xref: /freebsd/sys/kern/subr_sleepqueue.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_kdtrace.h"
68 #include "opt_sched.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sbuf.h>
78 #include <sys/sched.h>
79 #include <sys/sdt.h>
80 #include <sys/signalvar.h>
81 #include <sys/sleepqueue.h>
82 #include <sys/sysctl.h>
83 
84 #include <vm/uma.h>
85 
86 #ifdef DDB
87 #include <ddb/ddb.h>
88 #endif
89 
90 /*
91  * Constants for the hash table of sleep queue chains.  These constants are
92  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
93  * Basically, we ignore the lower 8 bits of the address since most wait
94  * channel pointers are aligned and only look at the next 7 bits for the
95  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96  */
97 #define	SC_TABLESIZE	128			/* Must be power of 2. */
98 #define	SC_MASK		(SC_TABLESIZE - 1)
99 #define	SC_SHIFT	8
100 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
101 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
102 #define NR_SLEEPQS      2
103 /*
104  * There two different lists of sleep queues.  Both lists are connected
105  * via the sq_hash entries.  The first list is the sleep queue chain list
106  * that a sleep queue is on when it is attached to a wait channel.  The
107  * second list is the free list hung off of a sleep queue that is attached
108  * to a wait channel.
109  *
110  * Each sleep queue also contains the wait channel it is attached to, the
111  * list of threads blocked on that wait channel, flags specific to the
112  * wait channel, and the lock used to synchronize with a wait channel.
113  * The flags are used to catch mismatches between the various consumers
114  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
115  * The lock pointer is only used when invariants are enabled for various
116  * debugging checks.
117  *
118  * Locking key:
119  *  c - sleep queue chain lock
120  */
121 struct sleepqueue {
122 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
123 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
124 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
125 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
126 	void	*sq_wchan;			/* (c) Wait channel. */
127 	int	sq_type;			/* (c) Queue type. */
128 #ifdef INVARIANTS
129 	struct lock_object *sq_lock;		/* (c) Associated lock. */
130 #endif
131 };
132 
133 struct sleepqueue_chain {
134 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
135 	struct mtx sc_lock;			/* Spin lock for this chain. */
136 #ifdef SLEEPQUEUE_PROFILING
137 	u_int	sc_depth;			/* Length of sc_queues. */
138 	u_int	sc_max_depth;			/* Max length of sc_queues. */
139 #endif
140 };
141 
142 #ifdef SLEEPQUEUE_PROFILING
143 u_int sleepq_max_depth;
144 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
145 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
146     "sleepq chain stats");
147 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
148     0, "maxmimum depth achieved of a single chain");
149 
150 static void	sleepq_profile(const char *wmesg);
151 static int	prof_enabled;
152 #endif
153 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
154 static uma_zone_t sleepq_zone;
155 
156 /*
157  * Prototypes for non-exported routines.
158  */
159 static int	sleepq_catch_signals(void *wchan, int pri);
160 static int	sleepq_check_signals(void);
161 static int	sleepq_check_timeout(void);
162 #ifdef INVARIANTS
163 static void	sleepq_dtor(void *mem, int size, void *arg);
164 #endif
165 static int	sleepq_init(void *mem, int size, int flags);
166 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
167 		    int pri);
168 static void	sleepq_switch(void *wchan, int pri);
169 static void	sleepq_timeout(void *arg);
170 
171 SDT_PROBE_DECLARE(sched, , , sleep);
172 SDT_PROBE_DECLARE(sched, , , wakeup);
173 
174 /*
175  * Early initialization of sleep queues that is called from the sleepinit()
176  * SYSINIT.
177  */
178 void
179 init_sleepqueues(void)
180 {
181 #ifdef SLEEPQUEUE_PROFILING
182 	struct sysctl_oid *chain_oid;
183 	char chain_name[10];
184 #endif
185 	int i;
186 
187 	for (i = 0; i < SC_TABLESIZE; i++) {
188 		LIST_INIT(&sleepq_chains[i].sc_queues);
189 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
190 		    MTX_SPIN | MTX_RECURSE);
191 #ifdef SLEEPQUEUE_PROFILING
192 		snprintf(chain_name, sizeof(chain_name), "%d", i);
193 		chain_oid = SYSCTL_ADD_NODE(NULL,
194 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
195 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
196 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
197 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
198 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
199 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
200 		    NULL);
201 #endif
202 	}
203 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
204 #ifdef INVARIANTS
205 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
206 #else
207 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
208 #endif
209 
210 	thread0.td_sleepqueue = sleepq_alloc();
211 }
212 
213 /*
214  * Get a sleep queue for a new thread.
215  */
216 struct sleepqueue *
217 sleepq_alloc(void)
218 {
219 
220 	return (uma_zalloc(sleepq_zone, M_WAITOK));
221 }
222 
223 /*
224  * Free a sleep queue when a thread is destroyed.
225  */
226 void
227 sleepq_free(struct sleepqueue *sq)
228 {
229 
230 	uma_zfree(sleepq_zone, sq);
231 }
232 
233 /*
234  * Lock the sleep queue chain associated with the specified wait channel.
235  */
236 void
237 sleepq_lock(void *wchan)
238 {
239 	struct sleepqueue_chain *sc;
240 
241 	sc = SC_LOOKUP(wchan);
242 	mtx_lock_spin(&sc->sc_lock);
243 }
244 
245 /*
246  * Look up the sleep queue associated with a given wait channel in the hash
247  * table locking the associated sleep queue chain.  If no queue is found in
248  * the table, NULL is returned.
249  */
250 struct sleepqueue *
251 sleepq_lookup(void *wchan)
252 {
253 	struct sleepqueue_chain *sc;
254 	struct sleepqueue *sq;
255 
256 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
257 	sc = SC_LOOKUP(wchan);
258 	mtx_assert(&sc->sc_lock, MA_OWNED);
259 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
260 		if (sq->sq_wchan == wchan)
261 			return (sq);
262 	return (NULL);
263 }
264 
265 /*
266  * Unlock the sleep queue chain associated with a given wait channel.
267  */
268 void
269 sleepq_release(void *wchan)
270 {
271 	struct sleepqueue_chain *sc;
272 
273 	sc = SC_LOOKUP(wchan);
274 	mtx_unlock_spin(&sc->sc_lock);
275 }
276 
277 /*
278  * Places the current thread on the sleep queue for the specified wait
279  * channel.  If INVARIANTS is enabled, then it associates the passed in
280  * lock with the sleepq to make sure it is held when that sleep queue is
281  * woken up.
282  */
283 void
284 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
285     int queue)
286 {
287 	struct sleepqueue_chain *sc;
288 	struct sleepqueue *sq;
289 	struct thread *td;
290 
291 	td = curthread;
292 	sc = SC_LOOKUP(wchan);
293 	mtx_assert(&sc->sc_lock, MA_OWNED);
294 	MPASS(td->td_sleepqueue != NULL);
295 	MPASS(wchan != NULL);
296 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
297 
298 	/* If this thread is not allowed to sleep, die a horrible death. */
299 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
300 	    ("Trying sleep, but thread marked as sleeping prohibited"));
301 
302 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
303 	sq = sleepq_lookup(wchan);
304 
305 	/*
306 	 * If the wait channel does not already have a sleep queue, use
307 	 * this thread's sleep queue.  Otherwise, insert the current thread
308 	 * into the sleep queue already in use by this wait channel.
309 	 */
310 	if (sq == NULL) {
311 #ifdef INVARIANTS
312 		int i;
313 
314 		sq = td->td_sleepqueue;
315 		for (i = 0; i < NR_SLEEPQS; i++) {
316 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
317 			    ("thread's sleep queue %d is not empty", i));
318 			KASSERT(sq->sq_blockedcnt[i] == 0,
319 			    ("thread's sleep queue %d count mismatches", i));
320 		}
321 		KASSERT(LIST_EMPTY(&sq->sq_free),
322 		    ("thread's sleep queue has a non-empty free list"));
323 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
324 		sq->sq_lock = lock;
325 #endif
326 #ifdef SLEEPQUEUE_PROFILING
327 		sc->sc_depth++;
328 		if (sc->sc_depth > sc->sc_max_depth) {
329 			sc->sc_max_depth = sc->sc_depth;
330 			if (sc->sc_max_depth > sleepq_max_depth)
331 				sleepq_max_depth = sc->sc_max_depth;
332 		}
333 #endif
334 		sq = td->td_sleepqueue;
335 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
336 		sq->sq_wchan = wchan;
337 		sq->sq_type = flags & SLEEPQ_TYPE;
338 	} else {
339 		MPASS(wchan == sq->sq_wchan);
340 		MPASS(lock == sq->sq_lock);
341 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
342 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
343 	}
344 	thread_lock(td);
345 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
346 	sq->sq_blockedcnt[queue]++;
347 	td->td_sleepqueue = NULL;
348 	td->td_sqqueue = queue;
349 	td->td_wchan = wchan;
350 	td->td_wmesg = wmesg;
351 	if (flags & SLEEPQ_INTERRUPTIBLE) {
352 		td->td_flags |= TDF_SINTR;
353 		td->td_flags &= ~TDF_SLEEPABORT;
354 		if (flags & SLEEPQ_STOP_ON_BDRY)
355 			td->td_flags |= TDF_SBDRY;
356 	}
357 	thread_unlock(td);
358 }
359 
360 /*
361  * Sets a timeout that will remove the current thread from the specified
362  * sleep queue after timo ticks if the thread has not already been awakened.
363  */
364 void
365 sleepq_set_timeout(void *wchan, int timo)
366 {
367 	struct sleepqueue_chain *sc;
368 	struct thread *td;
369 
370 	td = curthread;
371 	sc = SC_LOOKUP(wchan);
372 	mtx_assert(&sc->sc_lock, MA_OWNED);
373 	MPASS(TD_ON_SLEEPQ(td));
374 	MPASS(td->td_sleepqueue == NULL);
375 	MPASS(wchan != NULL);
376 	callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
377 }
378 
379 /*
380  * Return the number of actual sleepers for the specified queue.
381  */
382 u_int
383 sleepq_sleepcnt(void *wchan, int queue)
384 {
385 	struct sleepqueue *sq;
386 
387 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
388 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
389 	sq = sleepq_lookup(wchan);
390 	if (sq == NULL)
391 		return (0);
392 	return (sq->sq_blockedcnt[queue]);
393 }
394 
395 /*
396  * Marks the pending sleep of the current thread as interruptible and
397  * makes an initial check for pending signals before putting a thread
398  * to sleep. Enters and exits with the thread lock held.  Thread lock
399  * may have transitioned from the sleepq lock to a run lock.
400  */
401 static int
402 sleepq_catch_signals(void *wchan, int pri)
403 {
404 	struct sleepqueue_chain *sc;
405 	struct sleepqueue *sq;
406 	struct thread *td;
407 	struct proc *p;
408 	struct sigacts *ps;
409 	int sig, ret, stop_allowed;
410 
411 	td = curthread;
412 	p = curproc;
413 	sc = SC_LOOKUP(wchan);
414 	mtx_assert(&sc->sc_lock, MA_OWNED);
415 	MPASS(wchan != NULL);
416 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
417 		td->td_pflags &= ~TDP_WAKEUP;
418 		ret = EINTR;
419 		thread_lock(td);
420 		goto out;
421 	}
422 
423 	/*
424 	 * See if there are any pending signals for this thread.  If not
425 	 * we can switch immediately.  Otherwise do the signal processing
426 	 * directly.
427 	 */
428 	thread_lock(td);
429 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
430 		sleepq_switch(wchan, pri);
431 		return (0);
432 	}
433 	stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
434 	    SIG_STOP_ALLOWED;
435 	thread_unlock(td);
436 	mtx_unlock_spin(&sc->sc_lock);
437 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
438 		(void *)td, (long)p->p_pid, td->td_name);
439 	PROC_LOCK(p);
440 	ps = p->p_sigacts;
441 	mtx_lock(&ps->ps_mtx);
442 	sig = cursig(td, stop_allowed);
443 	if (sig == 0) {
444 		mtx_unlock(&ps->ps_mtx);
445 		ret = thread_suspend_check(1);
446 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
447 	} else {
448 		if (SIGISMEMBER(ps->ps_sigintr, sig))
449 			ret = EINTR;
450 		else
451 			ret = ERESTART;
452 		mtx_unlock(&ps->ps_mtx);
453 	}
454 	/*
455 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
456 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
457 	 * thread_lock() are currently held in tdsendsignal().
458 	 */
459 	PROC_SLOCK(p);
460 	mtx_lock_spin(&sc->sc_lock);
461 	PROC_UNLOCK(p);
462 	thread_lock(td);
463 	PROC_SUNLOCK(p);
464 	if (ret == 0) {
465 		sleepq_switch(wchan, pri);
466 		return (0);
467 	}
468 out:
469 	/*
470 	 * There were pending signals and this thread is still
471 	 * on the sleep queue, remove it from the sleep queue.
472 	 */
473 	if (TD_ON_SLEEPQ(td)) {
474 		sq = sleepq_lookup(wchan);
475 		if (sleepq_resume_thread(sq, td, 0)) {
476 #ifdef INVARIANTS
477 			/*
478 			 * This thread hasn't gone to sleep yet, so it
479 			 * should not be swapped out.
480 			 */
481 			panic("not waking up swapper");
482 #endif
483 		}
484 	}
485 	mtx_unlock_spin(&sc->sc_lock);
486 	MPASS(td->td_lock != &sc->sc_lock);
487 	return (ret);
488 }
489 
490 /*
491  * Switches to another thread if we are still asleep on a sleep queue.
492  * Returns with thread lock.
493  */
494 static void
495 sleepq_switch(void *wchan, int pri)
496 {
497 	struct sleepqueue_chain *sc;
498 	struct sleepqueue *sq;
499 	struct thread *td;
500 
501 	td = curthread;
502 	sc = SC_LOOKUP(wchan);
503 	mtx_assert(&sc->sc_lock, MA_OWNED);
504 	THREAD_LOCK_ASSERT(td, MA_OWNED);
505 
506 	/*
507 	 * If we have a sleep queue, then we've already been woken up, so
508 	 * just return.
509 	 */
510 	if (td->td_sleepqueue != NULL) {
511 		mtx_unlock_spin(&sc->sc_lock);
512 		return;
513 	}
514 
515 	/*
516 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
517 	 * already but we are still on the sleep queue, so dequeue the
518 	 * thread and return.
519 	 */
520 	if (td->td_flags & TDF_TIMEOUT) {
521 		MPASS(TD_ON_SLEEPQ(td));
522 		sq = sleepq_lookup(wchan);
523 		if (sleepq_resume_thread(sq, td, 0)) {
524 #ifdef INVARIANTS
525 			/*
526 			 * This thread hasn't gone to sleep yet, so it
527 			 * should not be swapped out.
528 			 */
529 			panic("not waking up swapper");
530 #endif
531 		}
532 		mtx_unlock_spin(&sc->sc_lock);
533 		return;
534 	}
535 #ifdef SLEEPQUEUE_PROFILING
536 	if (prof_enabled)
537 		sleepq_profile(td->td_wmesg);
538 #endif
539 	MPASS(td->td_sleepqueue == NULL);
540 	sched_sleep(td, pri);
541 	thread_lock_set(td, &sc->sc_lock);
542 	SDT_PROBE0(sched, , , sleep);
543 	TD_SET_SLEEPING(td);
544 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
545 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
546 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
547 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
548 }
549 
550 /*
551  * Check to see if we timed out.
552  */
553 static int
554 sleepq_check_timeout(void)
555 {
556 	struct thread *td;
557 
558 	td = curthread;
559 	THREAD_LOCK_ASSERT(td, MA_OWNED);
560 
561 	/*
562 	 * If TDF_TIMEOUT is set, we timed out.
563 	 */
564 	if (td->td_flags & TDF_TIMEOUT) {
565 		td->td_flags &= ~TDF_TIMEOUT;
566 		return (EWOULDBLOCK);
567 	}
568 
569 	/*
570 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
571 	 * already been woken up.
572 	 */
573 	if (td->td_flags & TDF_TIMOFAIL)
574 		td->td_flags &= ~TDF_TIMOFAIL;
575 
576 	/*
577 	 * If callout_stop() fails, then the timeout is running on
578 	 * another CPU, so synchronize with it to avoid having it
579 	 * accidentally wake up a subsequent sleep.
580 	 */
581 	else if (callout_stop(&td->td_slpcallout) == 0) {
582 		td->td_flags |= TDF_TIMEOUT;
583 		TD_SET_SLEEPING(td);
584 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
585 	}
586 	return (0);
587 }
588 
589 /*
590  * Check to see if we were awoken by a signal.
591  */
592 static int
593 sleepq_check_signals(void)
594 {
595 	struct thread *td;
596 
597 	td = curthread;
598 	THREAD_LOCK_ASSERT(td, MA_OWNED);
599 
600 	/* We are no longer in an interruptible sleep. */
601 	if (td->td_flags & TDF_SINTR)
602 		td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
603 
604 	if (td->td_flags & TDF_SLEEPABORT) {
605 		td->td_flags &= ~TDF_SLEEPABORT;
606 		return (td->td_intrval);
607 	}
608 
609 	return (0);
610 }
611 
612 /*
613  * Block the current thread until it is awakened from its sleep queue.
614  */
615 void
616 sleepq_wait(void *wchan, int pri)
617 {
618 	struct thread *td;
619 
620 	td = curthread;
621 	MPASS(!(td->td_flags & TDF_SINTR));
622 	thread_lock(td);
623 	sleepq_switch(wchan, pri);
624 	thread_unlock(td);
625 }
626 
627 /*
628  * Block the current thread until it is awakened from its sleep queue
629  * or it is interrupted by a signal.
630  */
631 int
632 sleepq_wait_sig(void *wchan, int pri)
633 {
634 	int rcatch;
635 	int rval;
636 
637 	rcatch = sleepq_catch_signals(wchan, pri);
638 	rval = sleepq_check_signals();
639 	thread_unlock(curthread);
640 	if (rcatch)
641 		return (rcatch);
642 	return (rval);
643 }
644 
645 /*
646  * Block the current thread until it is awakened from its sleep queue
647  * or it times out while waiting.
648  */
649 int
650 sleepq_timedwait(void *wchan, int pri)
651 {
652 	struct thread *td;
653 	int rval;
654 
655 	td = curthread;
656 	MPASS(!(td->td_flags & TDF_SINTR));
657 	thread_lock(td);
658 	sleepq_switch(wchan, pri);
659 	rval = sleepq_check_timeout();
660 	thread_unlock(td);
661 
662 	return (rval);
663 }
664 
665 /*
666  * Block the current thread until it is awakened from its sleep queue,
667  * it is interrupted by a signal, or it times out waiting to be awakened.
668  */
669 int
670 sleepq_timedwait_sig(void *wchan, int pri)
671 {
672 	int rcatch, rvalt, rvals;
673 
674 	rcatch = sleepq_catch_signals(wchan, pri);
675 	rvalt = sleepq_check_timeout();
676 	rvals = sleepq_check_signals();
677 	thread_unlock(curthread);
678 	if (rcatch)
679 		return (rcatch);
680 	if (rvals)
681 		return (rvals);
682 	return (rvalt);
683 }
684 
685 /*
686  * Returns the type of sleepqueue given a waitchannel.
687  */
688 int
689 sleepq_type(void *wchan)
690 {
691 	struct sleepqueue *sq;
692 	int type;
693 
694 	MPASS(wchan != NULL);
695 
696 	sleepq_lock(wchan);
697 	sq = sleepq_lookup(wchan);
698 	if (sq == NULL) {
699 		sleepq_release(wchan);
700 		return (-1);
701 	}
702 	type = sq->sq_type;
703 	sleepq_release(wchan);
704 	return (type);
705 }
706 
707 /*
708  * Removes a thread from a sleep queue and makes it
709  * runnable.
710  */
711 static int
712 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
713 {
714 	struct sleepqueue_chain *sc;
715 
716 	MPASS(td != NULL);
717 	MPASS(sq->sq_wchan != NULL);
718 	MPASS(td->td_wchan == sq->sq_wchan);
719 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
720 	THREAD_LOCK_ASSERT(td, MA_OWNED);
721 	sc = SC_LOOKUP(sq->sq_wchan);
722 	mtx_assert(&sc->sc_lock, MA_OWNED);
723 
724 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
725 
726 	/* Remove the thread from the queue. */
727 	sq->sq_blockedcnt[td->td_sqqueue]--;
728 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
729 
730 	/*
731 	 * Get a sleep queue for this thread.  If this is the last waiter,
732 	 * use the queue itself and take it out of the chain, otherwise,
733 	 * remove a queue from the free list.
734 	 */
735 	if (LIST_EMPTY(&sq->sq_free)) {
736 		td->td_sleepqueue = sq;
737 #ifdef INVARIANTS
738 		sq->sq_wchan = NULL;
739 #endif
740 #ifdef SLEEPQUEUE_PROFILING
741 		sc->sc_depth--;
742 #endif
743 	} else
744 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
745 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
746 
747 	td->td_wmesg = NULL;
748 	td->td_wchan = NULL;
749 	td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
750 
751 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
752 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
753 
754 	/* Adjust priority if requested. */
755 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
756 	if (pri != 0 && td->td_priority > pri &&
757 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
758 		sched_prio(td, pri);
759 
760 	/*
761 	 * Note that thread td might not be sleeping if it is running
762 	 * sleepq_catch_signals() on another CPU or is blocked on its
763 	 * proc lock to check signals.  There's no need to mark the
764 	 * thread runnable in that case.
765 	 */
766 	if (TD_IS_SLEEPING(td)) {
767 		TD_CLR_SLEEPING(td);
768 		return (setrunnable(td));
769 	}
770 	return (0);
771 }
772 
773 #ifdef INVARIANTS
774 /*
775  * UMA zone item deallocator.
776  */
777 static void
778 sleepq_dtor(void *mem, int size, void *arg)
779 {
780 	struct sleepqueue *sq;
781 	int i;
782 
783 	sq = mem;
784 	for (i = 0; i < NR_SLEEPQS; i++) {
785 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
786 		MPASS(sq->sq_blockedcnt[i] == 0);
787 	}
788 }
789 #endif
790 
791 /*
792  * UMA zone item initializer.
793  */
794 static int
795 sleepq_init(void *mem, int size, int flags)
796 {
797 	struct sleepqueue *sq;
798 	int i;
799 
800 	bzero(mem, size);
801 	sq = mem;
802 	for (i = 0; i < NR_SLEEPQS; i++) {
803 		TAILQ_INIT(&sq->sq_blocked[i]);
804 		sq->sq_blockedcnt[i] = 0;
805 	}
806 	LIST_INIT(&sq->sq_free);
807 	return (0);
808 }
809 
810 /*
811  * Find the highest priority thread sleeping on a wait channel and resume it.
812  */
813 int
814 sleepq_signal(void *wchan, int flags, int pri, int queue)
815 {
816 	struct sleepqueue *sq;
817 	struct thread *td, *besttd;
818 	int wakeup_swapper;
819 
820 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
821 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
822 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
823 	sq = sleepq_lookup(wchan);
824 	if (sq == NULL)
825 		return (0);
826 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
827 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
828 
829 	/*
830 	 * Find the highest priority thread on the queue.  If there is a
831 	 * tie, use the thread that first appears in the queue as it has
832 	 * been sleeping the longest since threads are always added to
833 	 * the tail of sleep queues.
834 	 */
835 	besttd = NULL;
836 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
837 		if (besttd == NULL || td->td_priority < besttd->td_priority)
838 			besttd = td;
839 	}
840 	MPASS(besttd != NULL);
841 	thread_lock(besttd);
842 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
843 	thread_unlock(besttd);
844 	return (wakeup_swapper);
845 }
846 
847 /*
848  * Resume all threads sleeping on a specified wait channel.
849  */
850 int
851 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
852 {
853 	struct sleepqueue *sq;
854 	struct thread *td, *tdn;
855 	int wakeup_swapper;
856 
857 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
858 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
859 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
860 	sq = sleepq_lookup(wchan);
861 	if (sq == NULL)
862 		return (0);
863 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
864 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
865 
866 	/* Resume all blocked threads on the sleep queue. */
867 	wakeup_swapper = 0;
868 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
869 		thread_lock(td);
870 		if (sleepq_resume_thread(sq, td, pri))
871 			wakeup_swapper = 1;
872 		thread_unlock(td);
873 	}
874 	return (wakeup_swapper);
875 }
876 
877 /*
878  * Time sleeping threads out.  When the timeout expires, the thread is
879  * removed from the sleep queue and made runnable if it is still asleep.
880  */
881 static void
882 sleepq_timeout(void *arg)
883 {
884 	struct sleepqueue_chain *sc;
885 	struct sleepqueue *sq;
886 	struct thread *td;
887 	void *wchan;
888 	int wakeup_swapper;
889 
890 	td = arg;
891 	wakeup_swapper = 0;
892 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
893 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
894 
895 	/*
896 	 * First, see if the thread is asleep and get the wait channel if
897 	 * it is.
898 	 */
899 	thread_lock(td);
900 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
901 		wchan = td->td_wchan;
902 		sc = SC_LOOKUP(wchan);
903 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
904 		sq = sleepq_lookup(wchan);
905 		MPASS(sq != NULL);
906 		td->td_flags |= TDF_TIMEOUT;
907 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
908 		thread_unlock(td);
909 		if (wakeup_swapper)
910 			kick_proc0();
911 		return;
912 	}
913 
914 	/*
915 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
916 	 * can either be on another CPU in between sleepq_add() and
917 	 * one of the sleepq_*wait*() routines or it can be in
918 	 * sleepq_catch_signals().
919 	 */
920 	if (TD_ON_SLEEPQ(td)) {
921 		td->td_flags |= TDF_TIMEOUT;
922 		thread_unlock(td);
923 		return;
924 	}
925 
926 	/*
927 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
928 	 * then the other thread has already yielded to us, so clear
929 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
930 	 * we know that the other thread is not on a sleep queue, but it
931 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
932 	 * to let it know that the timeout has already run and doesn't
933 	 * need to be canceled.
934 	 */
935 	if (td->td_flags & TDF_TIMEOUT) {
936 		MPASS(TD_IS_SLEEPING(td));
937 		td->td_flags &= ~TDF_TIMEOUT;
938 		TD_CLR_SLEEPING(td);
939 		wakeup_swapper = setrunnable(td);
940 	} else
941 		td->td_flags |= TDF_TIMOFAIL;
942 	thread_unlock(td);
943 	if (wakeup_swapper)
944 		kick_proc0();
945 }
946 
947 /*
948  * Resumes a specific thread from the sleep queue associated with a specific
949  * wait channel if it is on that queue.
950  */
951 void
952 sleepq_remove(struct thread *td, void *wchan)
953 {
954 	struct sleepqueue *sq;
955 	int wakeup_swapper;
956 
957 	/*
958 	 * Look up the sleep queue for this wait channel, then re-check
959 	 * that the thread is asleep on that channel, if it is not, then
960 	 * bail.
961 	 */
962 	MPASS(wchan != NULL);
963 	sleepq_lock(wchan);
964 	sq = sleepq_lookup(wchan);
965 	/*
966 	 * We can not lock the thread here as it may be sleeping on a
967 	 * different sleepq.  However, holding the sleepq lock for this
968 	 * wchan can guarantee that we do not miss a wakeup for this
969 	 * channel.  The asserts below will catch any false positives.
970 	 */
971 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
972 		sleepq_release(wchan);
973 		return;
974 	}
975 	/* Thread is asleep on sleep queue sq, so wake it up. */
976 	thread_lock(td);
977 	MPASS(sq != NULL);
978 	MPASS(td->td_wchan == wchan);
979 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
980 	thread_unlock(td);
981 	sleepq_release(wchan);
982 	if (wakeup_swapper)
983 		kick_proc0();
984 }
985 
986 /*
987  * Abort a thread as if an interrupt had occurred.  Only abort
988  * interruptible waits (unfortunately it isn't safe to abort others).
989  */
990 int
991 sleepq_abort(struct thread *td, int intrval)
992 {
993 	struct sleepqueue *sq;
994 	void *wchan;
995 
996 	THREAD_LOCK_ASSERT(td, MA_OWNED);
997 	MPASS(TD_ON_SLEEPQ(td));
998 	MPASS(td->td_flags & TDF_SINTR);
999 	MPASS(intrval == EINTR || intrval == ERESTART);
1000 
1001 	/*
1002 	 * If the TDF_TIMEOUT flag is set, just leave. A
1003 	 * timeout is scheduled anyhow.
1004 	 */
1005 	if (td->td_flags & TDF_TIMEOUT)
1006 		return (0);
1007 
1008 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1009 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1010 	td->td_intrval = intrval;
1011 	td->td_flags |= TDF_SLEEPABORT;
1012 	/*
1013 	 * If the thread has not slept yet it will find the signal in
1014 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1015 	 * we have to do it here.
1016 	 */
1017 	if (!TD_IS_SLEEPING(td))
1018 		return (0);
1019 	wchan = td->td_wchan;
1020 	MPASS(wchan != NULL);
1021 	sq = sleepq_lookup(wchan);
1022 	MPASS(sq != NULL);
1023 
1024 	/* Thread is asleep on sleep queue sq, so wake it up. */
1025 	return (sleepq_resume_thread(sq, td, 0));
1026 }
1027 
1028 #ifdef SLEEPQUEUE_PROFILING
1029 #define	SLEEPQ_PROF_LOCATIONS	1024
1030 #define	SLEEPQ_SBUFSIZE		512
1031 struct sleepq_prof {
1032 	LIST_ENTRY(sleepq_prof) sp_link;
1033 	const char	*sp_wmesg;
1034 	long		sp_count;
1035 };
1036 
1037 LIST_HEAD(sqphead, sleepq_prof);
1038 
1039 struct sqphead sleepq_prof_free;
1040 struct sqphead sleepq_hash[SC_TABLESIZE];
1041 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1042 static struct mtx sleepq_prof_lock;
1043 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1044 
1045 static void
1046 sleepq_profile(const char *wmesg)
1047 {
1048 	struct sleepq_prof *sp;
1049 
1050 	mtx_lock_spin(&sleepq_prof_lock);
1051 	if (prof_enabled == 0)
1052 		goto unlock;
1053 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1054 		if (sp->sp_wmesg == wmesg)
1055 			goto done;
1056 	sp = LIST_FIRST(&sleepq_prof_free);
1057 	if (sp == NULL)
1058 		goto unlock;
1059 	sp->sp_wmesg = wmesg;
1060 	LIST_REMOVE(sp, sp_link);
1061 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1062 done:
1063 	sp->sp_count++;
1064 unlock:
1065 	mtx_unlock_spin(&sleepq_prof_lock);
1066 	return;
1067 }
1068 
1069 static void
1070 sleepq_prof_reset(void)
1071 {
1072 	struct sleepq_prof *sp;
1073 	int enabled;
1074 	int i;
1075 
1076 	mtx_lock_spin(&sleepq_prof_lock);
1077 	enabled = prof_enabled;
1078 	prof_enabled = 0;
1079 	for (i = 0; i < SC_TABLESIZE; i++)
1080 		LIST_INIT(&sleepq_hash[i]);
1081 	LIST_INIT(&sleepq_prof_free);
1082 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1083 		sp = &sleepq_profent[i];
1084 		sp->sp_wmesg = NULL;
1085 		sp->sp_count = 0;
1086 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1087 	}
1088 	prof_enabled = enabled;
1089 	mtx_unlock_spin(&sleepq_prof_lock);
1090 }
1091 
1092 static int
1093 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1094 {
1095 	int error, v;
1096 
1097 	v = prof_enabled;
1098 	error = sysctl_handle_int(oidp, &v, v, req);
1099 	if (error)
1100 		return (error);
1101 	if (req->newptr == NULL)
1102 		return (error);
1103 	if (v == prof_enabled)
1104 		return (0);
1105 	if (v == 1)
1106 		sleepq_prof_reset();
1107 	mtx_lock_spin(&sleepq_prof_lock);
1108 	prof_enabled = !!v;
1109 	mtx_unlock_spin(&sleepq_prof_lock);
1110 
1111 	return (0);
1112 }
1113 
1114 static int
1115 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1116 {
1117 	int error, v;
1118 
1119 	v = 0;
1120 	error = sysctl_handle_int(oidp, &v, 0, req);
1121 	if (error)
1122 		return (error);
1123 	if (req->newptr == NULL)
1124 		return (error);
1125 	if (v == 0)
1126 		return (0);
1127 	sleepq_prof_reset();
1128 
1129 	return (0);
1130 }
1131 
1132 static int
1133 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1134 {
1135 	struct sleepq_prof *sp;
1136 	struct sbuf *sb;
1137 	int enabled;
1138 	int error;
1139 	int i;
1140 
1141 	error = sysctl_wire_old_buffer(req, 0);
1142 	if (error != 0)
1143 		return (error);
1144 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1145 	sbuf_printf(sb, "\nwmesg\tcount\n");
1146 	enabled = prof_enabled;
1147 	mtx_lock_spin(&sleepq_prof_lock);
1148 	prof_enabled = 0;
1149 	mtx_unlock_spin(&sleepq_prof_lock);
1150 	for (i = 0; i < SC_TABLESIZE; i++) {
1151 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1152 			sbuf_printf(sb, "%s\t%ld\n",
1153 			    sp->sp_wmesg, sp->sp_count);
1154 		}
1155 	}
1156 	mtx_lock_spin(&sleepq_prof_lock);
1157 	prof_enabled = enabled;
1158 	mtx_unlock_spin(&sleepq_prof_lock);
1159 
1160 	error = sbuf_finish(sb);
1161 	sbuf_delete(sb);
1162 	return (error);
1163 }
1164 
1165 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1166     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1167 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1168     NULL, 0, reset_sleepq_prof_stats, "I",
1169     "Reset sleepqueue profiling statistics");
1170 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1171     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1172 #endif
1173 
1174 #ifdef DDB
1175 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1176 {
1177 	struct sleepqueue_chain *sc;
1178 	struct sleepqueue *sq;
1179 #ifdef INVARIANTS
1180 	struct lock_object *lock;
1181 #endif
1182 	struct thread *td;
1183 	void *wchan;
1184 	int i;
1185 
1186 	if (!have_addr)
1187 		return;
1188 
1189 	/*
1190 	 * First, see if there is an active sleep queue for the wait channel
1191 	 * indicated by the address.
1192 	 */
1193 	wchan = (void *)addr;
1194 	sc = SC_LOOKUP(wchan);
1195 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1196 		if (sq->sq_wchan == wchan)
1197 			goto found;
1198 
1199 	/*
1200 	 * Second, see if there is an active sleep queue at the address
1201 	 * indicated.
1202 	 */
1203 	for (i = 0; i < SC_TABLESIZE; i++)
1204 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1205 			if (sq == (struct sleepqueue *)addr)
1206 				goto found;
1207 		}
1208 
1209 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1210 	return;
1211 found:
1212 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1213 	db_printf("Queue type: %d\n", sq->sq_type);
1214 #ifdef INVARIANTS
1215 	if (sq->sq_lock) {
1216 		lock = sq->sq_lock;
1217 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1218 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1219 	}
1220 #endif
1221 	db_printf("Blocked threads:\n");
1222 	for (i = 0; i < NR_SLEEPQS; i++) {
1223 		db_printf("\nQueue[%d]:\n", i);
1224 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1225 			db_printf("\tempty\n");
1226 		else
1227 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1228 				      td_slpq) {
1229 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1230 					  td->td_tid, td->td_proc->p_pid,
1231 					  td->td_name);
1232 			}
1233 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1234 	}
1235 }
1236 
1237 /* Alias 'show sleepqueue' to 'show sleepq'. */
1238 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1239 #endif
1240