xref: /freebsd/sys/kern/subr_sleepqueue.c (revision c0b9f4fe659b6839541970eb5675e57f4d814969)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include "opt_sleepqueue_profiling.h"
63 
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/malloc.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sched.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/sysctl.h>
79 
80 /*
81  * Constants for the hash table of sleep queue chains.  These constants are
82  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
83  * Basically, we ignore the lower 8 bits of the address since most wait
84  * channel pointers are aligned and only look at the next 7 bits for the
85  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
86  */
87 #define	SC_TABLESIZE	128			/* Must be power of 2. */
88 #define	SC_MASK		(SC_TABLESIZE - 1)
89 #define	SC_SHIFT	8
90 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
91 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
92 
93 /*
94  * There two different lists of sleep queues.  Both lists are connected
95  * via the sq_hash entries.  The first list is the sleep queue chain list
96  * that a sleep queue is on when it is attached to a wait channel.  The
97  * second list is the free list hung off of a sleep queue that is attached
98  * to a wait channel.
99  *
100  * Each sleep queue also contains the wait channel it is attached to, the
101  * list of threads blocked on that wait channel, flags specific to the
102  * wait channel, and the lock used to synchronize with a wait channel.
103  * The flags are used to catch mismatches between the various consumers
104  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
105  * The lock pointer is only used when invariants are enabled for various
106  * debugging checks.
107  *
108  * Locking key:
109  *  c - sleep queue chain lock
110  */
111 struct sleepqueue {
112 	TAILQ_HEAD(, thread) sq_blocked;	/* (c) Blocked threads. */
113 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
114 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
115 	void	*sq_wchan;			/* (c) Wait channel. */
116 #ifdef INVARIANTS
117 	int	sq_type;			/* (c) Queue type. */
118 	struct mtx *sq_lock;			/* (c) Associated lock. */
119 #endif
120 };
121 
122 struct sleepqueue_chain {
123 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
124 	struct mtx sc_lock;			/* Spin lock for this chain. */
125 #ifdef SLEEPQUEUE_PROFILING
126 	u_int	sc_depth;			/* Length of sc_queues. */
127 	u_int	sc_max_depth;			/* Max length of sc_queues. */
128 #endif
129 };
130 
131 #ifdef SLEEPQUEUE_PROFILING
132 u_int sleepq_max_depth;
133 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
134 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
135     "sleepq chain stats");
136 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
137     0, "maxmimum depth achieved of a single chain");
138 #endif
139 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
140 
141 static MALLOC_DEFINE(M_SLEEPQUEUE, "sleepqueue", "sleep queues");
142 
143 /*
144  * Prototypes for non-exported routines.
145  */
146 static int	sleepq_check_timeout(void);
147 static void	sleepq_switch(void *wchan);
148 static void	sleepq_timeout(void *arg);
149 static void	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri);
150 
151 /*
152  * Early initialization of sleep queues that is called from the sleepinit()
153  * SYSINIT.
154  */
155 void
156 init_sleepqueues(void)
157 {
158 #ifdef SLEEPQUEUE_PROFILING
159 	struct sysctl_oid *chain_oid;
160 	char chain_name[10];
161 #endif
162 	int i;
163 
164 	for (i = 0; i < SC_TABLESIZE; i++) {
165 		LIST_INIT(&sleepq_chains[i].sc_queues);
166 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
167 		    MTX_SPIN);
168 #ifdef SLEEPQUEUE_PROFILING
169 		snprintf(chain_name, sizeof(chain_name), "%d", i);
170 		chain_oid = SYSCTL_ADD_NODE(NULL,
171 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
172 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
173 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
174 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
175 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
176 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
177 		    NULL);
178 #endif
179 	}
180 	thread0.td_sleepqueue = sleepq_alloc();
181 }
182 
183 /*
184  * Malloc and initialize a new sleep queue for a new thread.
185  */
186 struct sleepqueue *
187 sleepq_alloc(void)
188 {
189 	struct sleepqueue *sq;
190 
191 	sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO);
192 	TAILQ_INIT(&sq->sq_blocked);
193 	LIST_INIT(&sq->sq_free);
194 	return (sq);
195 }
196 
197 /*
198  * Free a sleep queue when a thread is destroyed.
199  */
200 void
201 sleepq_free(struct sleepqueue *sq)
202 {
203 
204 	MPASS(sq != NULL);
205 	MPASS(TAILQ_EMPTY(&sq->sq_blocked));
206 	free(sq, M_SLEEPQUEUE);
207 }
208 
209 /*
210  * Lock the sleep queue chain associated with the specified wait channel.
211  */
212 void
213 sleepq_lock(void *wchan)
214 {
215 	struct sleepqueue_chain *sc;
216 
217 	sc = SC_LOOKUP(wchan);
218 	mtx_lock_spin(&sc->sc_lock);
219 }
220 
221 /*
222  * Look up the sleep queue associated with a given wait channel in the hash
223  * table locking the associated sleep queue chain.  If no queue is found in
224  * the table, NULL is returned.
225  */
226 struct sleepqueue *
227 sleepq_lookup(void *wchan)
228 {
229 	struct sleepqueue_chain *sc;
230 	struct sleepqueue *sq;
231 
232 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
233 	sc = SC_LOOKUP(wchan);
234 	mtx_assert(&sc->sc_lock, MA_OWNED);
235 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
236 		if (sq->sq_wchan == wchan)
237 			return (sq);
238 	return (NULL);
239 }
240 
241 /*
242  * Unlock the sleep queue chain associated with a given wait channel.
243  */
244 void
245 sleepq_release(void *wchan)
246 {
247 	struct sleepqueue_chain *sc;
248 
249 	sc = SC_LOOKUP(wchan);
250 	mtx_unlock_spin(&sc->sc_lock);
251 }
252 
253 /*
254  * Places the current thread on the sleep queue for the specified wait
255  * channel.  If INVARIANTS is enabled, then it associates the passed in
256  * lock with the sleepq to make sure it is held when that sleep queue is
257  * woken up.
258  */
259 void
260 sleepq_add(void *wchan, struct mtx *lock, const char *wmesg, int flags)
261 {
262 	struct sleepqueue_chain *sc;
263 	struct sleepqueue *sq;
264 	struct thread *td;
265 
266 	td = curthread;
267 	sc = SC_LOOKUP(wchan);
268 	mtx_assert(&sc->sc_lock, MA_OWNED);
269 	MPASS(td->td_sleepqueue != NULL);
270 	MPASS(wchan != NULL);
271 
272 	/* If this thread is not allowed to sleep, die a horrible death. */
273 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
274 	    ("Trying sleep, but thread marked as sleeping prohibited"));
275 
276 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
277 	sq = sleepq_lookup(wchan);
278 
279 	/*
280 	 * If the wait channel does not already have a sleep queue, use
281 	 * this thread's sleep queue.  Otherwise, insert the current thread
282 	 * into the sleep queue already in use by this wait channel.
283 	 */
284 	if (sq == NULL) {
285 #ifdef SLEEPQUEUE_PROFILING
286 		sc->sc_depth++;
287 		if (sc->sc_depth > sc->sc_max_depth) {
288 			sc->sc_max_depth = sc->sc_depth;
289 			if (sc->sc_max_depth > sleepq_max_depth)
290 				sleepq_max_depth = sc->sc_max_depth;
291 		}
292 #endif
293 		sq = td->td_sleepqueue;
294 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
295 		KASSERT(TAILQ_EMPTY(&sq->sq_blocked),
296 		    ("thread's sleep queue has a non-empty queue"));
297 		KASSERT(LIST_EMPTY(&sq->sq_free),
298 		    ("thread's sleep queue has a non-empty free list"));
299 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
300 		sq->sq_wchan = wchan;
301 #ifdef INVARIANTS
302 		sq->sq_lock = lock;
303 		sq->sq_type = flags & SLEEPQ_TYPE;
304 #endif
305 	} else {
306 		MPASS(wchan == sq->sq_wchan);
307 		MPASS(lock == sq->sq_lock);
308 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
309 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
310 	}
311 	TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
312 	td->td_sleepqueue = NULL;
313 	mtx_lock_spin(&sched_lock);
314 	td->td_wchan = wchan;
315 	td->td_wmesg = wmesg;
316 	if (flags & SLEEPQ_INTERRUPTIBLE)
317 		td->td_flags |= TDF_SINTR;
318 	mtx_unlock_spin(&sched_lock);
319 }
320 
321 /*
322  * Sets a timeout that will remove the current thread from the specified
323  * sleep queue after timo ticks if the thread has not already been awakened.
324  */
325 void
326 sleepq_set_timeout(void *wchan, int timo)
327 {
328 	struct sleepqueue_chain *sc;
329 	struct thread *td;
330 
331 	td = curthread;
332 	sc = SC_LOOKUP(wchan);
333 	mtx_assert(&sc->sc_lock, MA_OWNED);
334 	MPASS(TD_ON_SLEEPQ(td));
335 	MPASS(td->td_sleepqueue == NULL);
336 	MPASS(wchan != NULL);
337 	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
338 }
339 
340 /*
341  * Marks the pending sleep of the current thread as interruptible and
342  * makes an initial check for pending signals before putting a thread
343  * to sleep.
344  */
345 int
346 sleepq_catch_signals(void *wchan)
347 {
348 	struct sleepqueue_chain *sc;
349 	struct sleepqueue *sq;
350 	struct thread *td;
351 	struct proc *p;
352 	int sig;
353 
354 	td = curthread;
355 	p = td->td_proc;
356 	sc = SC_LOOKUP(wchan);
357 	mtx_assert(&sc->sc_lock, MA_OWNED);
358 	MPASS(td->td_sleepqueue == NULL);
359 	MPASS(wchan != NULL);
360 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
361 	    (void *)td, (long)p->p_pid, p->p_comm);
362 
363 	/* Mark thread as being in an interruptible sleep. */
364 	MPASS(td->td_flags & TDF_SINTR);
365 	MPASS(TD_ON_SLEEPQ(td));
366 	sleepq_release(wchan);
367 
368 	/* See if there are any pending signals for this thread. */
369 	PROC_LOCK(p);
370 	mtx_lock(&p->p_sigacts->ps_mtx);
371 	sig = cursig(td);
372 	mtx_unlock(&p->p_sigacts->ps_mtx);
373 	if (sig == 0 && thread_suspend_check(1))
374 		sig = SIGSTOP;
375 	PROC_UNLOCK(p);
376 
377 	/*
378 	 * If there were pending signals and this thread is still on
379 	 * the sleep queue, remove it from the sleep queue.  If the
380 	 * thread was removed from the sleep queue while we were blocked
381 	 * above, then clear TDF_SINTR before returning.
382 	 */
383 	sleepq_lock(wchan);
384 	sq = sleepq_lookup(wchan);
385 	mtx_lock_spin(&sched_lock);
386 	if (TD_ON_SLEEPQ(td) && sig != 0)
387 		sleepq_resume_thread(sq, td, -1);
388 	else if (!TD_ON_SLEEPQ(td) && sig == 0)
389 		td->td_flags &= ~TDF_SINTR;
390 	mtx_unlock_spin(&sched_lock);
391 	return (sig);
392 }
393 
394 /*
395  * Switches to another thread if we are still asleep on a sleep queue and
396  * drop the lock on the sleep queue chain.  Returns with sched_lock held.
397  */
398 static void
399 sleepq_switch(void *wchan)
400 {
401 	struct sleepqueue_chain *sc;
402 	struct thread *td;
403 
404 	td = curthread;
405 	sc = SC_LOOKUP(wchan);
406 	mtx_assert(&sc->sc_lock, MA_OWNED);
407 
408 	/*
409 	 * If we have a sleep queue, then we've already been woken up, so
410 	 * just return.
411 	 */
412 	if (td->td_sleepqueue != NULL) {
413 		MPASS(!TD_ON_SLEEPQ(td));
414 		mtx_unlock_spin(&sc->sc_lock);
415 		mtx_lock_spin(&sched_lock);
416 		return;
417 	}
418 
419 	/*
420 	 * Otherwise, actually go to sleep.
421 	 */
422 	mtx_lock_spin(&sched_lock);
423 	mtx_unlock_spin(&sc->sc_lock);
424 
425 	sched_sleep(td);
426 	TD_SET_SLEEPING(td);
427 	mi_switch(SW_VOL, NULL);
428 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
429 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
430 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
431 }
432 
433 /*
434  * Check to see if we timed out.
435  */
436 static int
437 sleepq_check_timeout(void)
438 {
439 	struct thread *td;
440 
441 	mtx_assert(&sched_lock, MA_OWNED);
442 	td = curthread;
443 
444 	/*
445 	 * If TDF_TIMEOUT is set, we timed out.
446 	 */
447 	if (td->td_flags & TDF_TIMEOUT) {
448 		td->td_flags &= ~TDF_TIMEOUT;
449 		return (EWOULDBLOCK);
450 	}
451 
452 	/*
453 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
454 	 * already been woken up.
455 	 */
456 	if (td->td_flags & TDF_TIMOFAIL)
457 		td->td_flags &= ~TDF_TIMOFAIL;
458 
459 	/*
460 	 * If callout_stop() fails, then the timeout is running on
461 	 * another CPU, so synchronize with it to avoid having it
462 	 * accidentally wake up a subsequent sleep.
463 	 */
464 	else if (callout_stop(&td->td_slpcallout) == 0) {
465 		td->td_flags |= TDF_TIMEOUT;
466 		TD_SET_SLEEPING(td);
467 		mi_switch(SW_INVOL, NULL);
468 	}
469 	return (0);
470 }
471 
472 /*
473  * Check to see if we were awoken by a signal.
474  */
475 static int
476 sleepq_check_signals(void)
477 {
478 	struct thread *td;
479 
480 	mtx_assert(&sched_lock, MA_OWNED);
481 	td = curthread;
482 
483 	/*
484 	 * If TDF_SINTR is clear, then we were awakened while executing
485 	 * sleepq_catch_signals().
486 	 */
487 	if (!(td->td_flags & TDF_SINTR))
488 		return (0);
489 
490 	/* We are no longer in an interruptible sleep. */
491 	td->td_flags &= ~TDF_SINTR;
492 
493 	if (td->td_flags & TDF_INTERRUPT)
494 		return (td->td_intrval);
495 	return (0);
496 }
497 
498 /*
499  * If we were in an interruptible sleep and we weren't interrupted and
500  * didn't timeout, check to see if there are any pending signals and
501  * which return value we should use if so.  The return value from an
502  * earlier call to sleepq_catch_signals() should be passed in as the
503  * argument.
504  */
505 int
506 sleepq_calc_signal_retval(int sig)
507 {
508 	struct thread *td;
509 	struct proc *p;
510 	int rval;
511 
512 	td = curthread;
513 	p = td->td_proc;
514 	PROC_LOCK(p);
515 	mtx_lock(&p->p_sigacts->ps_mtx);
516 	/* XXX: Should we always be calling cursig()? */
517 	if (sig == 0)
518 		sig = cursig(td);
519 	if (sig != 0) {
520 		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
521 			rval = EINTR;
522 		else
523 			rval = ERESTART;
524 	} else
525 		rval = 0;
526 	mtx_unlock(&p->p_sigacts->ps_mtx);
527 	PROC_UNLOCK(p);
528 	return (rval);
529 }
530 
531 /*
532  * Block the current thread until it is awakened from its sleep queue.
533  */
534 void
535 sleepq_wait(void *wchan)
536 {
537 
538 	MPASS(!(curthread->td_flags & TDF_SINTR));
539 	sleepq_switch(wchan);
540 	mtx_unlock_spin(&sched_lock);
541 }
542 
543 /*
544  * Block the current thread until it is awakened from its sleep queue
545  * or it is interrupted by a signal.
546  */
547 int
548 sleepq_wait_sig(void *wchan)
549 {
550 	int rval;
551 
552 	sleepq_switch(wchan);
553 	rval = sleepq_check_signals();
554 	mtx_unlock_spin(&sched_lock);
555 	return (rval);
556 }
557 
558 /*
559  * Block the current thread until it is awakened from its sleep queue
560  * or it times out while waiting.
561  */
562 int
563 sleepq_timedwait(void *wchan)
564 {
565 	int rval;
566 
567 	MPASS(!(curthread->td_flags & TDF_SINTR));
568 	sleepq_switch(wchan);
569 	rval = sleepq_check_timeout();
570 	mtx_unlock_spin(&sched_lock);
571 	return (rval);
572 }
573 
574 /*
575  * Block the current thread until it is awakened from its sleep queue,
576  * it is interrupted by a signal, or it times out waiting to be awakened.
577  */
578 int
579 sleepq_timedwait_sig(void *wchan, int signal_caught)
580 {
581 	int rvalt, rvals;
582 
583 	sleepq_switch(wchan);
584 	rvalt = sleepq_check_timeout();
585 	rvals = sleepq_check_signals();
586 	mtx_unlock_spin(&sched_lock);
587 	if (signal_caught || rvalt == 0)
588 		return (rvals);
589 	else
590 		return (rvalt);
591 }
592 
593 /*
594  * Removes a thread from a sleep queue and makes it
595  * runnable.
596  */
597 static void
598 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
599 {
600 	struct sleepqueue_chain *sc;
601 
602 	MPASS(td != NULL);
603 	MPASS(sq->sq_wchan != NULL);
604 	MPASS(td->td_wchan == sq->sq_wchan);
605 	sc = SC_LOOKUP(sq->sq_wchan);
606 	mtx_assert(&sc->sc_lock, MA_OWNED);
607 	mtx_assert(&sched_lock, MA_OWNED);
608 
609 	/* Remove the thread from the queue. */
610 	TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq);
611 
612 	/*
613 	 * Get a sleep queue for this thread.  If this is the last waiter,
614 	 * use the queue itself and take it out of the chain, otherwise,
615 	 * remove a queue from the free list.
616 	 */
617 	if (LIST_EMPTY(&sq->sq_free)) {
618 		td->td_sleepqueue = sq;
619 #ifdef INVARIANTS
620 		sq->sq_wchan = NULL;
621 #endif
622 #ifdef SLEEPQUEUE_PROFILING
623 		sc->sc_depth--;
624 #endif
625 	} else
626 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
627 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
628 
629 	td->td_wmesg = NULL;
630 	td->td_wchan = NULL;
631 
632 	/*
633 	 * Note that thread td might not be sleeping if it is running
634 	 * sleepq_catch_signals() on another CPU or is blocked on
635 	 * its proc lock to check signals.  It doesn't hurt to clear
636 	 * the sleeping flag if it isn't set though, so we just always
637 	 * do it.  However, we can't assert that it is set.
638 	 */
639 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
640 	    (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm);
641 	TD_CLR_SLEEPING(td);
642 
643 	/* Adjust priority if requested. */
644 	MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
645 	if (pri != -1 && td->td_priority > pri)
646 		sched_prio(td, pri);
647 	setrunnable(td);
648 }
649 
650 /*
651  * Find the highest priority thread sleeping on a wait channel and resume it.
652  */
653 void
654 sleepq_signal(void *wchan, int flags, int pri)
655 {
656 	struct sleepqueue *sq;
657 	struct thread *td, *besttd;
658 
659 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
660 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
661 	sq = sleepq_lookup(wchan);
662 	if (sq == NULL) {
663 		sleepq_release(wchan);
664 		return;
665 	}
666 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
667 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
668 
669 	/*
670 	 * Find the highest priority thread on the queue.  If there is a
671 	 * tie, use the thread that first appears in the queue as it has
672 	 * been sleeping the longest since threads are always added to
673 	 * the tail of sleep queues.
674 	 */
675 	besttd = NULL;
676 	TAILQ_FOREACH(td, &sq->sq_blocked, td_slpq) {
677 		if (besttd == NULL || td->td_priority < besttd->td_priority)
678 			besttd = td;
679 	}
680 	MPASS(besttd != NULL);
681 	mtx_lock_spin(&sched_lock);
682 	sleepq_resume_thread(sq, besttd, pri);
683 	mtx_unlock_spin(&sched_lock);
684 	sleepq_release(wchan);
685 }
686 
687 /*
688  * Resume all threads sleeping on a specified wait channel.
689  */
690 void
691 sleepq_broadcast(void *wchan, int flags, int pri)
692 {
693 	struct sleepqueue *sq;
694 
695 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
696 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
697 	sq = sleepq_lookup(wchan);
698 	if (sq == NULL) {
699 		sleepq_release(wchan);
700 		return;
701 	}
702 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
703 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
704 
705 	/* Resume all blocked threads on the sleep queue. */
706 	mtx_lock_spin(&sched_lock);
707 	while (!TAILQ_EMPTY(&sq->sq_blocked))
708 		sleepq_resume_thread(sq, TAILQ_FIRST(&sq->sq_blocked), pri);
709 	mtx_unlock_spin(&sched_lock);
710 	sleepq_release(wchan);
711 }
712 
713 /*
714  * Time sleeping threads out.  When the timeout expires, the thread is
715  * removed from the sleep queue and made runnable if it is still asleep.
716  */
717 static void
718 sleepq_timeout(void *arg)
719 {
720 	struct sleepqueue *sq;
721 	struct thread *td;
722 	void *wchan;
723 
724 	td = arg;
725 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
726 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
727 
728 	/*
729 	 * First, see if the thread is asleep and get the wait channel if
730 	 * it is.
731 	 */
732 	mtx_lock_spin(&sched_lock);
733 	if (TD_ON_SLEEPQ(td)) {
734 		wchan = td->td_wchan;
735 		mtx_unlock_spin(&sched_lock);
736 		sleepq_lock(wchan);
737 		sq = sleepq_lookup(wchan);
738 		mtx_lock_spin(&sched_lock);
739 	} else {
740 		wchan = NULL;
741 		sq = NULL;
742 	}
743 
744 	/*
745 	 * At this point, if the thread is still on the sleep queue,
746 	 * we have that sleep queue locked as it cannot migrate sleep
747 	 * queues while we dropped sched_lock.  If it had resumed and
748 	 * was on another CPU while the lock was dropped, it would have
749 	 * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
750 	 * call to callout_stop() to stop this routine would have failed
751 	 * meaning that it would have already set TDF_TIMEOUT to
752 	 * synchronize with this function.
753 	 */
754 	if (TD_ON_SLEEPQ(td)) {
755 		MPASS(td->td_wchan == wchan);
756 		MPASS(sq != NULL);
757 		td->td_flags |= TDF_TIMEOUT;
758 		sleepq_resume_thread(sq, td, -1);
759 		mtx_unlock_spin(&sched_lock);
760 		sleepq_release(wchan);
761 		return;
762 	} else if (wchan != NULL)
763 		sleepq_release(wchan);
764 
765 	/*
766 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
767 	 * then the other thread has already yielded to us, so clear
768 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
769 	 * we know that the other thread is not on a sleep queue, but it
770 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
771 	 * to let it know that the timeout has already run and doesn't
772 	 * need to be canceled.
773 	 */
774 	if (td->td_flags & TDF_TIMEOUT) {
775 		MPASS(TD_IS_SLEEPING(td));
776 		td->td_flags &= ~TDF_TIMEOUT;
777 		TD_CLR_SLEEPING(td);
778 		setrunnable(td);
779 	} else
780 		td->td_flags |= TDF_TIMOFAIL;
781 	mtx_unlock_spin(&sched_lock);
782 }
783 
784 /*
785  * Resumes a specific thread from the sleep queue associated with a specific
786  * wait channel if it is on that queue.
787  */
788 void
789 sleepq_remove(struct thread *td, void *wchan)
790 {
791 	struct sleepqueue *sq;
792 
793 	/*
794 	 * Look up the sleep queue for this wait channel, then re-check
795 	 * that the thread is asleep on that channel, if it is not, then
796 	 * bail.
797 	 */
798 	MPASS(wchan != NULL);
799 	sleepq_lock(wchan);
800 	sq = sleepq_lookup(wchan);
801 	mtx_lock_spin(&sched_lock);
802 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
803 		mtx_unlock_spin(&sched_lock);
804 		sleepq_release(wchan);
805 		return;
806 	}
807 	MPASS(sq != NULL);
808 
809 	/* Thread is asleep on sleep queue sq, so wake it up. */
810 	sleepq_resume_thread(sq, td, -1);
811 	sleepq_release(wchan);
812 	mtx_unlock_spin(&sched_lock);
813 }
814 
815 /*
816  * Abort a thread as if an interrupt had occurred.  Only abort
817  * interruptible waits (unfortunately it isn't safe to abort others).
818  *
819  * XXX: What in the world does the comment below mean?
820  * Also, whatever the signal code does...
821  */
822 void
823 sleepq_abort(struct thread *td)
824 {
825 	void *wchan;
826 
827 	mtx_assert(&sched_lock, MA_OWNED);
828 	MPASS(TD_ON_SLEEPQ(td));
829 	MPASS(td->td_flags & TDF_SINTR);
830 
831 	/*
832 	 * If the TDF_TIMEOUT flag is set, just leave. A
833 	 * timeout is scheduled anyhow.
834 	 */
835 	if (td->td_flags & TDF_TIMEOUT)
836 		return;
837 
838 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
839 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
840 	wchan = td->td_wchan;
841 	mtx_unlock_spin(&sched_lock);
842 	sleepq_remove(td, wchan);
843 	mtx_lock_spin(&sched_lock);
844 }
845