1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Implementation of sleep queues used to hold queue of threads blocked on 29 * a wait channel. Sleep queues are different from turnstiles in that wait 30 * channels are not owned by anyone, so there is no priority propagation. 31 * Sleep queues can also provide a timeout and can also be interrupted by 32 * signals. That said, there are several similarities between the turnstile 33 * and sleep queue implementations. (Note: turnstiles were implemented 34 * first.) For example, both use a hash table of the same size where each 35 * bucket is referred to as a "chain" that contains both a spin lock and 36 * a linked list of queues. An individual queue is located by using a hash 37 * to pick a chain, locking the chain, and then walking the chain searching 38 * for the queue. This means that a wait channel object does not need to 39 * embed its queue head just as locks do not embed their turnstile queue 40 * head. Threads also carry around a sleep queue that they lend to the 41 * wait channel when blocking. Just as in turnstiles, the queue includes 42 * a free list of the sleep queues of other threads blocked on the same 43 * wait channel in the case of multiple waiters. 44 * 45 * Some additional functionality provided by sleep queues include the 46 * ability to set a timeout. The timeout is managed using a per-thread 47 * callout that resumes a thread if it is asleep. A thread may also 48 * catch signals while it is asleep (aka an interruptible sleep). The 49 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 50 * sleep queues also provide some extra assertions. One is not allowed to 51 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 52 * must consistently use the same lock to synchronize with a wait channel, 53 * though this check is currently only a warning for sleep/wakeup due to 54 * pre-existing abuse of that API. The same lock must also be held when 55 * awakening threads, though that is currently only enforced for condition 56 * variables. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_sleepqueue_profiling.h" 63 #include "opt_ddb.h" 64 #include "opt_sched.h" 65 #include "opt_stack.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/sched.h> 76 #include <sys/sdt.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/stack.h> 80 #include <sys/sysctl.h> 81 #include <sys/time.h> 82 83 #include <machine/atomic.h> 84 85 #include <vm/uma.h> 86 87 #ifdef DDB 88 #include <ddb/ddb.h> 89 #endif 90 91 92 /* 93 * Constants for the hash table of sleep queue chains. 94 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 95 */ 96 #ifndef SC_TABLESIZE 97 #define SC_TABLESIZE 256 98 #endif 99 CTASSERT(powerof2(SC_TABLESIZE)); 100 #define SC_MASK (SC_TABLESIZE - 1) 101 #define SC_SHIFT 8 102 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 103 SC_MASK) 104 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 105 #define NR_SLEEPQS 2 106 /* 107 * There are two different lists of sleep queues. Both lists are connected 108 * via the sq_hash entries. The first list is the sleep queue chain list 109 * that a sleep queue is on when it is attached to a wait channel. The 110 * second list is the free list hung off of a sleep queue that is attached 111 * to a wait channel. 112 * 113 * Each sleep queue also contains the wait channel it is attached to, the 114 * list of threads blocked on that wait channel, flags specific to the 115 * wait channel, and the lock used to synchronize with a wait channel. 116 * The flags are used to catch mismatches between the various consumers 117 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 118 * The lock pointer is only used when invariants are enabled for various 119 * debugging checks. 120 * 121 * Locking key: 122 * c - sleep queue chain lock 123 */ 124 struct sleepqueue { 125 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 126 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 127 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 128 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 129 void *sq_wchan; /* (c) Wait channel. */ 130 int sq_type; /* (c) Queue type. */ 131 #ifdef INVARIANTS 132 struct lock_object *sq_lock; /* (c) Associated lock. */ 133 #endif 134 }; 135 136 struct sleepqueue_chain { 137 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 138 struct mtx sc_lock; /* Spin lock for this chain. */ 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sc_depth; /* Length of sc_queues. */ 141 u_int sc_max_depth; /* Max length of sc_queues. */ 142 #endif 143 } __aligned(CACHE_LINE_SIZE); 144 145 #ifdef SLEEPQUEUE_PROFILING 146 u_int sleepq_max_depth; 147 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 148 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 149 "sleepq chain stats"); 150 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 151 0, "maxmimum depth achieved of a single chain"); 152 153 static void sleepq_profile(const char *wmesg); 154 static int prof_enabled; 155 #endif 156 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 157 static uma_zone_t sleepq_zone; 158 159 /* 160 * Prototypes for non-exported routines. 161 */ 162 static int sleepq_catch_signals(void *wchan, int pri); 163 static int sleepq_check_signals(void); 164 static int sleepq_check_timeout(void); 165 #ifdef INVARIANTS 166 static void sleepq_dtor(void *mem, int size, void *arg); 167 #endif 168 static int sleepq_init(void *mem, int size, int flags); 169 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 170 int pri); 171 static void sleepq_switch(void *wchan, int pri); 172 static void sleepq_timeout(void *arg); 173 174 SDT_PROBE_DECLARE(sched, , , sleep); 175 SDT_PROBE_DECLARE(sched, , , wakeup); 176 177 /* 178 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 179 * Note that it must happen after sleepinit() has been fully executed, so 180 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 181 */ 182 #ifdef SLEEPQUEUE_PROFILING 183 static void 184 init_sleepqueue_profiling(void) 185 { 186 char chain_name[10]; 187 struct sysctl_oid *chain_oid; 188 u_int i; 189 190 for (i = 0; i < SC_TABLESIZE; i++) { 191 snprintf(chain_name, sizeof(chain_name), "%u", i); 192 chain_oid = SYSCTL_ADD_NODE(NULL, 193 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 194 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 195 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 196 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 197 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 198 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 199 NULL); 200 } 201 } 202 203 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 204 init_sleepqueue_profiling, NULL); 205 #endif 206 207 /* 208 * Early initialization of sleep queues that is called from the sleepinit() 209 * SYSINIT. 210 */ 211 void 212 init_sleepqueues(void) 213 { 214 int i; 215 216 for (i = 0; i < SC_TABLESIZE; i++) { 217 LIST_INIT(&sleepq_chains[i].sc_queues); 218 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 219 MTX_SPIN | MTX_RECURSE); 220 } 221 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 222 #ifdef INVARIANTS 223 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 224 #else 225 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 226 #endif 227 228 thread0.td_sleepqueue = sleepq_alloc(); 229 } 230 231 /* 232 * Get a sleep queue for a new thread. 233 */ 234 struct sleepqueue * 235 sleepq_alloc(void) 236 { 237 238 return (uma_zalloc(sleepq_zone, M_WAITOK)); 239 } 240 241 /* 242 * Free a sleep queue when a thread is destroyed. 243 */ 244 void 245 sleepq_free(struct sleepqueue *sq) 246 { 247 248 uma_zfree(sleepq_zone, sq); 249 } 250 251 /* 252 * Lock the sleep queue chain associated with the specified wait channel. 253 */ 254 void 255 sleepq_lock(void *wchan) 256 { 257 struct sleepqueue_chain *sc; 258 259 sc = SC_LOOKUP(wchan); 260 mtx_lock_spin(&sc->sc_lock); 261 } 262 263 /* 264 * Look up the sleep queue associated with a given wait channel in the hash 265 * table locking the associated sleep queue chain. If no queue is found in 266 * the table, NULL is returned. 267 */ 268 struct sleepqueue * 269 sleepq_lookup(void *wchan) 270 { 271 struct sleepqueue_chain *sc; 272 struct sleepqueue *sq; 273 274 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 275 sc = SC_LOOKUP(wchan); 276 mtx_assert(&sc->sc_lock, MA_OWNED); 277 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 278 if (sq->sq_wchan == wchan) 279 return (sq); 280 return (NULL); 281 } 282 283 /* 284 * Unlock the sleep queue chain associated with a given wait channel. 285 */ 286 void 287 sleepq_release(void *wchan) 288 { 289 struct sleepqueue_chain *sc; 290 291 sc = SC_LOOKUP(wchan); 292 mtx_unlock_spin(&sc->sc_lock); 293 } 294 295 /* 296 * Places the current thread on the sleep queue for the specified wait 297 * channel. If INVARIANTS is enabled, then it associates the passed in 298 * lock with the sleepq to make sure it is held when that sleep queue is 299 * woken up. 300 */ 301 void 302 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 303 int queue) 304 { 305 struct sleepqueue_chain *sc; 306 struct sleepqueue *sq; 307 struct thread *td; 308 309 td = curthread; 310 sc = SC_LOOKUP(wchan); 311 mtx_assert(&sc->sc_lock, MA_OWNED); 312 MPASS(td->td_sleepqueue != NULL); 313 MPASS(wchan != NULL); 314 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 315 316 /* If this thread is not allowed to sleep, die a horrible death. */ 317 KASSERT(td->td_no_sleeping == 0, 318 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 319 __func__, td, wchan)); 320 321 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 322 sq = sleepq_lookup(wchan); 323 324 /* 325 * If the wait channel does not already have a sleep queue, use 326 * this thread's sleep queue. Otherwise, insert the current thread 327 * into the sleep queue already in use by this wait channel. 328 */ 329 if (sq == NULL) { 330 #ifdef INVARIANTS 331 int i; 332 333 sq = td->td_sleepqueue; 334 for (i = 0; i < NR_SLEEPQS; i++) { 335 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 336 ("thread's sleep queue %d is not empty", i)); 337 KASSERT(sq->sq_blockedcnt[i] == 0, 338 ("thread's sleep queue %d count mismatches", i)); 339 } 340 KASSERT(LIST_EMPTY(&sq->sq_free), 341 ("thread's sleep queue has a non-empty free list")); 342 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 343 sq->sq_lock = lock; 344 #endif 345 #ifdef SLEEPQUEUE_PROFILING 346 sc->sc_depth++; 347 if (sc->sc_depth > sc->sc_max_depth) { 348 sc->sc_max_depth = sc->sc_depth; 349 if (sc->sc_max_depth > sleepq_max_depth) 350 sleepq_max_depth = sc->sc_max_depth; 351 } 352 #endif 353 sq = td->td_sleepqueue; 354 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 355 sq->sq_wchan = wchan; 356 sq->sq_type = flags & SLEEPQ_TYPE; 357 } else { 358 MPASS(wchan == sq->sq_wchan); 359 MPASS(lock == sq->sq_lock); 360 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 361 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 362 } 363 thread_lock(td); 364 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 365 sq->sq_blockedcnt[queue]++; 366 td->td_sleepqueue = NULL; 367 td->td_sqqueue = queue; 368 td->td_wchan = wchan; 369 td->td_wmesg = wmesg; 370 if (flags & SLEEPQ_INTERRUPTIBLE) { 371 td->td_flags |= TDF_SINTR; 372 td->td_flags &= ~TDF_SLEEPABORT; 373 } 374 thread_unlock(td); 375 } 376 377 /* 378 * Sets a timeout that will remove the current thread from the specified 379 * sleep queue after timo ticks if the thread has not already been awakened. 380 */ 381 void 382 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 383 int flags) 384 { 385 struct sleepqueue_chain *sc; 386 struct thread *td; 387 sbintime_t pr1; 388 389 td = curthread; 390 sc = SC_LOOKUP(wchan); 391 mtx_assert(&sc->sc_lock, MA_OWNED); 392 MPASS(TD_ON_SLEEPQ(td)); 393 MPASS(td->td_sleepqueue == NULL); 394 MPASS(wchan != NULL); 395 if (cold && td == &thread0) 396 panic("timed sleep before timers are working"); 397 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 398 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 399 thread_lock(td); 400 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 401 thread_unlock(td); 402 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 403 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 404 C_DIRECT_EXEC); 405 } 406 407 /* 408 * Return the number of actual sleepers for the specified queue. 409 */ 410 u_int 411 sleepq_sleepcnt(void *wchan, int queue) 412 { 413 struct sleepqueue *sq; 414 415 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 416 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 417 sq = sleepq_lookup(wchan); 418 if (sq == NULL) 419 return (0); 420 return (sq->sq_blockedcnt[queue]); 421 } 422 423 /* 424 * Marks the pending sleep of the current thread as interruptible and 425 * makes an initial check for pending signals before putting a thread 426 * to sleep. Enters and exits with the thread lock held. Thread lock 427 * may have transitioned from the sleepq lock to a run lock. 428 */ 429 static int 430 sleepq_catch_signals(void *wchan, int pri) 431 { 432 struct sleepqueue_chain *sc; 433 struct sleepqueue *sq; 434 struct thread *td; 435 struct proc *p; 436 struct sigacts *ps; 437 int sig, ret; 438 439 ret = 0; 440 td = curthread; 441 p = curproc; 442 sc = SC_LOOKUP(wchan); 443 mtx_assert(&sc->sc_lock, MA_OWNED); 444 MPASS(wchan != NULL); 445 if ((td->td_pflags & TDP_WAKEUP) != 0) { 446 td->td_pflags &= ~TDP_WAKEUP; 447 ret = EINTR; 448 thread_lock(td); 449 goto out; 450 } 451 452 /* 453 * See if there are any pending signals or suspension requests for this 454 * thread. If not, we can switch immediately. 455 */ 456 thread_lock(td); 457 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) { 458 thread_unlock(td); 459 mtx_unlock_spin(&sc->sc_lock); 460 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 461 (void *)td, (long)p->p_pid, td->td_name); 462 PROC_LOCK(p); 463 /* 464 * Check for suspension first. Checking for signals and then 465 * suspending could result in a missed signal, since a signal 466 * can be delivered while this thread is suspended. 467 */ 468 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 469 ret = thread_suspend_check(1); 470 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 471 if (ret != 0) { 472 PROC_UNLOCK(p); 473 mtx_lock_spin(&sc->sc_lock); 474 thread_lock(td); 475 goto out; 476 } 477 } 478 if ((td->td_flags & TDF_NEEDSIGCHK) != 0) { 479 ps = p->p_sigacts; 480 mtx_lock(&ps->ps_mtx); 481 sig = cursig(td); 482 if (sig == -1) { 483 mtx_unlock(&ps->ps_mtx); 484 KASSERT((td->td_flags & TDF_SBDRY) != 0, 485 ("lost TDF_SBDRY")); 486 KASSERT(TD_SBDRY_INTR(td), 487 ("lost TDF_SERESTART of TDF_SEINTR")); 488 KASSERT((td->td_flags & 489 (TDF_SEINTR | TDF_SERESTART)) != 490 (TDF_SEINTR | TDF_SERESTART), 491 ("both TDF_SEINTR and TDF_SERESTART")); 492 ret = TD_SBDRY_ERRNO(td); 493 } else if (sig != 0) { 494 ret = SIGISMEMBER(ps->ps_sigintr, sig) ? 495 EINTR : ERESTART; 496 mtx_unlock(&ps->ps_mtx); 497 } else { 498 mtx_unlock(&ps->ps_mtx); 499 } 500 } 501 /* 502 * Lock the per-process spinlock prior to dropping the PROC_LOCK 503 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 504 * thread_lock() are currently held in tdsendsignal(). 505 */ 506 PROC_SLOCK(p); 507 mtx_lock_spin(&sc->sc_lock); 508 PROC_UNLOCK(p); 509 thread_lock(td); 510 PROC_SUNLOCK(p); 511 } 512 if (ret == 0) { 513 sleepq_switch(wchan, pri); 514 return (0); 515 } 516 out: 517 /* 518 * There were pending signals and this thread is still 519 * on the sleep queue, remove it from the sleep queue. 520 */ 521 if (TD_ON_SLEEPQ(td)) { 522 sq = sleepq_lookup(wchan); 523 if (sleepq_resume_thread(sq, td, 0)) { 524 #ifdef INVARIANTS 525 /* 526 * This thread hasn't gone to sleep yet, so it 527 * should not be swapped out. 528 */ 529 panic("not waking up swapper"); 530 #endif 531 } 532 } 533 mtx_unlock_spin(&sc->sc_lock); 534 MPASS(td->td_lock != &sc->sc_lock); 535 return (ret); 536 } 537 538 /* 539 * Switches to another thread if we are still asleep on a sleep queue. 540 * Returns with thread lock. 541 */ 542 static void 543 sleepq_switch(void *wchan, int pri) 544 { 545 struct sleepqueue_chain *sc; 546 struct sleepqueue *sq; 547 struct thread *td; 548 bool rtc_changed; 549 550 td = curthread; 551 sc = SC_LOOKUP(wchan); 552 mtx_assert(&sc->sc_lock, MA_OWNED); 553 THREAD_LOCK_ASSERT(td, MA_OWNED); 554 555 /* 556 * If we have a sleep queue, then we've already been woken up, so 557 * just return. 558 */ 559 if (td->td_sleepqueue != NULL) { 560 mtx_unlock_spin(&sc->sc_lock); 561 return; 562 } 563 564 /* 565 * If TDF_TIMEOUT is set, then our sleep has been timed out 566 * already but we are still on the sleep queue, so dequeue the 567 * thread and return. 568 * 569 * Do the same if the real-time clock has been adjusted since this 570 * thread calculated its timeout based on that clock. This handles 571 * the following race: 572 * - The Ts thread needs to sleep until an absolute real-clock time. 573 * It copies the global rtc_generation into curthread->td_rtcgen, 574 * reads the RTC, and calculates a sleep duration based on that time. 575 * See umtxq_sleep() for an example. 576 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes 577 * threads that are sleeping until an absolute real-clock time. 578 * See tc_setclock() and the POSIX specification of clock_settime(). 579 * - Ts reaches the code below. It holds the sleepqueue chain lock, 580 * so Tc has finished waking, so this thread must test td_rtcgen. 581 * (The declaration of td_rtcgen refers to this comment.) 582 */ 583 rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation; 584 if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) { 585 if (rtc_changed) { 586 td->td_rtcgen = 0; 587 } 588 MPASS(TD_ON_SLEEPQ(td)); 589 sq = sleepq_lookup(wchan); 590 if (sleepq_resume_thread(sq, td, 0)) { 591 #ifdef INVARIANTS 592 /* 593 * This thread hasn't gone to sleep yet, so it 594 * should not be swapped out. 595 */ 596 panic("not waking up swapper"); 597 #endif 598 } 599 mtx_unlock_spin(&sc->sc_lock); 600 return; 601 } 602 #ifdef SLEEPQUEUE_PROFILING 603 if (prof_enabled) 604 sleepq_profile(td->td_wmesg); 605 #endif 606 MPASS(td->td_sleepqueue == NULL); 607 sched_sleep(td, pri); 608 thread_lock_set(td, &sc->sc_lock); 609 SDT_PROBE0(sched, , , sleep); 610 TD_SET_SLEEPING(td); 611 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 612 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 613 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 614 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 615 } 616 617 /* 618 * Check to see if we timed out. 619 */ 620 static int 621 sleepq_check_timeout(void) 622 { 623 struct thread *td; 624 int res; 625 626 td = curthread; 627 THREAD_LOCK_ASSERT(td, MA_OWNED); 628 629 /* 630 * If TDF_TIMEOUT is set, we timed out. But recheck 631 * td_sleeptimo anyway. 632 */ 633 res = 0; 634 if (td->td_sleeptimo != 0) { 635 if (td->td_sleeptimo <= sbinuptime()) 636 res = EWOULDBLOCK; 637 td->td_sleeptimo = 0; 638 } 639 if (td->td_flags & TDF_TIMEOUT) 640 td->td_flags &= ~TDF_TIMEOUT; 641 else 642 /* 643 * We ignore the situation where timeout subsystem was 644 * unable to stop our callout. The struct thread is 645 * type-stable, the callout will use the correct 646 * memory when running. The checks of the 647 * td_sleeptimo value in this function and in 648 * sleepq_timeout() ensure that the thread does not 649 * get spurious wakeups, even if the callout was reset 650 * or thread reused. 651 */ 652 callout_stop(&td->td_slpcallout); 653 return (res); 654 } 655 656 /* 657 * Check to see if we were awoken by a signal. 658 */ 659 static int 660 sleepq_check_signals(void) 661 { 662 struct thread *td; 663 664 td = curthread; 665 THREAD_LOCK_ASSERT(td, MA_OWNED); 666 667 /* We are no longer in an interruptible sleep. */ 668 if (td->td_flags & TDF_SINTR) 669 td->td_flags &= ~TDF_SINTR; 670 671 if (td->td_flags & TDF_SLEEPABORT) { 672 td->td_flags &= ~TDF_SLEEPABORT; 673 return (td->td_intrval); 674 } 675 676 return (0); 677 } 678 679 /* 680 * Block the current thread until it is awakened from its sleep queue. 681 */ 682 void 683 sleepq_wait(void *wchan, int pri) 684 { 685 struct thread *td; 686 687 td = curthread; 688 MPASS(!(td->td_flags & TDF_SINTR)); 689 thread_lock(td); 690 sleepq_switch(wchan, pri); 691 thread_unlock(td); 692 } 693 694 /* 695 * Block the current thread until it is awakened from its sleep queue 696 * or it is interrupted by a signal. 697 */ 698 int 699 sleepq_wait_sig(void *wchan, int pri) 700 { 701 int rcatch; 702 int rval; 703 704 rcatch = sleepq_catch_signals(wchan, pri); 705 rval = sleepq_check_signals(); 706 thread_unlock(curthread); 707 if (rcatch) 708 return (rcatch); 709 return (rval); 710 } 711 712 /* 713 * Block the current thread until it is awakened from its sleep queue 714 * or it times out while waiting. 715 */ 716 int 717 sleepq_timedwait(void *wchan, int pri) 718 { 719 struct thread *td; 720 int rval; 721 722 td = curthread; 723 MPASS(!(td->td_flags & TDF_SINTR)); 724 thread_lock(td); 725 sleepq_switch(wchan, pri); 726 rval = sleepq_check_timeout(); 727 thread_unlock(td); 728 729 return (rval); 730 } 731 732 /* 733 * Block the current thread until it is awakened from its sleep queue, 734 * it is interrupted by a signal, or it times out waiting to be awakened. 735 */ 736 int 737 sleepq_timedwait_sig(void *wchan, int pri) 738 { 739 int rcatch, rvalt, rvals; 740 741 rcatch = sleepq_catch_signals(wchan, pri); 742 rvalt = sleepq_check_timeout(); 743 rvals = sleepq_check_signals(); 744 thread_unlock(curthread); 745 if (rcatch) 746 return (rcatch); 747 if (rvals) 748 return (rvals); 749 return (rvalt); 750 } 751 752 /* 753 * Returns the type of sleepqueue given a waitchannel. 754 */ 755 int 756 sleepq_type(void *wchan) 757 { 758 struct sleepqueue *sq; 759 int type; 760 761 MPASS(wchan != NULL); 762 763 sleepq_lock(wchan); 764 sq = sleepq_lookup(wchan); 765 if (sq == NULL) { 766 sleepq_release(wchan); 767 return (-1); 768 } 769 type = sq->sq_type; 770 sleepq_release(wchan); 771 return (type); 772 } 773 774 /* 775 * Removes a thread from a sleep queue and makes it 776 * runnable. 777 */ 778 static int 779 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 780 { 781 struct sleepqueue_chain *sc; 782 783 MPASS(td != NULL); 784 MPASS(sq->sq_wchan != NULL); 785 MPASS(td->td_wchan == sq->sq_wchan); 786 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 787 THREAD_LOCK_ASSERT(td, MA_OWNED); 788 sc = SC_LOOKUP(sq->sq_wchan); 789 mtx_assert(&sc->sc_lock, MA_OWNED); 790 791 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 792 793 /* Remove the thread from the queue. */ 794 sq->sq_blockedcnt[td->td_sqqueue]--; 795 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 796 797 /* 798 * Get a sleep queue for this thread. If this is the last waiter, 799 * use the queue itself and take it out of the chain, otherwise, 800 * remove a queue from the free list. 801 */ 802 if (LIST_EMPTY(&sq->sq_free)) { 803 td->td_sleepqueue = sq; 804 #ifdef INVARIANTS 805 sq->sq_wchan = NULL; 806 #endif 807 #ifdef SLEEPQUEUE_PROFILING 808 sc->sc_depth--; 809 #endif 810 } else 811 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 812 LIST_REMOVE(td->td_sleepqueue, sq_hash); 813 814 td->td_wmesg = NULL; 815 td->td_wchan = NULL; 816 td->td_flags &= ~TDF_SINTR; 817 818 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 819 (void *)td, (long)td->td_proc->p_pid, td->td_name); 820 821 /* Adjust priority if requested. */ 822 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 823 if (pri != 0 && td->td_priority > pri && 824 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 825 sched_prio(td, pri); 826 827 /* 828 * Note that thread td might not be sleeping if it is running 829 * sleepq_catch_signals() on another CPU or is blocked on its 830 * proc lock to check signals. There's no need to mark the 831 * thread runnable in that case. 832 */ 833 if (TD_IS_SLEEPING(td)) { 834 TD_CLR_SLEEPING(td); 835 return (setrunnable(td)); 836 } 837 return (0); 838 } 839 840 #ifdef INVARIANTS 841 /* 842 * UMA zone item deallocator. 843 */ 844 static void 845 sleepq_dtor(void *mem, int size, void *arg) 846 { 847 struct sleepqueue *sq; 848 int i; 849 850 sq = mem; 851 for (i = 0; i < NR_SLEEPQS; i++) { 852 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 853 MPASS(sq->sq_blockedcnt[i] == 0); 854 } 855 } 856 #endif 857 858 /* 859 * UMA zone item initializer. 860 */ 861 static int 862 sleepq_init(void *mem, int size, int flags) 863 { 864 struct sleepqueue *sq; 865 int i; 866 867 bzero(mem, size); 868 sq = mem; 869 for (i = 0; i < NR_SLEEPQS; i++) { 870 TAILQ_INIT(&sq->sq_blocked[i]); 871 sq->sq_blockedcnt[i] = 0; 872 } 873 LIST_INIT(&sq->sq_free); 874 return (0); 875 } 876 877 /* 878 * Find the highest priority thread sleeping on a wait channel and resume it. 879 */ 880 int 881 sleepq_signal(void *wchan, int flags, int pri, int queue) 882 { 883 struct sleepqueue *sq; 884 struct thread *td, *besttd; 885 int wakeup_swapper; 886 887 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 888 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 889 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 890 sq = sleepq_lookup(wchan); 891 if (sq == NULL) 892 return (0); 893 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 894 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 895 896 /* 897 * Find the highest priority thread on the queue. If there is a 898 * tie, use the thread that first appears in the queue as it has 899 * been sleeping the longest since threads are always added to 900 * the tail of sleep queues. 901 */ 902 besttd = TAILQ_FIRST(&sq->sq_blocked[queue]); 903 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 904 if (td->td_priority < besttd->td_priority) 905 besttd = td; 906 } 907 MPASS(besttd != NULL); 908 thread_lock(besttd); 909 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 910 thread_unlock(besttd); 911 return (wakeup_swapper); 912 } 913 914 static bool 915 match_any(struct thread *td __unused) 916 { 917 918 return (true); 919 } 920 921 /* 922 * Resume all threads sleeping on a specified wait channel. 923 */ 924 int 925 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 926 { 927 struct sleepqueue *sq; 928 929 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 930 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 931 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 932 sq = sleepq_lookup(wchan); 933 if (sq == NULL) 934 return (0); 935 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 936 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 937 938 return (sleepq_remove_matching(sq, queue, match_any, pri)); 939 } 940 941 /* 942 * Resume threads on the sleep queue that match the given predicate. 943 */ 944 int 945 sleepq_remove_matching(struct sleepqueue *sq, int queue, 946 bool (*matches)(struct thread *), int pri) 947 { 948 struct thread *td, *tdn; 949 int wakeup_swapper; 950 951 /* 952 * The last thread will be given ownership of sq and may 953 * re-enqueue itself before sleepq_resume_thread() returns, 954 * so we must cache the "next" queue item at the beginning 955 * of the final iteration. 956 */ 957 wakeup_swapper = 0; 958 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 959 thread_lock(td); 960 if (matches(td)) 961 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 962 thread_unlock(td); 963 } 964 965 return (wakeup_swapper); 966 } 967 968 /* 969 * Time sleeping threads out. When the timeout expires, the thread is 970 * removed from the sleep queue and made runnable if it is still asleep. 971 */ 972 static void 973 sleepq_timeout(void *arg) 974 { 975 struct sleepqueue_chain *sc; 976 struct sleepqueue *sq; 977 struct thread *td; 978 void *wchan; 979 int wakeup_swapper; 980 981 td = arg; 982 wakeup_swapper = 0; 983 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 984 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 985 986 thread_lock(td); 987 988 if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) { 989 /* 990 * The thread does not want a timeout (yet). 991 */ 992 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 993 /* 994 * See if the thread is asleep and get the wait 995 * channel if it is. 996 */ 997 wchan = td->td_wchan; 998 sc = SC_LOOKUP(wchan); 999 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 1000 sq = sleepq_lookup(wchan); 1001 MPASS(sq != NULL); 1002 td->td_flags |= TDF_TIMEOUT; 1003 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1004 } else if (TD_ON_SLEEPQ(td)) { 1005 /* 1006 * If the thread is on the SLEEPQ but isn't sleeping 1007 * yet, it can either be on another CPU in between 1008 * sleepq_add() and one of the sleepq_*wait*() 1009 * routines or it can be in sleepq_catch_signals(). 1010 */ 1011 td->td_flags |= TDF_TIMEOUT; 1012 } 1013 1014 thread_unlock(td); 1015 if (wakeup_swapper) 1016 kick_proc0(); 1017 } 1018 1019 /* 1020 * Resumes a specific thread from the sleep queue associated with a specific 1021 * wait channel if it is on that queue. 1022 */ 1023 void 1024 sleepq_remove(struct thread *td, void *wchan) 1025 { 1026 struct sleepqueue *sq; 1027 int wakeup_swapper; 1028 1029 /* 1030 * Look up the sleep queue for this wait channel, then re-check 1031 * that the thread is asleep on that channel, if it is not, then 1032 * bail. 1033 */ 1034 MPASS(wchan != NULL); 1035 sleepq_lock(wchan); 1036 sq = sleepq_lookup(wchan); 1037 /* 1038 * We can not lock the thread here as it may be sleeping on a 1039 * different sleepq. However, holding the sleepq lock for this 1040 * wchan can guarantee that we do not miss a wakeup for this 1041 * channel. The asserts below will catch any false positives. 1042 */ 1043 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 1044 sleepq_release(wchan); 1045 return; 1046 } 1047 /* Thread is asleep on sleep queue sq, so wake it up. */ 1048 thread_lock(td); 1049 MPASS(sq != NULL); 1050 MPASS(td->td_wchan == wchan); 1051 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1052 thread_unlock(td); 1053 sleepq_release(wchan); 1054 if (wakeup_swapper) 1055 kick_proc0(); 1056 } 1057 1058 /* 1059 * Abort a thread as if an interrupt had occurred. Only abort 1060 * interruptible waits (unfortunately it isn't safe to abort others). 1061 */ 1062 int 1063 sleepq_abort(struct thread *td, int intrval) 1064 { 1065 struct sleepqueue *sq; 1066 void *wchan; 1067 1068 THREAD_LOCK_ASSERT(td, MA_OWNED); 1069 MPASS(TD_ON_SLEEPQ(td)); 1070 MPASS(td->td_flags & TDF_SINTR); 1071 MPASS(intrval == EINTR || intrval == ERESTART); 1072 1073 /* 1074 * If the TDF_TIMEOUT flag is set, just leave. A 1075 * timeout is scheduled anyhow. 1076 */ 1077 if (td->td_flags & TDF_TIMEOUT) 1078 return (0); 1079 1080 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1081 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1082 td->td_intrval = intrval; 1083 td->td_flags |= TDF_SLEEPABORT; 1084 /* 1085 * If the thread has not slept yet it will find the signal in 1086 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1087 * we have to do it here. 1088 */ 1089 if (!TD_IS_SLEEPING(td)) 1090 return (0); 1091 wchan = td->td_wchan; 1092 MPASS(wchan != NULL); 1093 sq = sleepq_lookup(wchan); 1094 MPASS(sq != NULL); 1095 1096 /* Thread is asleep on sleep queue sq, so wake it up. */ 1097 return (sleepq_resume_thread(sq, td, 0)); 1098 } 1099 1100 void 1101 sleepq_chains_remove_matching(bool (*matches)(struct thread *)) 1102 { 1103 struct sleepqueue_chain *sc; 1104 struct sleepqueue *sq; 1105 int i, wakeup_swapper; 1106 1107 wakeup_swapper = 0; 1108 for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) { 1109 if (LIST_EMPTY(&sc->sc_queues)) { 1110 continue; 1111 } 1112 mtx_lock_spin(&sc->sc_lock); 1113 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) { 1114 for (i = 0; i < NR_SLEEPQS; ++i) { 1115 wakeup_swapper |= sleepq_remove_matching(sq, i, 1116 matches, 0); 1117 } 1118 } 1119 mtx_unlock_spin(&sc->sc_lock); 1120 } 1121 if (wakeup_swapper) { 1122 kick_proc0(); 1123 } 1124 } 1125 1126 /* 1127 * Prints the stacks of all threads presently sleeping on wchan/queue to 1128 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1129 * printed. Typically, this will equal the number of threads sleeping on the 1130 * queue, but may be less if sb overflowed before all stacks were printed. 1131 */ 1132 #ifdef STACK 1133 int 1134 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1135 int *count_stacks_printed) 1136 { 1137 struct thread *td, *td_next; 1138 struct sleepqueue *sq; 1139 struct stack **st; 1140 struct sbuf **td_infos; 1141 int i, stack_idx, error, stacks_to_allocate; 1142 bool finished, partial_print; 1143 1144 error = 0; 1145 finished = false; 1146 partial_print = false; 1147 1148 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1149 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1150 1151 stacks_to_allocate = 10; 1152 for (i = 0; i < 3 && !finished ; i++) { 1153 /* We cannot malloc while holding the queue's spinlock, so 1154 * we do our mallocs now, and hope it is enough. If it 1155 * isn't, we will free these, drop the lock, malloc more, 1156 * and try again, up to a point. After that point we will 1157 * give up and report ENOMEM. We also cannot write to sb 1158 * during this time since the client may have set the 1159 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1160 * malloc as we print to it. So we defer actually printing 1161 * to sb until after we drop the spinlock. 1162 */ 1163 1164 /* Where we will store the stacks. */ 1165 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1166 M_TEMP, M_WAITOK); 1167 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1168 stack_idx++) 1169 st[stack_idx] = stack_create(M_WAITOK); 1170 1171 /* Where we will store the td name, tid, etc. */ 1172 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1173 M_TEMP, M_WAITOK); 1174 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1175 stack_idx++) 1176 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1177 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1178 SBUF_FIXEDLEN); 1179 1180 sleepq_lock(wchan); 1181 sq = sleepq_lookup(wchan); 1182 if (sq == NULL) { 1183 /* This sleepq does not exist; exit and return ENOENT. */ 1184 error = ENOENT; 1185 finished = true; 1186 sleepq_release(wchan); 1187 goto loop_end; 1188 } 1189 1190 stack_idx = 0; 1191 /* Save thread info */ 1192 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1193 td_next) { 1194 if (stack_idx >= stacks_to_allocate) 1195 goto loop_end; 1196 1197 /* Note the td_lock is equal to the sleepq_lock here. */ 1198 stack_save_td(st[stack_idx], td); 1199 1200 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1201 td->td_tid, td->td_name, td); 1202 1203 ++stack_idx; 1204 } 1205 1206 finished = true; 1207 sleepq_release(wchan); 1208 1209 /* Print the stacks */ 1210 for (i = 0; i < stack_idx; i++) { 1211 sbuf_finish(td_infos[i]); 1212 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1213 stack_sbuf_print(sb, st[i]); 1214 sbuf_printf(sb, "\n"); 1215 1216 error = sbuf_error(sb); 1217 if (error == 0) 1218 *count_stacks_printed = stack_idx; 1219 } 1220 1221 loop_end: 1222 if (!finished) 1223 sleepq_release(wchan); 1224 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1225 stack_idx++) 1226 stack_destroy(st[stack_idx]); 1227 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1228 stack_idx++) 1229 sbuf_delete(td_infos[stack_idx]); 1230 free(st, M_TEMP); 1231 free(td_infos, M_TEMP); 1232 stacks_to_allocate *= 10; 1233 } 1234 1235 if (!finished && error == 0) 1236 error = ENOMEM; 1237 1238 return (error); 1239 } 1240 #endif 1241 1242 #ifdef SLEEPQUEUE_PROFILING 1243 #define SLEEPQ_PROF_LOCATIONS 1024 1244 #define SLEEPQ_SBUFSIZE 512 1245 struct sleepq_prof { 1246 LIST_ENTRY(sleepq_prof) sp_link; 1247 const char *sp_wmesg; 1248 long sp_count; 1249 }; 1250 1251 LIST_HEAD(sqphead, sleepq_prof); 1252 1253 struct sqphead sleepq_prof_free; 1254 struct sqphead sleepq_hash[SC_TABLESIZE]; 1255 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1256 static struct mtx sleepq_prof_lock; 1257 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1258 1259 static void 1260 sleepq_profile(const char *wmesg) 1261 { 1262 struct sleepq_prof *sp; 1263 1264 mtx_lock_spin(&sleepq_prof_lock); 1265 if (prof_enabled == 0) 1266 goto unlock; 1267 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1268 if (sp->sp_wmesg == wmesg) 1269 goto done; 1270 sp = LIST_FIRST(&sleepq_prof_free); 1271 if (sp == NULL) 1272 goto unlock; 1273 sp->sp_wmesg = wmesg; 1274 LIST_REMOVE(sp, sp_link); 1275 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1276 done: 1277 sp->sp_count++; 1278 unlock: 1279 mtx_unlock_spin(&sleepq_prof_lock); 1280 return; 1281 } 1282 1283 static void 1284 sleepq_prof_reset(void) 1285 { 1286 struct sleepq_prof *sp; 1287 int enabled; 1288 int i; 1289 1290 mtx_lock_spin(&sleepq_prof_lock); 1291 enabled = prof_enabled; 1292 prof_enabled = 0; 1293 for (i = 0; i < SC_TABLESIZE; i++) 1294 LIST_INIT(&sleepq_hash[i]); 1295 LIST_INIT(&sleepq_prof_free); 1296 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1297 sp = &sleepq_profent[i]; 1298 sp->sp_wmesg = NULL; 1299 sp->sp_count = 0; 1300 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1301 } 1302 prof_enabled = enabled; 1303 mtx_unlock_spin(&sleepq_prof_lock); 1304 } 1305 1306 static int 1307 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1308 { 1309 int error, v; 1310 1311 v = prof_enabled; 1312 error = sysctl_handle_int(oidp, &v, v, req); 1313 if (error) 1314 return (error); 1315 if (req->newptr == NULL) 1316 return (error); 1317 if (v == prof_enabled) 1318 return (0); 1319 if (v == 1) 1320 sleepq_prof_reset(); 1321 mtx_lock_spin(&sleepq_prof_lock); 1322 prof_enabled = !!v; 1323 mtx_unlock_spin(&sleepq_prof_lock); 1324 1325 return (0); 1326 } 1327 1328 static int 1329 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1330 { 1331 int error, v; 1332 1333 v = 0; 1334 error = sysctl_handle_int(oidp, &v, 0, req); 1335 if (error) 1336 return (error); 1337 if (req->newptr == NULL) 1338 return (error); 1339 if (v == 0) 1340 return (0); 1341 sleepq_prof_reset(); 1342 1343 return (0); 1344 } 1345 1346 static int 1347 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1348 { 1349 struct sleepq_prof *sp; 1350 struct sbuf *sb; 1351 int enabled; 1352 int error; 1353 int i; 1354 1355 error = sysctl_wire_old_buffer(req, 0); 1356 if (error != 0) 1357 return (error); 1358 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1359 sbuf_printf(sb, "\nwmesg\tcount\n"); 1360 enabled = prof_enabled; 1361 mtx_lock_spin(&sleepq_prof_lock); 1362 prof_enabled = 0; 1363 mtx_unlock_spin(&sleepq_prof_lock); 1364 for (i = 0; i < SC_TABLESIZE; i++) { 1365 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1366 sbuf_printf(sb, "%s\t%ld\n", 1367 sp->sp_wmesg, sp->sp_count); 1368 } 1369 } 1370 mtx_lock_spin(&sleepq_prof_lock); 1371 prof_enabled = enabled; 1372 mtx_unlock_spin(&sleepq_prof_lock); 1373 1374 error = sbuf_finish(sb); 1375 sbuf_delete(sb); 1376 return (error); 1377 } 1378 1379 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1380 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1381 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1382 NULL, 0, reset_sleepq_prof_stats, "I", 1383 "Reset sleepqueue profiling statistics"); 1384 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1385 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1386 #endif 1387 1388 #ifdef DDB 1389 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1390 { 1391 struct sleepqueue_chain *sc; 1392 struct sleepqueue *sq; 1393 #ifdef INVARIANTS 1394 struct lock_object *lock; 1395 #endif 1396 struct thread *td; 1397 void *wchan; 1398 int i; 1399 1400 if (!have_addr) 1401 return; 1402 1403 /* 1404 * First, see if there is an active sleep queue for the wait channel 1405 * indicated by the address. 1406 */ 1407 wchan = (void *)addr; 1408 sc = SC_LOOKUP(wchan); 1409 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1410 if (sq->sq_wchan == wchan) 1411 goto found; 1412 1413 /* 1414 * Second, see if there is an active sleep queue at the address 1415 * indicated. 1416 */ 1417 for (i = 0; i < SC_TABLESIZE; i++) 1418 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1419 if (sq == (struct sleepqueue *)addr) 1420 goto found; 1421 } 1422 1423 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1424 return; 1425 found: 1426 db_printf("Wait channel: %p\n", sq->sq_wchan); 1427 db_printf("Queue type: %d\n", sq->sq_type); 1428 #ifdef INVARIANTS 1429 if (sq->sq_lock) { 1430 lock = sq->sq_lock; 1431 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1432 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1433 } 1434 #endif 1435 db_printf("Blocked threads:\n"); 1436 for (i = 0; i < NR_SLEEPQS; i++) { 1437 db_printf("\nQueue[%d]:\n", i); 1438 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1439 db_printf("\tempty\n"); 1440 else 1441 TAILQ_FOREACH(td, &sq->sq_blocked[i], 1442 td_slpq) { 1443 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1444 td->td_tid, td->td_proc->p_pid, 1445 td->td_name); 1446 } 1447 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1448 } 1449 } 1450 1451 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1452 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1453 #endif 1454