td->td_lock != &sc->sc_lock);
480 	return (ret);
481 }
482 
483 /*
484  * Switches to another thread if we are still asleep on a sleep queue.
485  * Returns with thread lock.
486  */
487 static void
488 sleepq_switch(void *wchan, int pri)
489 {
490 	struct sleepqueue_chain *sc;
491 	struct sleepqueue *sq;
492 	struct thread *td;
493 
494 	td = curthread;
495 	sc = SC_LOOKUP(wchan);
496 	mtx_assert(&sc->sc_lock, MA_OWNED);
497 	THREAD_LOCK_ASSERT(td, MA_OWNED);
498 
499 	/*
500 	 * If we have a sleep queue, then we've already been woken up, so
501 	 * just return.
502 	 */
503 	if (td->td_sleepqueue != NULL) {
504 		mtx_unlock_spin(&sc->sc_lock);
505 		return;
506 	}
507 
508 	/*
509 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
510 	 * already but we are still on the sleep queue, so dequeue the
511 	 * thread and return.
512 	 */
513 	if (td->td_flags & TDF_TIMEOUT) {
514 		MPASS(TD_ON_SLEEPQ(td));
515 		sq = sleepq_lookup(wchan);
516 		if (sleepq_resume_thread(sq, td, 0)) {
517 #ifdef INVARIANTS
518 			/*
519 			 * This thread hasn't gone to sleep yet, so it
520 			 * should not be swapped out.
521 			 */
522 			panic("not waking up swapper");
523 #endif
524 		}
525 		mtx_unlock_spin(&sc->sc_lock);
526 		return;
527 	}
528 #ifdef SLEEPQUEUE_PROFILING
529 	if (prof_enabled)
530 		sleepq_profile(td->td_wmesg);
531 #endif
532 	MPASS(td->td_sleepqueue == NULL);
533 	sched_sleep(td, pri);
534 	thread_lock_set(td, &sc->sc_lock);
535 	SDT_PROBE0(sched, , , sleep);
536 	TD_SET_SLEEPING(td);
537 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
538 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
539 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
540 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
541 }
542 
543 /*
544  * Check to see if we timed out.
545  */
546 static int
547 sleepq_check_timeout(void)
548 {
549 	struct thread *td;
550 
551 	td = curthread;
552 	THREAD_LOCK_ASSERT(td, MA_OWNED);
553 
554 	/*
555 	 * If TDF_TIMEOUT is set, we timed out.
556 	 */
557 	if (td->td_flags & TDF_TIMEOUT) {
558 		td->td_flags &= ~TDF_TIMEOUT;
559 		return (EWOULDBLOCK);
560 	}
561 
562 	/*
563 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
564 	 * already been woken up.
565 	 */
566 	if (td->td_flags & TDF_TIMOFAIL)
567 		td->td_flags &= ~TDF_TIMOFAIL;
568 
569 	/*
570 	 * If callout_stop() fails, then the timeout is running on
571 	 * another CPU, so synchronize with it to avoid having it
572 	 * accidentally wake up a subsequent sleep.
573 	 */
574 	else if (callout_stop(&td->td_slpcallout) == 0) {
575 		td->td_flags |= TDF_TIMEOUT;
576 		TD_SET_SLEEPING(td);
577 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
578 	}
579 	return (0);
580 }
581 
582 /*
583  * Check to see if we were awoken by a signal.
584  */
585 static int
586 sleepq_check_signals(void)
587 {
588 	struct thread *td;
589 
590 	td = curthread;
591 	THREAD_LOCK_ASSERT(td, MA_OWNED);
592 
593 	/* We are no longer in an interruptible sleep. */
594 	if (td->td_flags & TDF_SINTR)
595 		td->td_flags &= ~TDF_SINTR;
596 
597 	if (td->td_flags & TDF_SLEEPABORT) {
598 		td->td_flags &= ~TDF_SLEEPABORT;
599 		return (td->td_intrval);
600 	}
601 
602 	return (0);
603 }
604 
605 /*
606  * Block the current thread until it is awakened from its sleep queue.
607  */
608 void
609 sleepq_wait(void *wchan, int pri)
610 {
611 	struct thread *td;
612 
613 	td = curthread;
614 	MPASS(!(td->td_flags & TDF_SINTR));
615 	thread_lock(td);
616 	sleepq_switch(wchan, pri);
617 	thread_unlock(td);
618 }
619 
620 /*
621  * Block the current thread until it is awakened from its sleep queue
622  * or it is interrupted by a signal.
623  */
624 int
625 sleepq_wait_sig(void *wchan, int pri)
626 {
627 	int rcatch;
628 	int rval;
629 
630 	rcatch = sleepq_catch_signals(wchan, pri);
631 	rval = sleepq_check_signals();
632 	thread_unlock(curthread);
633 	if (rcatch)
634 		return (rcatch);
635 	return (rval);
636 }
637 
638 /*
639  * Block the current thread until it is awakened from its sleep queue
640  * or it times out while waiting.
641  */
642 int
643 sleepq_timedwait(void *wchan, int pri)
644 {
645 	struct thread *td;
646 	int rval;
647 
648 	td = curthread;
649 	MPASS(!(td->td_flags & TDF_SINTR));
650 	thread_lock(td);
651 	sleepq_switch(wchan, pri);
652 	rval = sleepq_check_timeout();
653 	thread_unlock(td);
654 
655 	return (rval);
656 }
657 
658 /*
659  * Block the current thread until it is awakened from its sleep queue,
660  * it is interrupted by a signal, or it times out waiting to be awakened.
661  */
662 int
663 sleepq_timedwait_sig(void *wchan, int pri)
664 {
665 	int rcatch, rvalt, rvals;
666 
667 	rcatch = sleepq_catch_signals(wchan, pri);
668 	rvalt = sleepq_check_timeout();
669 	rvals = sleepq_check_signals();
670 	thread_unlock(curthread);
671 	if (rcatch)
672 		return (rcatch);
673 	if (rvals)
674 		return (rvals);
675 	return (rvalt);
676 }
677 
678 /*
679  * Returns the type of sleepqueue given a waitchannel.
680  */
681 int
682 sleepq_type(void *wchan)
683 {
684 	struct sleepqueue *sq;
685 	int type;
686 
687 	MPASS(wchan != NULL);
688 
689 	sleepq_lock(wchan);
690 	sq = sleepq_lookup(wchan);
691 	if (sq == NULL) {
692 		sleepq_release(wchan);
693 		return (-1);
694 	}
695 	type = sq->sq_type;
696 	sleepq_release(wchan);
697 	return (type);
698 }
699 
700 /*
701  * Removes a thread from a sleep queue and makes it
702  * runnable.
703  */
704 static int
705 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
706 {
707 	struct sleepqueue_chain *sc;
708 
709 	MPASS(td != NULL);
710 	MPASS(sq->sq_wchan != NULL);
711 	MPASS(td->td_wchan == sq->sq_wchan);
712 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
713 	THREAD_LOCK_ASSERT(td, MA_OWNED);
714 	sc = SC_LOOKUP(sq->sq_wchan);
715 	mtx_assert(&sc->sc_lock, MA_OWNED);
716 
717 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
718 
719 	/* Remove the thread from the queue. */
720 	sq->sq_blockedcnt[td->td_sqqueue]--;
721 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
722 
723 	/*
724 	 * Get a sleep queue for this thread.  If this is the last waiter,
725 	 * use the queue itself and take it out of the chain, otherwise,
726 	 * remove a queue from the free list.
727 	 */
728 	if (LIST_EMPTY(&sq->sq_free)) {
729 		td->td_sleepqueue = sq;
730 #ifdef INVARIANTS
731 		sq->sq_wchan = NULL;
732 #endif
733 #ifdef SLEEPQUEUE_PROFILING
734 		sc->sc_depth--;
735 #endif
736 	} else
737 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
738 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
739 
740 	td->td_wmesg = NULL;
741 	td->td_wchan = NULL;
742 	td->td_flags &= ~TDF_SINTR;
743 
744 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
745 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
746 
747 	/* Adjust priority if requested. */
748 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
749 	if (pri != 0 && td->td_priority > pri &&
750 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
751 		sched_prio(td, pri);
752 
753 	/*
754 	 * Note that thread td might not be sleeping if it is running
755 	 * sleepq_catch_signals() on another CPU or is blocked on its
756 	 * proc lock to check signals.  There's no need to mark the
757 	 * thread runnable in that case.
758 	 */
759 	if (TD_IS_SLEEPING(td)) {
760 		TD_CLR_SLEEPING(td);
761 		return (setrunnable(td));
762 	}
763 	return (0);
764 }
765 
766 #ifdef INVARIANTS
767 /*
768  * UMA zone item deallocator.
769  */
770 static void
771 sleepq_dtor(void *mem, int size, void *arg)
772 {
773 	struct sleepqueue *sq;
774 	int i;
775 
776 	sq = mem;
777 	for (i = 0; i < NR_SLEEPQS; i++) {
778 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
779 		MPASS(sq->sq_blockedcnt[i] == 0);
780 	}
781 }
782 #endif
783 
784 /*
785  * UMA zone item initializer.
786  */
787 static int
788 sleepq_init(void *mem, int size, int flags)
789 {
790 	struct sleepqueue *sq;
791 	int i;
792 
793 	bzero(mem, size);
794 	sq = mem;
795 	for (i = 0; i < NR_SLEEPQS; i++) {
796 		TAILQ_INIT(&sq->sq_blocked[i]);
797 		sq->sq_blockedcnt[i] = 0;
798 	}
799 	LIST_INIT(&sq->sq_free);
800 	return (0);
801 }
802 
803 /*
804  * Find the highest priority thread sleeping on a wait channel and resume it.
805  */
806 int
807 sleepq_signal(void *wchan, int flags, int pri, int queue)
808 {
809 	struct sleepqueue *sq;
810 	struct thread *td, *besttd;
811 	int wakeup_swapper;
812 
813 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
814 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
815 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
816 	sq = sleepq_lookup(wchan);
817 	if (sq == NULL)
818 		return (0);
819 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
820 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
821 
822 	/*
823 	 * Find the highest priority thread on the queue.  If there is a
824 	 * tie, use the thread that first appears in the queue as it has
825 	 * been sleeping the longest since threads are always added to
826 	 * the tail of sleep queues.
827 	 */
828 	besttd = NULL;
829 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
830 		if (besttd == NULL || td->td_priority < besttd->td_priority)
831 			besttd = td;
832 	}
833 	MPASS(besttd != NULL);
834 	thread_lock(besttd);
835 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
836 	thread_unlock(besttd);
837 	return (wakeup_swapper);
838 }
839 
840 /*
841  * Resume all threads sleeping on a specified wait channel.
842  */
843 int
844 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
845 {
846 	struct sleepqueue *sq;
847 	struct thread *td, *tdn;
848 	int wakeup_swapper;
849 
850 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
851 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
852 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
853 	sq = sleepq_lookup(wchan);
854 	if (sq == NULL)
855 		return (0);
856 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
857 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
858 
859 	/* Resume all blocked threads on the sleep queue. */
860 	wakeup_swapper = 0;
861 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
862 		thread_lock(td);
863 		if (sleepq_resume_thread(sq, td, pri))
864 			wakeup_swapper = 1;
865 		thread_unlock(td);
866 	}
867 	return (wakeup_swapper);
868 }
869 
870 /*
871  * Time sleeping threads out.  When the timeout expires, the thread is
872  * removed from the sleep queue and made runnable if it is still asleep.
873  */
874 static void
875 sleepq_timeout(void *arg)
876 {
877 	struct sleepqueue_chain *sc;
878 	struct sleepqueue *sq;
879 	struct thread *td;
880 	void *wchan;
881 	int wakeup_swapper;
882 
883 	td = arg;
884 	wakeup_swapper = 0;
885 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
886 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
887 
888 	/*
889 	 * First, see if the thread is asleep and get the wait channel if
890 	 * it is.
891 	 */
892 	thread_lock(td);
893 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
894 		wchan = td->td_wchan;
895 		sc = SC_LOOKUP(wchan);
896 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
897 		sq = sleepq_lookup(wchan);
898 		MPASS(sq != NULL);
899 		td->td_flags |= TDF_TIMEOUT;
900 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
901 		thread_unlock(td);
902 		if (wakeup_swapper)
903 			kick_proc0();
904 		return;
905 	}
906 
907 	/*
908 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
909 	 * can either be on another CPU in between sleepq_add() and
910 	 * one of the sleepq_*wait*() routines or it can be in
911 	 * sleepq_catch_signals().
912 	 */
913 	if (TD_ON_SLEEPQ(td)) {
914 		td->td_flags |= TDF_TIMEOUT;
915 		thread_unlock(td);
916 		return;
917 	}
918 
919 	/*
920 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
921 	 * then the other thread has already yielded to us, so clear
922 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
923 	 * we know that the other thread is not on a sleep queue, but it
924 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
925 	 * to let it know that the timeout has already run and doesn't
926 	 * need to be canceled.
927 	 */
928 	if (td->td_flags & TDF_TIMEOUT) {
929 		MPASS(TD_IS_SLEEPING(td));
930 		td->td_flags &= ~TDF_TIMEOUT;
931 		TD_CLR_SLEEPING(td);
932 		wakeup_swapper = setrunnable(td);
933 	} else
934 		td->td_flags |= TDF_TIMOFAIL;
935 	thread_unlock(td);
936 	if (wakeup_swapper)
937 		kick_proc0();
938 }
939 
940 /*
941  * Resumes a specific thread from the sleep queue associated with a specific
942  * wait channel if it is on that queue.
943  */
944 void
945 sleepq_remove(struct thread *td, void *wchan)
946 {
947 	struct sleepqueue *sq;
948 	int wakeup_swapper;
949 
950 	/*
951 	 * Look up the sleep queue for this wait channel, then re-check
952 	 * that the thread is asleep on that channel, if it is not, then
953 	 * bail.
954 	 */
955 	MPASS(wchan != NULL);
956 	sleepq_lock(wchan);
957 	sq = sleepq_lookup(wchan);
958 	/*
959 	 * We can not lock the thread here as it may be sleeping on a
960 	 * different sleepq.  However, holding the sleepq lock for this
961 	 * wchan can guarantee that we do not miss a wakeup for this
962 	 * channel.  The asserts below will catch any false positives.
963 	 */
964 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
965 		sleepq_release(wchan);
966 		return;
967 	}
968 	/* Thread is asleep on sleep queue sq, so wake it up. */
969 	thread_lock(td);
970 	MPASS(sq != NULL);
971 	MPASS(td->td_wchan == wchan);
972 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
973 	thread_unlock(td);
974 	sleepq_release(wchan);
975 	if (wakeup_swapper)
976 		kick_proc0();
977 }
978 
979 /*
980  * Abort a thread as if an interrupt had occurred.  Only abort
981  * interruptible waits (unfortunately it isn't safe to abort others).
982  */
983 int
984 sleepq_abort(struct thread *td, int intrval)
985 {
986 	struct sleepqueue *sq;
987 	void *wchan;
988 
989 	THREAD_LOCK_ASSERT(td, MA_OWNED);
990 	MPASS(TD_ON_SLEEPQ(td));
991 	MPASS(td->td_flags & TDF_SINTR);
992 	MPASS(intrval == EINTR || intrval == ERESTART);
993 
994 	/*
995 	 * If the TDF_TIMEOUT flag is set, just leave. A
996 	 * timeout is scheduled anyhow.
997 	 */
998 	if (td->td_flags & TDF_TIMEOUT)
999 		return (0);
1000 
1001 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1002 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1003 	td->td_intrval = intrval;
1004 	td->td_flags |= TDF_SLEEPABORT;
1005 	/*
1006 	 * If the thread has not slept yet it will find the signal in
1007 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1008 	 * we have to do it here.
1009 	 */
1010 	if (!TD_IS_SLEEPING(td))
1011 		return (0);
1012 	wchan = td->td_wchan;
1013 	MPASS(wchan != NULL);
1014 	sq = sleepq_lookup(wchan);
1015 	MPASS(sq != NULL);
1016 
1017 	/* Thread is asleep on sleep queue sq, so wake it up. */
1018 	return (sleepq_resume_thread(sq, td, 0));
1019 }
1020 
1021 #ifdef SLEEPQUEUE_PROFILING
1022 #define	SLEEPQ_PROF_LOCATIONS	1024
1023 #define	SLEEPQ_SBUFSIZE		512
1024 struct sleepq_prof {
1025 	LIST_ENTRY(sleepq_prof) sp_link;
1026 	const char	*sp_wmesg;
1027 	long		sp_count;
1028 };
1029 
1030 LIST_HEAD(sqphead, sleepq_prof);
1031 
1032 struct sqphead sleepq_prof_free;
1033 struct sqphead sleepq_hash[SC_TABLESIZE];
1034 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1035 static struct mtx sleepq_prof_lock;
1036 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1037 
1038 static void
1039 sleepq_profile(const char *wmesg)
1040 {
1041 	struct sleepq_prof *sp;
1042 
1043 	mtx_lock_spin(&sleepq_prof_lock);
1044 	if (prof_enabled == 0)
1045 		goto unlock;
1046 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1047 		if (sp->sp_wmesg == wmesg)
1048 			goto done;
1049 	sp = LIST_FIRST(&sleepq_prof_free);
1050 	if (sp == NULL)
1051 		goto unlock;
1052 	sp->sp_wmesg = wmesg;
1053 	LIST_REMOVE(sp, sp_link);
1054 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1055 done:
1056 	sp->sp_count++;
1057 unlock:
1058 	mtx_unlock_spin(&sleepq_prof_lock);
1059 	return;
1060 }
1061 
1062 static void
1063 sleepq_prof_reset(void)
1064 {
1065 	struct sleepq_prof *sp;
1066 	int enabled;
1067 	int i;
1068 
1069 	mtx_lock_spin(&sleepq_prof_lock);
1070 	enabled = prof_enabled;
1071 	prof_enabled = 0;
1072 	for (i = 0; i < SC_TABLESIZE; i++)
1073 		LIST_INIT(&sleepq_hash[i]);
1074 	LIST_INIT(&sleepq_prof_free);
1075 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1076 		sp = &sleepq_profent[i];
1077 		sp->sp_wmesg = NULL;
1078 		sp->sp_count = 0;
1079 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1080 	}
1081 	prof_enabled = enabled;
1082 	mtx_unlock_spin(&sleepq_prof_lock);
1083 }
1084 
1085 static int
1086 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1087 {
1088 	int error, v;
1089 
1090 	v = prof_enabled;
1091 	error = sysctl_handle_int(oidp, &v, v, req);
1092 	if (error)
1093 		return (error);
1094 	if (req->newptr == NULL)
1095 		return (error);
1096 	if (v == prof_enabled)
1097 		return (0);
1098 	if (v == 1)
1099 		sleepq_prof_reset();
1100 	mtx_lock_spin(&sleepq_prof_lock);
1101 	prof_enabled = !!v;
1102 	mtx_unlock_spin(&sleepq_prof_lock);
1103 
1104 	return (0);
1105 }
1106 
1107 static int
1108 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1109 {
1110 	int error, v;
1111 
1112 	v = 0;
1113 	error = sysctl_handle_int(oidp, &v, 0, req);
1114 	if (error)
1115 		return (error);
1116 	if (req->newptr == NULL)
1117 		return (error);
1118 	if (v == 0)
1119 		return (0);
1120 	sleepq_prof_reset();
1121 
1122 	return (0);
1123 }
1124 
1125 static int
1126 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1127 {
1128 	struct sleepq_prof *sp;
1129 	struct sbuf *sb;
1130 	int enabled;
1131 	int error;
1132 	int i;
1133 
1134 	error = sysctl_wire_old_buffer(req, 0);
1135 	if (error != 0)
1136 		return (error);
1137 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1138 	sbuf_printf(sb, "\nwmesg\tcount\n");
1139 	enabled = prof_enabled;
1140 	mtx_lock_spin(&sleepq_prof_lock);
1141 	prof_enabled = 0;
1142 	mtx_unlock_spin(&sleepq_prof_lock);
1143 	for (i = 0; i < SC_TABLESIZE; i++) {
1144 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1145 			sbuf_printf(sb, "%s\t%ld\n",
1146 			    sp->sp_wmesg, sp->sp_count);
1147 		}
1148 	}
1149 	mtx_lock_spin(&sleepq_prof_lock);
1150 	prof_enabled = enabled;
1151 	mtx_unlock_spin(&sleepq_prof_lock);
1152 
1153 	error = sbuf_finish(sb);
1154 	sbuf_delete(sb);
1155 	return (error);
1156 }
1157 
1158 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1159     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1160 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1161     NULL, 0, reset_sleepq_prof_stats, "I",
1162     "Reset sleepqueue profiling statistics");
1163 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1164     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1165 #endif
1166 
1167 #ifdef DDB
1168 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1169 {
1170 	struct sleepqueue_chain *sc;
1171 	struct sleepqueue *sq;
1172 #ifdef INVARIANTS
1173 	struct lock_object *lock;
1174 #endif
1175 	struct thread *td;
1176 	void *wchan;
1177 	int i;
1178 
1179 	if (!have_addr)
1180 		return;
1181 
1182 	/*
1183 	 * First, see if there is an active sleep queue for the wait channel
1184 	 * indicated by the address.
1185 	 */
1186 	wchan = (void *)addr;
1187 	sc = SC_LOOKUP(wchan);
1188 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1189 		if (sq->sq_wchan == wchan)
1190 			goto found;
1191 
1192 	/*
1193 	 * Second, see if there is an active sleep queue at the address
1194 	 * indicated.
1195 	 */
1196 	for (i = 0; i < SC_TABLESIZE; i++)
1197 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1198 			if (sq == (struct sleepqueue *)addr)
1199 				goto found;
1200 		}
1201 
1202 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1203 	return;
1204 found:
1205 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1206 	db_printf("Queue type: %d\n", sq->sq_type);
1207 #ifdef INVARIANTS
1208 	if (sq->sq_lock) {
1209 		lock = sq->sq_lock;
1210 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1211 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1212 	}
1213 #endif
1214 	db_printf("Blocked threads:\n");
1215 	for (i = 0; i < NR_SLEEPQS; i++) {
1216 		db_printf("\nQueue[%d]:\n", i);
1217 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1218 			db_printf("\tempty\n");
1219 		else
1220 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1221 				      td_slpq) {
1222 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1223 					  td->td_tid, td->td_proc->p_pid,
1224 					  td->td_name);
1225 			}
1226 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1227 	}
1228 }
1229 
1230 /* Alias 'show sleepqueue' to 'show sleepq'. */
1231 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1232 #endif
1233