xref: /freebsd/sys/kern/subr_sleepqueue.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * Implementation of sleep queues used to hold queue of threads blocked on
30  * a wait channel.  Sleep queues are different from turnstiles in that wait
31  * channels are not owned by anyone, so there is no priority propagation.
32  * Sleep queues can also provide a timeout and can also be interrupted by
33  * signals.  That said, there are several similarities between the turnstile
34  * and sleep queue implementations.  (Note: turnstiles were implemented
35  * first.)  For example, both use a hash table of the same size where each
36  * bucket is referred to as a "chain" that contains both a spin lock and
37  * a linked list of queues.  An individual queue is located by using a hash
38  * to pick a chain, locking the chain, and then walking the chain searching
39  * for the queue.  This means that a wait channel object does not need to
40  * embed its queue head just as locks do not embed their turnstile queue
41  * head.  Threads also carry around a sleep queue that they lend to the
42  * wait channel when blocking.  Just as in turnstiles, the queue includes
43  * a free list of the sleep queues of other threads blocked on the same
44  * wait channel in the case of multiple waiters.
45  *
46  * Some additional functionality provided by sleep queues include the
47  * ability to set a timeout.  The timeout is managed using a per-thread
48  * callout that resumes a thread if it is asleep.  A thread may also
49  * catch signals while it is asleep (aka an interruptible sleep).  The
50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51  * sleep queues also provide some extra assertions.  One is not allowed to
52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53  * must consistently use the same lock to synchronize with a wait channel,
54  * though this check is currently only a warning for sleep/wakeup due to
55  * pre-existing abuse of that API.  The same lock must also be held when
56  * awakening threads, though that is currently only enforced for condition
57  * variables.
58  */
59 
60 #include <sys/cdefs.h>
61 #include "opt_sleepqueue_profiling.h"
62 #include "opt_ddb.h"
63 #include "opt_sched.h"
64 #include "opt_stack.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/lock.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/sbuf.h>
74 #include <sys/sched.h>
75 #include <sys/sdt.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/stack.h>
79 #include <sys/sysctl.h>
80 #include <sys/time.h>
81 #ifdef EPOCH_TRACE
82 #include <sys/epoch.h>
83 #endif
84 
85 #include <machine/atomic.h>
86 
87 #include <vm/uma.h>
88 
89 #ifdef DDB
90 #include <ddb/ddb.h>
91 #endif
92 
93 /*
94  * Constants for the hash table of sleep queue chains.
95  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96  */
97 #ifndef SC_TABLESIZE
98 #define	SC_TABLESIZE	256
99 #endif
100 CTASSERT(powerof2(SC_TABLESIZE));
101 #define	SC_MASK		(SC_TABLESIZE - 1)
102 #define	SC_SHIFT	8
103 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
104 			    SC_MASK)
105 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
106 #define NR_SLEEPQS      2
107 /*
108  * There are two different lists of sleep queues.  Both lists are connected
109  * via the sq_hash entries.  The first list is the sleep queue chain list
110  * that a sleep queue is on when it is attached to a wait channel.  The
111  * second list is the free list hung off of a sleep queue that is attached
112  * to a wait channel.
113  *
114  * Each sleep queue also contains the wait channel it is attached to, the
115  * list of threads blocked on that wait channel, flags specific to the
116  * wait channel, and the lock used to synchronize with a wait channel.
117  * The flags are used to catch mismatches between the various consumers
118  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
119  * The lock pointer is only used when invariants are enabled for various
120  * debugging checks.
121  *
122  * Locking key:
123  *  c - sleep queue chain lock
124  */
125 struct sleepqueue {
126 	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
127 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
128 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
129 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
130 	const void	*sq_wchan;		/* (c) Wait channel. */
131 	int	sq_type;			/* (c) Queue type. */
132 #ifdef INVARIANTS
133 	struct lock_object *sq_lock;		/* (c) Associated lock. */
134 #endif
135 };
136 
137 struct sleepqueue_chain {
138 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
139 	struct mtx sc_lock;			/* Spin lock for this chain. */
140 #ifdef SLEEPQUEUE_PROFILING
141 	u_int	sc_depth;			/* Length of sc_queues. */
142 	u_int	sc_max_depth;			/* Max length of sc_queues. */
143 #endif
144 } __aligned(CACHE_LINE_SIZE);
145 
146 #ifdef SLEEPQUEUE_PROFILING
147 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
148     "sleepq profiling");
149 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains,
150     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
151     "sleepq chain stats");
152 static u_int sleepq_max_depth;
153 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
154     0, "maxmimum depth achieved of a single chain");
155 
156 static void	sleepq_profile(const char *wmesg);
157 static int	prof_enabled;
158 #endif
159 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
160 static uma_zone_t sleepq_zone;
161 
162 /*
163  * Prototypes for non-exported routines.
164  */
165 static int	sleepq_catch_signals(const void *wchan, int pri);
166 static inline int sleepq_check_signals(void);
167 static inline int sleepq_check_timeout(void);
168 #ifdef INVARIANTS
169 static void	sleepq_dtor(void *mem, int size, void *arg);
170 #endif
171 static int	sleepq_init(void *mem, int size, int flags);
172 static void	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
173 		    int pri, int srqflags);
174 static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
175 static void	sleepq_switch(const void *wchan, int pri);
176 static void	sleepq_timeout(void *arg);
177 
178 SDT_PROBE_DECLARE(sched, , , sleep);
179 SDT_PROBE_DECLARE(sched, , , wakeup);
180 
181 /*
182  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
183  * Note that it must happen after sleepinit() has been fully executed, so
184  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
185  */
186 #ifdef SLEEPQUEUE_PROFILING
187 static void
188 init_sleepqueue_profiling(void)
189 {
190 	char chain_name[10];
191 	struct sysctl_oid *chain_oid;
192 	u_int i;
193 
194 	for (i = 0; i < SC_TABLESIZE; i++) {
195 		snprintf(chain_name, sizeof(chain_name), "%u", i);
196 		chain_oid = SYSCTL_ADD_NODE(NULL,
197 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
198 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
199 		    "sleepq chain stats");
200 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
201 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
202 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
203 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
204 		    NULL);
205 	}
206 }
207 
208 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
209     init_sleepqueue_profiling, NULL);
210 #endif
211 
212 /*
213  * Early initialization of sleep queues that is called from the sleepinit()
214  * SYSINIT.
215  */
216 void
217 init_sleepqueues(void)
218 {
219 	int i;
220 
221 	for (i = 0; i < SC_TABLESIZE; i++) {
222 		LIST_INIT(&sleepq_chains[i].sc_queues);
223 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
224 		    MTX_SPIN);
225 	}
226 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
227 #ifdef INVARIANTS
228 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
229 #else
230 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
231 #endif
232 
233 	thread0.td_sleepqueue = sleepq_alloc();
234 }
235 
236 /*
237  * Get a sleep queue for a new thread.
238  */
239 struct sleepqueue *
240 sleepq_alloc(void)
241 {
242 
243 	return (uma_zalloc(sleepq_zone, M_WAITOK));
244 }
245 
246 /*
247  * Free a sleep queue when a thread is destroyed.
248  */
249 void
250 sleepq_free(struct sleepqueue *sq)
251 {
252 
253 	uma_zfree(sleepq_zone, sq);
254 }
255 
256 /*
257  * Lock the sleep queue chain associated with the specified wait channel.
258  */
259 void
260 sleepq_lock(const void *wchan)
261 {
262 	struct sleepqueue_chain *sc;
263 
264 	sc = SC_LOOKUP(wchan);
265 	mtx_lock_spin(&sc->sc_lock);
266 }
267 
268 /*
269  * Look up the sleep queue associated with a given wait channel in the hash
270  * table locking the associated sleep queue chain.  If no queue is found in
271  * the table, NULL is returned.
272  */
273 struct sleepqueue *
274 sleepq_lookup(const void *wchan)
275 {
276 	struct sleepqueue_chain *sc;
277 	struct sleepqueue *sq;
278 
279 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
280 	sc = SC_LOOKUP(wchan);
281 	mtx_assert(&sc->sc_lock, MA_OWNED);
282 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
283 		if (sq->sq_wchan == wchan)
284 			return (sq);
285 	return (NULL);
286 }
287 
288 /*
289  * Unlock the sleep queue chain associated with a given wait channel.
290  */
291 void
292 sleepq_release(const void *wchan)
293 {
294 	struct sleepqueue_chain *sc;
295 
296 	sc = SC_LOOKUP(wchan);
297 	mtx_unlock_spin(&sc->sc_lock);
298 }
299 
300 /*
301  * Places the current thread on the sleep queue for the specified wait
302  * channel.  If INVARIANTS is enabled, then it associates the passed in
303  * lock with the sleepq to make sure it is held when that sleep queue is
304  * woken up.
305  */
306 void
307 sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg,
308     int flags, int queue)
309 {
310 	struct sleepqueue_chain *sc;
311 	struct sleepqueue *sq;
312 	struct thread *td;
313 
314 	td = curthread;
315 	sc = SC_LOOKUP(wchan);
316 	mtx_assert(&sc->sc_lock, MA_OWNED);
317 	MPASS(td->td_sleepqueue != NULL);
318 	MPASS(wchan != NULL);
319 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
320 
321 	/* If this thread is not allowed to sleep, die a horrible death. */
322 	if (__predict_false(!THREAD_CAN_SLEEP())) {
323 #ifdef EPOCH_TRACE
324 		epoch_trace_list(curthread);
325 #endif
326 		KASSERT(0,
327 		    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
328 		    __func__, td, wchan));
329 	}
330 
331 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
332 	sq = sleepq_lookup(wchan);
333 
334 	/*
335 	 * If the wait channel does not already have a sleep queue, use
336 	 * this thread's sleep queue.  Otherwise, insert the current thread
337 	 * into the sleep queue already in use by this wait channel.
338 	 */
339 	if (sq == NULL) {
340 #ifdef INVARIANTS
341 		int i;
342 
343 		sq = td->td_sleepqueue;
344 		for (i = 0; i < NR_SLEEPQS; i++) {
345 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
346 			    ("thread's sleep queue %d is not empty", i));
347 			KASSERT(sq->sq_blockedcnt[i] == 0,
348 			    ("thread's sleep queue %d count mismatches", i));
349 		}
350 		KASSERT(LIST_EMPTY(&sq->sq_free),
351 		    ("thread's sleep queue has a non-empty free list"));
352 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
353 		sq->sq_lock = lock;
354 #endif
355 #ifdef SLEEPQUEUE_PROFILING
356 		sc->sc_depth++;
357 		if (sc->sc_depth > sc->sc_max_depth) {
358 			sc->sc_max_depth = sc->sc_depth;
359 			if (sc->sc_max_depth > sleepq_max_depth)
360 				sleepq_max_depth = sc->sc_max_depth;
361 		}
362 #endif
363 		sq = td->td_sleepqueue;
364 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
365 		sq->sq_wchan = wchan;
366 		sq->sq_type = flags & SLEEPQ_TYPE;
367 	} else {
368 		MPASS(wchan == sq->sq_wchan);
369 		MPASS(lock == sq->sq_lock);
370 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
371 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
372 	}
373 	thread_lock(td);
374 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
375 	sq->sq_blockedcnt[queue]++;
376 	td->td_sleepqueue = NULL;
377 	td->td_sqqueue = queue;
378 	td->td_wchan = wchan;
379 	td->td_wmesg = wmesg;
380 	if (flags & SLEEPQ_INTERRUPTIBLE) {
381 		td->td_intrval = 0;
382 		td->td_flags |= TDF_SINTR;
383 	}
384 	td->td_flags &= ~TDF_TIMEOUT;
385 	thread_unlock(td);
386 }
387 
388 /*
389  * Sets a timeout that will remove the current thread from the
390  * specified sleep queue at the specified time if the thread has not
391  * already been awakened.  Flags are from C_* (callout) namespace.
392  */
393 void
394 sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr,
395     int flags)
396 {
397 	struct sleepqueue_chain *sc __unused;
398 	struct thread *td;
399 	sbintime_t pr1;
400 
401 	td = curthread;
402 	sc = SC_LOOKUP(wchan);
403 	mtx_assert(&sc->sc_lock, MA_OWNED);
404 	MPASS(TD_ON_SLEEPQ(td));
405 	MPASS(td->td_sleepqueue == NULL);
406 	MPASS(wchan != NULL);
407 	if (cold && td == &thread0)
408 		panic("timed sleep before timers are working");
409 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
410 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
411 	thread_lock(td);
412 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
413 	thread_unlock(td);
414 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
415 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
416 	    C_DIRECT_EXEC);
417 }
418 
419 /*
420  * Return the number of actual sleepers for the specified queue.
421  */
422 u_int
423 sleepq_sleepcnt(const void *wchan, int queue)
424 {
425 	struct sleepqueue *sq;
426 
427 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
428 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
429 	sq = sleepq_lookup(wchan);
430 	if (sq == NULL)
431 		return (0);
432 	return (sq->sq_blockedcnt[queue]);
433 }
434 
435 static int
436 sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc)
437 {
438 	struct proc *p;
439 	int ret;
440 
441 	mtx_assert(&sc->sc_lock, MA_OWNED);
442 
443 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
444 		td->td_pflags &= ~TDP_WAKEUP;
445 		thread_lock(td);
446 		return (EINTR);
447 	}
448 
449 	/*
450 	 * See if there are any pending signals or suspension requests for this
451 	 * thread.  If not, we can switch immediately.
452 	 */
453 	thread_lock(td);
454 	if (!td_ast_pending(td, TDA_SIG) && !td_ast_pending(td, TDA_SUSPEND))
455 		return (0);
456 
457 	thread_unlock(td);
458 	mtx_unlock_spin(&sc->sc_lock);
459 
460 	p = td->td_proc;
461 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
462 	    (void *)td, (long)p->p_pid, td->td_name);
463 	PROC_LOCK(p);
464 
465 	/*
466 	 * Check for suspension first. Checking for signals and then
467 	 * suspending could result in a missed signal, since a signal
468 	 * can be delivered while this thread is suspended.
469 	 */
470 	ret = sig_ast_checksusp(td);
471 	if (ret != 0) {
472 		PROC_UNLOCK(p);
473 		mtx_lock_spin(&sc->sc_lock);
474 		thread_lock(td);
475 		return (ret);
476 	}
477 
478 	ret = sig_ast_needsigchk(td);
479 
480 	/*
481 	 * Lock the per-process spinlock prior to dropping the
482 	 * PROC_LOCK to avoid a signal delivery race.
483 	 * PROC_LOCK, PROC_SLOCK, and thread_lock() are
484 	 * currently held in tdsendsignal() and thread_single().
485 	 */
486 	PROC_SLOCK(p);
487 	mtx_lock_spin(&sc->sc_lock);
488 	PROC_UNLOCK(p);
489 	thread_lock(td);
490 	PROC_SUNLOCK(p);
491 
492 	return (ret);
493 }
494 
495 /*
496  * Marks the pending sleep of the current thread as interruptible and
497  * makes an initial check for pending signals before putting a thread
498  * to sleep. Enters and exits with the thread lock held.  Thread lock
499  * may have transitioned from the sleepq lock to a run lock.
500  */
501 static int
502 sleepq_catch_signals(const void *wchan, int pri)
503 {
504 	struct thread *td;
505 	struct sleepqueue_chain *sc;
506 	struct sleepqueue *sq;
507 	int ret;
508 
509 	sc = SC_LOOKUP(wchan);
510 	mtx_assert(&sc->sc_lock, MA_OWNED);
511 	MPASS(wchan != NULL);
512 	td = curthread;
513 
514 	ret = sleepq_check_ast_sc_locked(td, sc);
515 	THREAD_LOCK_ASSERT(td, MA_OWNED);
516 	mtx_assert(&sc->sc_lock, MA_OWNED);
517 
518 	if (ret == 0) {
519 		/*
520 		 * No pending signals and no suspension requests found.
521 		 * Switch the thread off the cpu.
522 		 */
523 		sleepq_switch(wchan, pri);
524 	} else {
525 		/*
526 		 * There were pending signals and this thread is still
527 		 * on the sleep queue, remove it from the sleep queue.
528 		 */
529 		if (TD_ON_SLEEPQ(td)) {
530 			sq = sleepq_lookup(wchan);
531 			sleepq_remove_thread(sq, td);
532 		}
533 		MPASS(td->td_lock != &sc->sc_lock);
534 		mtx_unlock_spin(&sc->sc_lock);
535 		thread_unlock(td);
536 	}
537 	return (ret);
538 }
539 
540 /*
541  * Switches to another thread if we are still asleep on a sleep queue.
542  *
543  * The thread lock is required on entry and is no longer held on return.
544  */
545 static void
546 sleepq_switch(const void *wchan, int pri)
547 {
548 	struct sleepqueue_chain *sc;
549 	struct sleepqueue *sq;
550 	struct thread *td;
551 	bool rtc_changed;
552 
553 	td = curthread;
554 	sc = SC_LOOKUP(wchan);
555 	mtx_assert(&sc->sc_lock, MA_OWNED);
556 	THREAD_LOCK_ASSERT(td, MA_OWNED);
557 
558 	/*
559 	 * If we have a sleep queue, then we've already been woken up, so
560 	 * just return.
561 	 */
562 	if (td->td_sleepqueue != NULL) {
563 		mtx_unlock_spin(&sc->sc_lock);
564 		thread_unlock(td);
565 		return;
566 	}
567 
568 	/*
569 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
570 	 * already but we are still on the sleep queue, so dequeue the
571 	 * thread and return.
572 	 *
573 	 * Do the same if the real-time clock has been adjusted since this
574 	 * thread calculated its timeout based on that clock.  This handles
575 	 * the following race:
576 	 * - The Ts thread needs to sleep until an absolute real-clock time.
577 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
578 	 *   reads the RTC, and calculates a sleep duration based on that time.
579 	 *   See umtxq_sleep() for an example.
580 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
581 	 *   threads that are sleeping until an absolute real-clock time.
582 	 *   See tc_setclock() and the POSIX specification of clock_settime().
583 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
584 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
585 	 * (The declaration of td_rtcgen refers to this comment.)
586 	 */
587 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
588 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
589 		if (rtc_changed) {
590 			td->td_rtcgen = 0;
591 		}
592 		MPASS(TD_ON_SLEEPQ(td));
593 		sq = sleepq_lookup(wchan);
594 		sleepq_remove_thread(sq, td);
595 		mtx_unlock_spin(&sc->sc_lock);
596 		thread_unlock(td);
597 		return;
598 	}
599 #ifdef SLEEPQUEUE_PROFILING
600 	if (prof_enabled)
601 		sleepq_profile(td->td_wmesg);
602 #endif
603 	MPASS(td->td_sleepqueue == NULL);
604 	sched_sleep(td, pri);
605 	thread_lock_set(td, &sc->sc_lock);
606 	SDT_PROBE0(sched, , , sleep);
607 	TD_SET_SLEEPING(td);
608 	mi_switch(SW_VOL | SWT_SLEEPQ);
609 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
610 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
611 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
612 }
613 
614 /*
615  * Check to see if we timed out.
616  */
617 static inline int
618 sleepq_check_timeout(void)
619 {
620 	struct thread *td;
621 	int res;
622 
623 	res = 0;
624 	td = curthread;
625 	if (td->td_sleeptimo != 0) {
626 		if (td->td_sleeptimo <= sbinuptime())
627 			res = EWOULDBLOCK;
628 		td->td_sleeptimo = 0;
629 	}
630 	return (res);
631 }
632 
633 /*
634  * Check to see if we were awoken by a signal.
635  */
636 static inline int
637 sleepq_check_signals(void)
638 {
639 	struct thread *td;
640 
641 	td = curthread;
642 	KASSERT((td->td_flags & TDF_SINTR) == 0,
643 	    ("thread %p still in interruptible sleep?", td));
644 
645 	return (td->td_intrval);
646 }
647 
648 /*
649  * Block the current thread until it is awakened from its sleep queue.
650  */
651 void
652 sleepq_wait(const void *wchan, int pri)
653 {
654 	struct thread *td;
655 
656 	td = curthread;
657 	MPASS(!(td->td_flags & TDF_SINTR));
658 	thread_lock(td);
659 	sleepq_switch(wchan, pri);
660 }
661 
662 /*
663  * Block the current thread until it is awakened from its sleep queue
664  * or it is interrupted by a signal.
665  */
666 int
667 sleepq_wait_sig(const void *wchan, int pri)
668 {
669 	int rcatch;
670 
671 	rcatch = sleepq_catch_signals(wchan, pri);
672 	if (rcatch)
673 		return (rcatch);
674 	return (sleepq_check_signals());
675 }
676 
677 /*
678  * Block the current thread until it is awakened from its sleep queue
679  * or it times out while waiting.
680  */
681 int
682 sleepq_timedwait(const void *wchan, int pri)
683 {
684 	struct thread *td;
685 
686 	td = curthread;
687 	MPASS(!(td->td_flags & TDF_SINTR));
688 
689 	thread_lock(td);
690 	sleepq_switch(wchan, pri);
691 
692 	return (sleepq_check_timeout());
693 }
694 
695 /*
696  * Block the current thread until it is awakened from its sleep queue,
697  * it is interrupted by a signal, or it times out waiting to be awakened.
698  */
699 int
700 sleepq_timedwait_sig(const void *wchan, int pri)
701 {
702 	int rcatch, rvalt, rvals;
703 
704 	rcatch = sleepq_catch_signals(wchan, pri);
705 	/* We must always call check_timeout() to clear sleeptimo. */
706 	rvalt = sleepq_check_timeout();
707 	rvals = sleepq_check_signals();
708 	if (rcatch)
709 		return (rcatch);
710 	if (rvals)
711 		return (rvals);
712 	return (rvalt);
713 }
714 
715 /*
716  * Returns the type of sleepqueue given a waitchannel.
717  */
718 int
719 sleepq_type(const void *wchan)
720 {
721 	struct sleepqueue *sq;
722 	int type;
723 
724 	MPASS(wchan != NULL);
725 
726 	sq = sleepq_lookup(wchan);
727 	if (sq == NULL)
728 		return (-1);
729 	type = sq->sq_type;
730 
731 	return (type);
732 }
733 
734 /*
735  * Removes a thread from a sleep queue and makes it runnable.
736  *
737  * Requires the sc chain locked on entry.  If SRQ_HOLD is specified it will
738  * be locked on return.  Returns without the thread lock held.
739  */
740 static void
741 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri,
742     int srqflags)
743 {
744 	struct sleepqueue_chain *sc;
745 	bool drop;
746 
747 	MPASS(td != NULL);
748 	MPASS(sq->sq_wchan != NULL);
749 	MPASS(td->td_wchan == sq->sq_wchan);
750 
751 	sc = SC_LOOKUP(sq->sq_wchan);
752 	mtx_assert(&sc->sc_lock, MA_OWNED);
753 
754 	/*
755 	 * Avoid recursing on the chain lock.  If the locks don't match we
756 	 * need to acquire the thread lock which setrunnable will drop for
757 	 * us.  In this case we need to drop the chain lock afterwards.
758 	 *
759 	 * There is no race that will make td_lock equal to sc_lock because
760 	 * we hold sc_lock.
761 	 */
762 	drop = false;
763 	if (!TD_IS_SLEEPING(td)) {
764 		thread_lock(td);
765 		drop = true;
766 	} else
767 		thread_lock_block_wait(td);
768 
769 	/* Remove thread from the sleepq. */
770 	sleepq_remove_thread(sq, td);
771 
772 	/* If we're done with the sleepqueue release it. */
773 	if ((srqflags & SRQ_HOLD) == 0 && drop)
774 		mtx_unlock_spin(&sc->sc_lock);
775 
776 	/* Adjust priority if requested. */
777 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
778 	if (pri != 0 && td->td_priority > pri &&
779 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
780 		sched_prio(td, pri);
781 
782 	/*
783 	 * Note that thread td might not be sleeping if it is running
784 	 * sleepq_catch_signals() on another CPU or is blocked on its
785 	 * proc lock to check signals.  There's no need to mark the
786 	 * thread runnable in that case.
787 	 */
788 	if (TD_IS_SLEEPING(td)) {
789 		MPASS(!drop);
790 		TD_CLR_SLEEPING(td);
791 		setrunnable(td, srqflags);
792 	} else {
793 		MPASS(drop);
794 		thread_unlock(td);
795 	}
796 }
797 
798 static void
799 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
800 {
801 	struct sleepqueue_chain *sc __unused;
802 
803 	MPASS(td != NULL);
804 	MPASS(sq->sq_wchan != NULL);
805 	MPASS(td->td_wchan == sq->sq_wchan);
806 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
807 	THREAD_LOCK_ASSERT(td, MA_OWNED);
808 	sc = SC_LOOKUP(sq->sq_wchan);
809 	mtx_assert(&sc->sc_lock, MA_OWNED);
810 
811 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
812 
813 	/* Remove the thread from the queue. */
814 	sq->sq_blockedcnt[td->td_sqqueue]--;
815 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
816 
817 	/*
818 	 * Get a sleep queue for this thread.  If this is the last waiter,
819 	 * use the queue itself and take it out of the chain, otherwise,
820 	 * remove a queue from the free list.
821 	 */
822 	if (LIST_EMPTY(&sq->sq_free)) {
823 		td->td_sleepqueue = sq;
824 #ifdef INVARIANTS
825 		sq->sq_wchan = NULL;
826 #endif
827 #ifdef SLEEPQUEUE_PROFILING
828 		sc->sc_depth--;
829 #endif
830 	} else
831 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
832 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
833 
834 	if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0 &&
835 	    td->td_lock == &sc->sc_lock) {
836 		/*
837 		 * We ignore the situation where timeout subsystem was
838 		 * unable to stop our callout.  The struct thread is
839 		 * type-stable, the callout will use the correct
840 		 * memory when running.  The checks of the
841 		 * td_sleeptimo value in this function and in
842 		 * sleepq_timeout() ensure that the thread does not
843 		 * get spurious wakeups, even if the callout was reset
844 		 * or thread reused.
845 		 *
846 		 * We also cannot safely stop the callout if a scheduler
847 		 * lock is held since softclock_thread() forces a lock
848 		 * order of callout lock -> scheduler lock.  The thread
849 		 * lock will be a scheduler lock only if the thread is
850 		 * preparing to go to sleep, so this is hopefully a rare
851 		 * scenario.
852 		 */
853 		callout_stop(&td->td_slpcallout);
854 	}
855 
856 	td->td_wmesg = NULL;
857 	td->td_wchan = NULL;
858 	td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT);
859 
860 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
861 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
862 }
863 
864 void
865 sleepq_remove_nested(struct thread *td)
866 {
867 	struct sleepqueue_chain *sc;
868 	struct sleepqueue *sq;
869 	const void *wchan;
870 
871 	MPASS(TD_ON_SLEEPQ(td));
872 
873 	wchan = td->td_wchan;
874 	sc = SC_LOOKUP(wchan);
875 	mtx_lock_spin(&sc->sc_lock);
876 	sq = sleepq_lookup(wchan);
877 	MPASS(sq != NULL);
878 	thread_lock(td);
879 	sleepq_remove_thread(sq, td);
880 	mtx_unlock_spin(&sc->sc_lock);
881 	/* Returns with the thread lock owned. */
882 }
883 
884 #ifdef INVARIANTS
885 /*
886  * UMA zone item deallocator.
887  */
888 static void
889 sleepq_dtor(void *mem, int size, void *arg)
890 {
891 	struct sleepqueue *sq;
892 	int i;
893 
894 	sq = mem;
895 	for (i = 0; i < NR_SLEEPQS; i++) {
896 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
897 		MPASS(sq->sq_blockedcnt[i] == 0);
898 	}
899 }
900 #endif
901 
902 /*
903  * UMA zone item initializer.
904  */
905 static int
906 sleepq_init(void *mem, int size, int flags)
907 {
908 	struct sleepqueue *sq;
909 	int i;
910 
911 	bzero(mem, size);
912 	sq = mem;
913 	for (i = 0; i < NR_SLEEPQS; i++) {
914 		TAILQ_INIT(&sq->sq_blocked[i]);
915 		sq->sq_blockedcnt[i] = 0;
916 	}
917 	LIST_INIT(&sq->sq_free);
918 	return (0);
919 }
920 
921 /*
922  * Find thread sleeping on a wait channel and resume it.
923  */
924 void
925 sleepq_signal(const void *wchan, int flags, int pri, int queue)
926 {
927 	struct sleepqueue_chain *sc;
928 	struct sleepqueue *sq;
929 	struct threadqueue *head;
930 	struct thread *td, *besttd;
931 
932 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
933 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
934 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
935 	sq = sleepq_lookup(wchan);
936 	if (sq == NULL) {
937 		if (flags & SLEEPQ_DROP)
938 			sleepq_release(wchan);
939 		return;
940 	}
941 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
942 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
943 
944 	head = &sq->sq_blocked[queue];
945 	if (flags & SLEEPQ_UNFAIR) {
946 		/*
947 		 * Find the most recently sleeping thread, but try to
948 		 * skip threads still in process of context switch to
949 		 * avoid spinning on the thread lock.
950 		 */
951 		sc = SC_LOOKUP(wchan);
952 		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
953 		while (besttd->td_lock != &sc->sc_lock) {
954 			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
955 			if (td == NULL)
956 				break;
957 			besttd = td;
958 		}
959 	} else {
960 		/*
961 		 * Find the highest priority thread on the queue.  If there
962 		 * is a tie, use the thread that first appears in the queue
963 		 * as it has been sleeping the longest since threads are
964 		 * always added to the tail of sleep queues.
965 		 */
966 		besttd = td = TAILQ_FIRST(head);
967 		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
968 			if (td->td_priority < besttd->td_priority)
969 				besttd = td;
970 		}
971 	}
972 	MPASS(besttd != NULL);
973 	sleepq_resume_thread(sq, besttd, pri,
974 	    (flags & SLEEPQ_DROP) ? 0 : SRQ_HOLD);
975 }
976 
977 static bool
978 match_any(struct thread *td __unused)
979 {
980 
981 	return (true);
982 }
983 
984 /*
985  * Resume all threads sleeping on a specified wait channel.
986  */
987 void
988 sleepq_broadcast(const void *wchan, int flags, int pri, int queue)
989 {
990 	struct sleepqueue *sq;
991 
992 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
993 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
994 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
995 	sq = sleepq_lookup(wchan);
996 	if (sq != NULL) {
997 		KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
998 		    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
999 
1000 		sleepq_remove_matching(sq, queue, match_any, pri);
1001 	}
1002 }
1003 
1004 /*
1005  * Resume threads on the sleep queue that match the given predicate.
1006  */
1007 void
1008 sleepq_remove_matching(struct sleepqueue *sq, int queue,
1009     bool (*matches)(struct thread *), int pri)
1010 {
1011 	struct thread *td, *tdn;
1012 
1013 	/*
1014 	 * The last thread will be given ownership of sq and may
1015 	 * re-enqueue itself before sleepq_resume_thread() returns,
1016 	 * so we must cache the "next" queue item at the beginning
1017 	 * of the final iteration.
1018 	 */
1019 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
1020 		if (matches(td))
1021 			sleepq_resume_thread(sq, td, pri, SRQ_HOLD);
1022 	}
1023 }
1024 
1025 /*
1026  * Time sleeping threads out.  When the timeout expires, the thread is
1027  * removed from the sleep queue and made runnable if it is still asleep.
1028  */
1029 static void
1030 sleepq_timeout(void *arg)
1031 {
1032 	struct sleepqueue_chain *sc __unused;
1033 	struct sleepqueue *sq;
1034 	struct thread *td;
1035 	const void *wchan;
1036 
1037 	td = arg;
1038 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1039 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1040 
1041 	thread_lock(td);
1042 	if (td->td_sleeptimo == 0 ||
1043 	    td->td_sleeptimo > td->td_slpcallout.c_time) {
1044 		/*
1045 		 * The thread does not want a timeout (yet).
1046 		 */
1047 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1048 		/*
1049 		 * See if the thread is asleep and get the wait
1050 		 * channel if it is.
1051 		 */
1052 		wchan = td->td_wchan;
1053 		sc = SC_LOOKUP(wchan);
1054 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1055 		sq = sleepq_lookup(wchan);
1056 		MPASS(sq != NULL);
1057 		td->td_flags |= TDF_TIMEOUT;
1058 		sleepq_resume_thread(sq, td, 0, 0);
1059 		return;
1060 	} else if (TD_ON_SLEEPQ(td)) {
1061 		/*
1062 		 * If the thread is on the SLEEPQ but isn't sleeping
1063 		 * yet, it can either be on another CPU in between
1064 		 * sleepq_add() and one of the sleepq_*wait*()
1065 		 * routines or it can be in sleepq_catch_signals().
1066 		 */
1067 		td->td_flags |= TDF_TIMEOUT;
1068 	}
1069 	thread_unlock(td);
1070 }
1071 
1072 /*
1073  * Resumes a specific thread from the sleep queue associated with a specific
1074  * wait channel if it is on that queue.
1075  */
1076 void
1077 sleepq_remove(struct thread *td, const void *wchan)
1078 {
1079 	struct sleepqueue_chain *sc;
1080 	struct sleepqueue *sq;
1081 
1082 	/*
1083 	 * Look up the sleep queue for this wait channel, then re-check
1084 	 * that the thread is asleep on that channel, if it is not, then
1085 	 * bail.
1086 	 */
1087 	MPASS(wchan != NULL);
1088 	sc = SC_LOOKUP(wchan);
1089 	mtx_lock_spin(&sc->sc_lock);
1090 	/*
1091 	 * We can not lock the thread here as it may be sleeping on a
1092 	 * different sleepq.  However, holding the sleepq lock for this
1093 	 * wchan can guarantee that we do not miss a wakeup for this
1094 	 * channel.  The asserts below will catch any false positives.
1095 	 */
1096 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1097 		mtx_unlock_spin(&sc->sc_lock);
1098 		return;
1099 	}
1100 
1101 	/* Thread is asleep on sleep queue sq, so wake it up. */
1102 	sq = sleepq_lookup(wchan);
1103 	MPASS(sq != NULL);
1104 	MPASS(td->td_wchan == wchan);
1105 	sleepq_resume_thread(sq, td, 0, 0);
1106 }
1107 
1108 /*
1109  * Abort a thread as if an interrupt had occurred.  Only abort
1110  * interruptible waits (unfortunately it isn't safe to abort others).
1111  *
1112  * Requires thread lock on entry, releases on return.
1113  */
1114 void
1115 sleepq_abort(struct thread *td, int intrval)
1116 {
1117 	struct sleepqueue *sq;
1118 	const void *wchan;
1119 
1120 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1121 	MPASS(TD_ON_SLEEPQ(td));
1122 	MPASS(td->td_flags & TDF_SINTR);
1123 	MPASS((intrval == 0 && (td->td_flags & TDF_SIGWAIT) != 0) ||
1124 	    intrval == EINTR || intrval == ERESTART);
1125 
1126 	/*
1127 	 * If the TDF_TIMEOUT flag is set, just leave. A
1128 	 * timeout is scheduled anyhow.
1129 	 */
1130 	if (td->td_flags & TDF_TIMEOUT) {
1131 		thread_unlock(td);
1132 		return;
1133 	}
1134 
1135 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1136 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1137 	td->td_intrval = intrval;
1138 
1139 	/*
1140 	 * If the thread has not slept yet it will find the signal in
1141 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1142 	 * we have to do it here.
1143 	 */
1144 	if (!TD_IS_SLEEPING(td)) {
1145 		thread_unlock(td);
1146 		return;
1147 	}
1148 	wchan = td->td_wchan;
1149 	MPASS(wchan != NULL);
1150 	sq = sleepq_lookup(wchan);
1151 	MPASS(sq != NULL);
1152 
1153 	/* Thread is asleep on sleep queue sq, so wake it up. */
1154 	sleepq_resume_thread(sq, td, 0, 0);
1155 }
1156 
1157 void
1158 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1159 {
1160 	struct sleepqueue_chain *sc;
1161 	struct sleepqueue *sq, *sq1;
1162 	int i;
1163 
1164 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1165 		if (LIST_EMPTY(&sc->sc_queues)) {
1166 			continue;
1167 		}
1168 		mtx_lock_spin(&sc->sc_lock);
1169 		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1170 			for (i = 0; i < NR_SLEEPQS; ++i)
1171 				sleepq_remove_matching(sq, i, matches, 0);
1172 		}
1173 		mtx_unlock_spin(&sc->sc_lock);
1174 	}
1175 }
1176 
1177 /*
1178  * Prints the stacks of all threads presently sleeping on wchan/queue to
1179  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1180  * printed.  Typically, this will equal the number of threads sleeping on the
1181  * queue, but may be less if sb overflowed before all stacks were printed.
1182  */
1183 #ifdef STACK
1184 int
1185 sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue,
1186     int *count_stacks_printed)
1187 {
1188 	struct thread *td, *td_next;
1189 	struct sleepqueue *sq;
1190 	struct stack **st;
1191 	struct sbuf **td_infos;
1192 	int i, stack_idx, error, stacks_to_allocate;
1193 	bool finished;
1194 
1195 	error = 0;
1196 	finished = false;
1197 
1198 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1199 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1200 
1201 	stacks_to_allocate = 10;
1202 	for (i = 0; i < 3 && !finished ; i++) {
1203 		/* We cannot malloc while holding the queue's spinlock, so
1204 		 * we do our mallocs now, and hope it is enough.  If it
1205 		 * isn't, we will free these, drop the lock, malloc more,
1206 		 * and try again, up to a point.  After that point we will
1207 		 * give up and report ENOMEM. We also cannot write to sb
1208 		 * during this time since the client may have set the
1209 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1210 		 * malloc as we print to it.  So we defer actually printing
1211 		 * to sb until after we drop the spinlock.
1212 		 */
1213 
1214 		/* Where we will store the stacks. */
1215 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1216 		    M_TEMP, M_WAITOK);
1217 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1218 		    stack_idx++)
1219 			st[stack_idx] = stack_create(M_WAITOK);
1220 
1221 		/* Where we will store the td name, tid, etc. */
1222 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1223 		    M_TEMP, M_WAITOK);
1224 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1225 		    stack_idx++)
1226 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1227 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1228 			    SBUF_FIXEDLEN);
1229 
1230 		sleepq_lock(wchan);
1231 		sq = sleepq_lookup(wchan);
1232 		if (sq == NULL) {
1233 			/* This sleepq does not exist; exit and return ENOENT. */
1234 			error = ENOENT;
1235 			finished = true;
1236 			sleepq_release(wchan);
1237 			goto loop_end;
1238 		}
1239 
1240 		stack_idx = 0;
1241 		/* Save thread info */
1242 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1243 		    td_next) {
1244 			if (stack_idx >= stacks_to_allocate)
1245 				goto loop_end;
1246 
1247 			/* Note the td_lock is equal to the sleepq_lock here. */
1248 			(void)stack_save_td(st[stack_idx], td);
1249 
1250 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1251 			    td->td_tid, td->td_name, td);
1252 
1253 			++stack_idx;
1254 		}
1255 
1256 		finished = true;
1257 		sleepq_release(wchan);
1258 
1259 		/* Print the stacks */
1260 		for (i = 0; i < stack_idx; i++) {
1261 			sbuf_finish(td_infos[i]);
1262 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1263 			stack_sbuf_print(sb, st[i]);
1264 			sbuf_putc(sb, '\n');
1265 
1266 			error = sbuf_error(sb);
1267 			if (error == 0)
1268 				*count_stacks_printed = stack_idx;
1269 		}
1270 
1271 loop_end:
1272 		if (!finished)
1273 			sleepq_release(wchan);
1274 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1275 		    stack_idx++)
1276 			stack_destroy(st[stack_idx]);
1277 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1278 		    stack_idx++)
1279 			sbuf_delete(td_infos[stack_idx]);
1280 		free(st, M_TEMP);
1281 		free(td_infos, M_TEMP);
1282 		stacks_to_allocate *= 10;
1283 	}
1284 
1285 	if (!finished && error == 0)
1286 		error = ENOMEM;
1287 
1288 	return (error);
1289 }
1290 #endif
1291 
1292 #ifdef SLEEPQUEUE_PROFILING
1293 #define	SLEEPQ_PROF_LOCATIONS	1024
1294 #define	SLEEPQ_SBUFSIZE		512
1295 struct sleepq_prof {
1296 	LIST_ENTRY(sleepq_prof) sp_link;
1297 	const char	*sp_wmesg;
1298 	long		sp_count;
1299 };
1300 
1301 LIST_HEAD(sqphead, sleepq_prof);
1302 
1303 struct sqphead sleepq_prof_free;
1304 struct sqphead sleepq_hash[SC_TABLESIZE];
1305 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1306 static struct mtx sleepq_prof_lock;
1307 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1308 
1309 static void
1310 sleepq_profile(const char *wmesg)
1311 {
1312 	struct sleepq_prof *sp;
1313 
1314 	mtx_lock_spin(&sleepq_prof_lock);
1315 	if (prof_enabled == 0)
1316 		goto unlock;
1317 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1318 		if (sp->sp_wmesg == wmesg)
1319 			goto done;
1320 	sp = LIST_FIRST(&sleepq_prof_free);
1321 	if (sp == NULL)
1322 		goto unlock;
1323 	sp->sp_wmesg = wmesg;
1324 	LIST_REMOVE(sp, sp_link);
1325 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1326 done:
1327 	sp->sp_count++;
1328 unlock:
1329 	mtx_unlock_spin(&sleepq_prof_lock);
1330 	return;
1331 }
1332 
1333 static void
1334 sleepq_prof_reset(void)
1335 {
1336 	struct sleepq_prof *sp;
1337 	int enabled;
1338 	int i;
1339 
1340 	mtx_lock_spin(&sleepq_prof_lock);
1341 	enabled = prof_enabled;
1342 	prof_enabled = 0;
1343 	for (i = 0; i < SC_TABLESIZE; i++)
1344 		LIST_INIT(&sleepq_hash[i]);
1345 	LIST_INIT(&sleepq_prof_free);
1346 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1347 		sp = &sleepq_profent[i];
1348 		sp->sp_wmesg = NULL;
1349 		sp->sp_count = 0;
1350 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1351 	}
1352 	prof_enabled = enabled;
1353 	mtx_unlock_spin(&sleepq_prof_lock);
1354 }
1355 
1356 static int
1357 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1358 {
1359 	int error, v;
1360 
1361 	v = prof_enabled;
1362 	error = sysctl_handle_int(oidp, &v, v, req);
1363 	if (error)
1364 		return (error);
1365 	if (req->newptr == NULL)
1366 		return (error);
1367 	if (v == prof_enabled)
1368 		return (0);
1369 	if (v == 1)
1370 		sleepq_prof_reset();
1371 	mtx_lock_spin(&sleepq_prof_lock);
1372 	prof_enabled = !!v;
1373 	mtx_unlock_spin(&sleepq_prof_lock);
1374 
1375 	return (0);
1376 }
1377 
1378 static int
1379 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1380 {
1381 	int error, v;
1382 
1383 	v = 0;
1384 	error = sysctl_handle_int(oidp, &v, 0, req);
1385 	if (error)
1386 		return (error);
1387 	if (req->newptr == NULL)
1388 		return (error);
1389 	if (v == 0)
1390 		return (0);
1391 	sleepq_prof_reset();
1392 
1393 	return (0);
1394 }
1395 
1396 static int
1397 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1398 {
1399 	struct sleepq_prof *sp;
1400 	struct sbuf *sb;
1401 	int enabled;
1402 	int error;
1403 	int i;
1404 
1405 	error = sysctl_wire_old_buffer(req, 0);
1406 	if (error != 0)
1407 		return (error);
1408 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1409 	sbuf_cat(sb, "\nwmesg\tcount\n");
1410 	enabled = prof_enabled;
1411 	mtx_lock_spin(&sleepq_prof_lock);
1412 	prof_enabled = 0;
1413 	mtx_unlock_spin(&sleepq_prof_lock);
1414 	for (i = 0; i < SC_TABLESIZE; i++) {
1415 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1416 			sbuf_printf(sb, "%s\t%ld\n",
1417 			    sp->sp_wmesg, sp->sp_count);
1418 		}
1419 	}
1420 	mtx_lock_spin(&sleepq_prof_lock);
1421 	prof_enabled = enabled;
1422 	mtx_unlock_spin(&sleepq_prof_lock);
1423 
1424 	error = sbuf_finish(sb);
1425 	sbuf_delete(sb);
1426 	return (error);
1427 }
1428 
1429 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats,
1430     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
1431     dump_sleepq_prof_stats, "A",
1432     "Sleepqueue profiling statistics");
1433 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset,
1434     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1435     reset_sleepq_prof_stats, "I",
1436     "Reset sleepqueue profiling statistics");
1437 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable,
1438     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1439     enable_sleepq_prof, "I",
1440     "Enable sleepqueue profiling");
1441 #endif
1442 
1443 #ifdef DDB
1444 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1445 {
1446 	struct sleepqueue_chain *sc;
1447 	struct sleepqueue *sq;
1448 #ifdef INVARIANTS
1449 	struct lock_object *lock;
1450 #endif
1451 	struct thread *td;
1452 	void *wchan;
1453 	int i;
1454 
1455 	if (!have_addr)
1456 		return;
1457 
1458 	/*
1459 	 * First, see if there is an active sleep queue for the wait channel
1460 	 * indicated by the address.
1461 	 */
1462 	wchan = (void *)addr;
1463 	sc = SC_LOOKUP(wchan);
1464 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1465 		if (sq->sq_wchan == wchan)
1466 			goto found;
1467 
1468 	/*
1469 	 * Second, see if there is an active sleep queue at the address
1470 	 * indicated.
1471 	 */
1472 	for (i = 0; i < SC_TABLESIZE; i++)
1473 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1474 			if (sq == (struct sleepqueue *)addr)
1475 				goto found;
1476 		}
1477 
1478 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1479 	return;
1480 found:
1481 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1482 	db_printf("Queue type: %d\n", sq->sq_type);
1483 #ifdef INVARIANTS
1484 	if (sq->sq_lock) {
1485 		lock = sq->sq_lock;
1486 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1487 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1488 	}
1489 #endif
1490 	db_printf("Blocked threads:\n");
1491 	for (i = 0; i < NR_SLEEPQS; i++) {
1492 		db_printf("\nQueue[%d]:\n", i);
1493 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1494 			db_printf("\tempty\n");
1495 		else
1496 			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1497 				      td_slpq) {
1498 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1499 					  td->td_tid, td->td_proc->p_pid,
1500 					  td->td_name);
1501 			}
1502 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1503 	}
1504 }
1505 
1506 /* Alias 'show sleepqueue' to 'show sleepq'. */
1507 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1508 #endif
1509