1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* 29 * Implementation of sleep queues used to hold queue of threads blocked on 30 * a wait channel. Sleep queues are different from turnstiles in that wait 31 * channels are not owned by anyone, so there is no priority propagation. 32 * Sleep queues can also provide a timeout and can also be interrupted by 33 * signals. That said, there are several similarities between the turnstile 34 * and sleep queue implementations. (Note: turnstiles were implemented 35 * first.) For example, both use a hash table of the same size where each 36 * bucket is referred to as a "chain" that contains both a spin lock and 37 * a linked list of queues. An individual queue is located by using a hash 38 * to pick a chain, locking the chain, and then walking the chain searching 39 * for the queue. This means that a wait channel object does not need to 40 * embed its queue head just as locks do not embed their turnstile queue 41 * head. Threads also carry around a sleep queue that they lend to the 42 * wait channel when blocking. Just as in turnstiles, the queue includes 43 * a free list of the sleep queues of other threads blocked on the same 44 * wait channel in the case of multiple waiters. 45 * 46 * Some additional functionality provided by sleep queues include the 47 * ability to set a timeout. The timeout is managed using a per-thread 48 * callout that resumes a thread if it is asleep. A thread may also 49 * catch signals while it is asleep (aka an interruptible sleep). The 50 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 51 * sleep queues also provide some extra assertions. One is not allowed to 52 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 53 * must consistently use the same lock to synchronize with a wait channel, 54 * though this check is currently only a warning for sleep/wakeup due to 55 * pre-existing abuse of that API. The same lock must also be held when 56 * awakening threads, though that is currently only enforced for condition 57 * variables. 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_sleepqueue_profiling.h" 64 #include "opt_ddb.h" 65 #include "opt_sched.h" 66 #include "opt_stack.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/lock.h> 71 #include <sys/kernel.h> 72 #include <sys/ktr.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/sdt.h> 78 #include <sys/signalvar.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/stack.h> 81 #include <sys/sysctl.h> 82 #include <sys/time.h> 83 #ifdef EPOCH_TRACE 84 #include <sys/epoch.h> 85 #endif 86 87 #include <machine/atomic.h> 88 89 #include <vm/uma.h> 90 91 #ifdef DDB 92 #include <ddb/ddb.h> 93 #endif 94 95 /* 96 * Constants for the hash table of sleep queue chains. 97 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 98 */ 99 #ifndef SC_TABLESIZE 100 #define SC_TABLESIZE 256 101 #endif 102 CTASSERT(powerof2(SC_TABLESIZE)); 103 #define SC_MASK (SC_TABLESIZE - 1) 104 #define SC_SHIFT 8 105 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 106 SC_MASK) 107 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 108 #define NR_SLEEPQS 2 109 /* 110 * There are two different lists of sleep queues. Both lists are connected 111 * via the sq_hash entries. The first list is the sleep queue chain list 112 * that a sleep queue is on when it is attached to a wait channel. The 113 * second list is the free list hung off of a sleep queue that is attached 114 * to a wait channel. 115 * 116 * Each sleep queue also contains the wait channel it is attached to, the 117 * list of threads blocked on that wait channel, flags specific to the 118 * wait channel, and the lock used to synchronize with a wait channel. 119 * The flags are used to catch mismatches between the various consumers 120 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 121 * The lock pointer is only used when invariants are enabled for various 122 * debugging checks. 123 * 124 * Locking key: 125 * c - sleep queue chain lock 126 */ 127 struct sleepqueue { 128 struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 129 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 130 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 131 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 132 const void *sq_wchan; /* (c) Wait channel. */ 133 int sq_type; /* (c) Queue type. */ 134 #ifdef INVARIANTS 135 struct lock_object *sq_lock; /* (c) Associated lock. */ 136 #endif 137 }; 138 139 struct sleepqueue_chain { 140 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 141 struct mtx sc_lock; /* Spin lock for this chain. */ 142 #ifdef SLEEPQUEUE_PROFILING 143 u_int sc_depth; /* Length of sc_queues. */ 144 u_int sc_max_depth; /* Max length of sc_queues. */ 145 #endif 146 } __aligned(CACHE_LINE_SIZE); 147 148 #ifdef SLEEPQUEUE_PROFILING 149 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 150 "sleepq profiling"); 151 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, 152 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 153 "sleepq chain stats"); 154 static u_int sleepq_max_depth; 155 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 156 0, "maxmimum depth achieved of a single chain"); 157 158 static void sleepq_profile(const char *wmesg); 159 static int prof_enabled; 160 #endif 161 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 162 static uma_zone_t sleepq_zone; 163 164 /* 165 * Prototypes for non-exported routines. 166 */ 167 static int sleepq_catch_signals(const void *wchan, int pri); 168 static inline int sleepq_check_signals(void); 169 static inline int sleepq_check_timeout(void); 170 #ifdef INVARIANTS 171 static void sleepq_dtor(void *mem, int size, void *arg); 172 #endif 173 static int sleepq_init(void *mem, int size, int flags); 174 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 175 int pri, int srqflags); 176 static void sleepq_remove_thread(struct sleepqueue *sq, struct thread *td); 177 static void sleepq_switch(const void *wchan, int pri); 178 static void sleepq_timeout(void *arg); 179 180 SDT_PROBE_DECLARE(sched, , , sleep); 181 SDT_PROBE_DECLARE(sched, , , wakeup); 182 183 /* 184 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 185 * Note that it must happen after sleepinit() has been fully executed, so 186 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 187 */ 188 #ifdef SLEEPQUEUE_PROFILING 189 static void 190 init_sleepqueue_profiling(void) 191 { 192 char chain_name[10]; 193 struct sysctl_oid *chain_oid; 194 u_int i; 195 196 for (i = 0; i < SC_TABLESIZE; i++) { 197 snprintf(chain_name, sizeof(chain_name), "%u", i); 198 chain_oid = SYSCTL_ADD_NODE(NULL, 199 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 200 chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 201 "sleepq chain stats"); 202 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 203 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 204 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 205 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 206 NULL); 207 } 208 } 209 210 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 211 init_sleepqueue_profiling, NULL); 212 #endif 213 214 /* 215 * Early initialization of sleep queues that is called from the sleepinit() 216 * SYSINIT. 217 */ 218 void 219 init_sleepqueues(void) 220 { 221 int i; 222 223 for (i = 0; i < SC_TABLESIZE; i++) { 224 LIST_INIT(&sleepq_chains[i].sc_queues); 225 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 226 MTX_SPIN); 227 } 228 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 229 #ifdef INVARIANTS 230 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 231 #else 232 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 233 #endif 234 235 thread0.td_sleepqueue = sleepq_alloc(); 236 } 237 238 /* 239 * Get a sleep queue for a new thread. 240 */ 241 struct sleepqueue * 242 sleepq_alloc(void) 243 { 244 245 return (uma_zalloc(sleepq_zone, M_WAITOK)); 246 } 247 248 /* 249 * Free a sleep queue when a thread is destroyed. 250 */ 251 void 252 sleepq_free(struct sleepqueue *sq) 253 { 254 255 uma_zfree(sleepq_zone, sq); 256 } 257 258 /* 259 * Lock the sleep queue chain associated with the specified wait channel. 260 */ 261 void 262 sleepq_lock(const void *wchan) 263 { 264 struct sleepqueue_chain *sc; 265 266 sc = SC_LOOKUP(wchan); 267 mtx_lock_spin(&sc->sc_lock); 268 } 269 270 /* 271 * Look up the sleep queue associated with a given wait channel in the hash 272 * table locking the associated sleep queue chain. If no queue is found in 273 * the table, NULL is returned. 274 */ 275 struct sleepqueue * 276 sleepq_lookup(const void *wchan) 277 { 278 struct sleepqueue_chain *sc; 279 struct sleepqueue *sq; 280 281 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 282 sc = SC_LOOKUP(wchan); 283 mtx_assert(&sc->sc_lock, MA_OWNED); 284 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 285 if (sq->sq_wchan == wchan) 286 return (sq); 287 return (NULL); 288 } 289 290 /* 291 * Unlock the sleep queue chain associated with a given wait channel. 292 */ 293 void 294 sleepq_release(const void *wchan) 295 { 296 struct sleepqueue_chain *sc; 297 298 sc = SC_LOOKUP(wchan); 299 mtx_unlock_spin(&sc->sc_lock); 300 } 301 302 /* 303 * Places the current thread on the sleep queue for the specified wait 304 * channel. If INVARIANTS is enabled, then it associates the passed in 305 * lock with the sleepq to make sure it is held when that sleep queue is 306 * woken up. 307 */ 308 void 309 sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg, 310 int flags, int queue) 311 { 312 struct sleepqueue_chain *sc; 313 struct sleepqueue *sq; 314 struct thread *td; 315 316 td = curthread; 317 sc = SC_LOOKUP(wchan); 318 mtx_assert(&sc->sc_lock, MA_OWNED); 319 MPASS(td->td_sleepqueue != NULL); 320 MPASS(wchan != NULL); 321 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 322 323 /* If this thread is not allowed to sleep, die a horrible death. */ 324 if (__predict_false(!THREAD_CAN_SLEEP())) { 325 #ifdef EPOCH_TRACE 326 epoch_trace_list(curthread); 327 #endif 328 KASSERT(0, 329 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 330 __func__, td, wchan)); 331 } 332 333 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 334 sq = sleepq_lookup(wchan); 335 336 /* 337 * If the wait channel does not already have a sleep queue, use 338 * this thread's sleep queue. Otherwise, insert the current thread 339 * into the sleep queue already in use by this wait channel. 340 */ 341 if (sq == NULL) { 342 #ifdef INVARIANTS 343 int i; 344 345 sq = td->td_sleepqueue; 346 for (i = 0; i < NR_SLEEPQS; i++) { 347 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 348 ("thread's sleep queue %d is not empty", i)); 349 KASSERT(sq->sq_blockedcnt[i] == 0, 350 ("thread's sleep queue %d count mismatches", i)); 351 } 352 KASSERT(LIST_EMPTY(&sq->sq_free), 353 ("thread's sleep queue has a non-empty free list")); 354 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 355 sq->sq_lock = lock; 356 #endif 357 #ifdef SLEEPQUEUE_PROFILING 358 sc->sc_depth++; 359 if (sc->sc_depth > sc->sc_max_depth) { 360 sc->sc_max_depth = sc->sc_depth; 361 if (sc->sc_max_depth > sleepq_max_depth) 362 sleepq_max_depth = sc->sc_max_depth; 363 } 364 #endif 365 sq = td->td_sleepqueue; 366 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 367 sq->sq_wchan = wchan; 368 sq->sq_type = flags & SLEEPQ_TYPE; 369 } else { 370 MPASS(wchan == sq->sq_wchan); 371 MPASS(lock == sq->sq_lock); 372 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 373 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 374 } 375 thread_lock(td); 376 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 377 sq->sq_blockedcnt[queue]++; 378 td->td_sleepqueue = NULL; 379 td->td_sqqueue = queue; 380 td->td_wchan = wchan; 381 td->td_wmesg = wmesg; 382 if (flags & SLEEPQ_INTERRUPTIBLE) { 383 td->td_intrval = 0; 384 td->td_flags |= TDF_SINTR; 385 } 386 td->td_flags &= ~TDF_TIMEOUT; 387 thread_unlock(td); 388 } 389 390 /* 391 * Sets a timeout that will remove the current thread from the 392 * specified sleep queue at the specified time if the thread has not 393 * already been awakened. Flags are from C_* (callout) namespace. 394 */ 395 void 396 sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr, 397 int flags) 398 { 399 struct sleepqueue_chain *sc __unused; 400 struct thread *td; 401 sbintime_t pr1; 402 403 td = curthread; 404 sc = SC_LOOKUP(wchan); 405 mtx_assert(&sc->sc_lock, MA_OWNED); 406 MPASS(TD_ON_SLEEPQ(td)); 407 MPASS(td->td_sleepqueue == NULL); 408 MPASS(wchan != NULL); 409 if (cold && td == &thread0) 410 panic("timed sleep before timers are working"); 411 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 412 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 413 thread_lock(td); 414 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 415 thread_unlock(td); 416 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 417 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 418 C_DIRECT_EXEC); 419 } 420 421 /* 422 * Return the number of actual sleepers for the specified queue. 423 */ 424 u_int 425 sleepq_sleepcnt(const void *wchan, int queue) 426 { 427 struct sleepqueue *sq; 428 429 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 430 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 431 sq = sleepq_lookup(wchan); 432 if (sq == NULL) 433 return (0); 434 return (sq->sq_blockedcnt[queue]); 435 } 436 437 static int 438 sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc) 439 { 440 struct proc *p; 441 int ret; 442 443 mtx_assert(&sc->sc_lock, MA_OWNED); 444 445 if ((td->td_pflags & TDP_WAKEUP) != 0) { 446 td->td_pflags &= ~TDP_WAKEUP; 447 thread_lock(td); 448 return (EINTR); 449 } 450 451 /* 452 * See if there are any pending signals or suspension requests for this 453 * thread. If not, we can switch immediately. 454 */ 455 thread_lock(td); 456 if (!td_ast_pending(td, TDA_SIG) && !td_ast_pending(td, TDA_SUSPEND)) 457 return (0); 458 459 thread_unlock(td); 460 mtx_unlock_spin(&sc->sc_lock); 461 462 p = td->td_proc; 463 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 464 (void *)td, (long)p->p_pid, td->td_name); 465 PROC_LOCK(p); 466 467 /* 468 * Check for suspension first. Checking for signals and then 469 * suspending could result in a missed signal, since a signal 470 * can be delivered while this thread is suspended. 471 */ 472 ret = sig_ast_checksusp(td); 473 if (ret != 0) { 474 PROC_UNLOCK(p); 475 mtx_lock_spin(&sc->sc_lock); 476 thread_lock(td); 477 return (ret); 478 } 479 480 ret = sig_ast_needsigchk(td); 481 482 /* 483 * Lock the per-process spinlock prior to dropping the 484 * PROC_LOCK to avoid a signal delivery race. 485 * PROC_LOCK, PROC_SLOCK, and thread_lock() are 486 * currently held in tdsendsignal() and thread_single(). 487 */ 488 PROC_SLOCK(p); 489 mtx_lock_spin(&sc->sc_lock); 490 PROC_UNLOCK(p); 491 thread_lock(td); 492 PROC_SUNLOCK(p); 493 494 return (ret); 495 } 496 497 /* 498 * Marks the pending sleep of the current thread as interruptible and 499 * makes an initial check for pending signals before putting a thread 500 * to sleep. Enters and exits with the thread lock held. Thread lock 501 * may have transitioned from the sleepq lock to a run lock. 502 */ 503 static int 504 sleepq_catch_signals(const void *wchan, int pri) 505 { 506 struct thread *td; 507 struct sleepqueue_chain *sc; 508 struct sleepqueue *sq; 509 int ret; 510 511 sc = SC_LOOKUP(wchan); 512 mtx_assert(&sc->sc_lock, MA_OWNED); 513 MPASS(wchan != NULL); 514 td = curthread; 515 516 ret = sleepq_check_ast_sc_locked(td, sc); 517 THREAD_LOCK_ASSERT(td, MA_OWNED); 518 mtx_assert(&sc->sc_lock, MA_OWNED); 519 520 if (ret == 0) { 521 /* 522 * No pending signals and no suspension requests found. 523 * Switch the thread off the cpu. 524 */ 525 sleepq_switch(wchan, pri); 526 } else { 527 /* 528 * There were pending signals and this thread is still 529 * on the sleep queue, remove it from the sleep queue. 530 */ 531 if (TD_ON_SLEEPQ(td)) { 532 sq = sleepq_lookup(wchan); 533 sleepq_remove_thread(sq, td); 534 } 535 MPASS(td->td_lock != &sc->sc_lock); 536 mtx_unlock_spin(&sc->sc_lock); 537 thread_unlock(td); 538 } 539 return (ret); 540 } 541 542 /* 543 * Switches to another thread if we are still asleep on a sleep queue. 544 * Returns with thread lock. 545 */ 546 static void 547 sleepq_switch(const void *wchan, int pri) 548 { 549 struct sleepqueue_chain *sc; 550 struct sleepqueue *sq; 551 struct thread *td; 552 bool rtc_changed; 553 554 td = curthread; 555 sc = SC_LOOKUP(wchan); 556 mtx_assert(&sc->sc_lock, MA_OWNED); 557 THREAD_LOCK_ASSERT(td, MA_OWNED); 558 559 /* 560 * If we have a sleep queue, then we've already been woken up, so 561 * just return. 562 */ 563 if (td->td_sleepqueue != NULL) { 564 mtx_unlock_spin(&sc->sc_lock); 565 thread_unlock(td); 566 return; 567 } 568 569 /* 570 * If TDF_TIMEOUT is set, then our sleep has been timed out 571 * already but we are still on the sleep queue, so dequeue the 572 * thread and return. 573 * 574 * Do the same if the real-time clock has been adjusted since this 575 * thread calculated its timeout based on that clock. This handles 576 * the following race: 577 * - The Ts thread needs to sleep until an absolute real-clock time. 578 * It copies the global rtc_generation into curthread->td_rtcgen, 579 * reads the RTC, and calculates a sleep duration based on that time. 580 * See umtxq_sleep() for an example. 581 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes 582 * threads that are sleeping until an absolute real-clock time. 583 * See tc_setclock() and the POSIX specification of clock_settime(). 584 * - Ts reaches the code below. It holds the sleepqueue chain lock, 585 * so Tc has finished waking, so this thread must test td_rtcgen. 586 * (The declaration of td_rtcgen refers to this comment.) 587 */ 588 rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation; 589 if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) { 590 if (rtc_changed) { 591 td->td_rtcgen = 0; 592 } 593 MPASS(TD_ON_SLEEPQ(td)); 594 sq = sleepq_lookup(wchan); 595 sleepq_remove_thread(sq, td); 596 mtx_unlock_spin(&sc->sc_lock); 597 thread_unlock(td); 598 return; 599 } 600 #ifdef SLEEPQUEUE_PROFILING 601 if (prof_enabled) 602 sleepq_profile(td->td_wmesg); 603 #endif 604 MPASS(td->td_sleepqueue == NULL); 605 sched_sleep(td, pri); 606 thread_lock_set(td, &sc->sc_lock); 607 SDT_PROBE0(sched, , , sleep); 608 TD_SET_SLEEPING(td); 609 mi_switch(SW_VOL | SWT_SLEEPQ); 610 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 611 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 612 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 613 } 614 615 /* 616 * Check to see if we timed out. 617 */ 618 static inline int 619 sleepq_check_timeout(void) 620 { 621 struct thread *td; 622 int res; 623 624 res = 0; 625 td = curthread; 626 if (td->td_sleeptimo != 0) { 627 if (td->td_sleeptimo <= sbinuptime()) 628 res = EWOULDBLOCK; 629 td->td_sleeptimo = 0; 630 } 631 return (res); 632 } 633 634 /* 635 * Check to see if we were awoken by a signal. 636 */ 637 static inline int 638 sleepq_check_signals(void) 639 { 640 struct thread *td; 641 642 td = curthread; 643 KASSERT((td->td_flags & TDF_SINTR) == 0, 644 ("thread %p still in interruptible sleep?", td)); 645 646 return (td->td_intrval); 647 } 648 649 /* 650 * Block the current thread until it is awakened from its sleep queue. 651 */ 652 void 653 sleepq_wait(const void *wchan, int pri) 654 { 655 struct thread *td; 656 657 td = curthread; 658 MPASS(!(td->td_flags & TDF_SINTR)); 659 thread_lock(td); 660 sleepq_switch(wchan, pri); 661 } 662 663 /* 664 * Block the current thread until it is awakened from its sleep queue 665 * or it is interrupted by a signal. 666 */ 667 int 668 sleepq_wait_sig(const void *wchan, int pri) 669 { 670 int rcatch; 671 672 rcatch = sleepq_catch_signals(wchan, pri); 673 if (rcatch) 674 return (rcatch); 675 return (sleepq_check_signals()); 676 } 677 678 /* 679 * Block the current thread until it is awakened from its sleep queue 680 * or it times out while waiting. 681 */ 682 int 683 sleepq_timedwait(const void *wchan, int pri) 684 { 685 struct thread *td; 686 687 td = curthread; 688 MPASS(!(td->td_flags & TDF_SINTR)); 689 690 thread_lock(td); 691 sleepq_switch(wchan, pri); 692 693 return (sleepq_check_timeout()); 694 } 695 696 /* 697 * Block the current thread until it is awakened from its sleep queue, 698 * it is interrupted by a signal, or it times out waiting to be awakened. 699 */ 700 int 701 sleepq_timedwait_sig(const void *wchan, int pri) 702 { 703 int rcatch, rvalt, rvals; 704 705 rcatch = sleepq_catch_signals(wchan, pri); 706 /* We must always call check_timeout() to clear sleeptimo. */ 707 rvalt = sleepq_check_timeout(); 708 rvals = sleepq_check_signals(); 709 if (rcatch) 710 return (rcatch); 711 if (rvals) 712 return (rvals); 713 return (rvalt); 714 } 715 716 /* 717 * Returns the type of sleepqueue given a waitchannel. 718 */ 719 int 720 sleepq_type(const void *wchan) 721 { 722 struct sleepqueue *sq; 723 int type; 724 725 MPASS(wchan != NULL); 726 727 sq = sleepq_lookup(wchan); 728 if (sq == NULL) 729 return (-1); 730 type = sq->sq_type; 731 732 return (type); 733 } 734 735 /* 736 * Removes a thread from a sleep queue and makes it 737 * runnable. 738 * 739 * Requires the sc chain locked on entry. If SRQ_HOLD is specified it will 740 * be locked on return. Returns without the thread lock held. 741 */ 742 static int 743 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri, 744 int srqflags) 745 { 746 struct sleepqueue_chain *sc; 747 bool drop; 748 749 MPASS(td != NULL); 750 MPASS(sq->sq_wchan != NULL); 751 MPASS(td->td_wchan == sq->sq_wchan); 752 753 sc = SC_LOOKUP(sq->sq_wchan); 754 mtx_assert(&sc->sc_lock, MA_OWNED); 755 756 /* 757 * Avoid recursing on the chain lock. If the locks don't match we 758 * need to acquire the thread lock which setrunnable will drop for 759 * us. In this case we need to drop the chain lock afterwards. 760 * 761 * There is no race that will make td_lock equal to sc_lock because 762 * we hold sc_lock. 763 */ 764 drop = false; 765 if (!TD_IS_SLEEPING(td)) { 766 thread_lock(td); 767 drop = true; 768 } else 769 thread_lock_block_wait(td); 770 771 /* Remove thread from the sleepq. */ 772 sleepq_remove_thread(sq, td); 773 774 /* If we're done with the sleepqueue release it. */ 775 if ((srqflags & SRQ_HOLD) == 0 && drop) 776 mtx_unlock_spin(&sc->sc_lock); 777 778 /* Adjust priority if requested. */ 779 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 780 if (pri != 0 && td->td_priority > pri && 781 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 782 sched_prio(td, pri); 783 784 /* 785 * Note that thread td might not be sleeping if it is running 786 * sleepq_catch_signals() on another CPU or is blocked on its 787 * proc lock to check signals. There's no need to mark the 788 * thread runnable in that case. 789 */ 790 if (TD_IS_SLEEPING(td)) { 791 MPASS(!drop); 792 TD_CLR_SLEEPING(td); 793 return (setrunnable(td, srqflags)); 794 } 795 MPASS(drop); 796 thread_unlock(td); 797 798 return (0); 799 } 800 801 static void 802 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td) 803 { 804 struct sleepqueue_chain *sc __unused; 805 806 MPASS(td != NULL); 807 MPASS(sq->sq_wchan != NULL); 808 MPASS(td->td_wchan == sq->sq_wchan); 809 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 810 THREAD_LOCK_ASSERT(td, MA_OWNED); 811 sc = SC_LOOKUP(sq->sq_wchan); 812 mtx_assert(&sc->sc_lock, MA_OWNED); 813 814 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 815 816 /* Remove the thread from the queue. */ 817 sq->sq_blockedcnt[td->td_sqqueue]--; 818 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 819 820 /* 821 * Get a sleep queue for this thread. If this is the last waiter, 822 * use the queue itself and take it out of the chain, otherwise, 823 * remove a queue from the free list. 824 */ 825 if (LIST_EMPTY(&sq->sq_free)) { 826 td->td_sleepqueue = sq; 827 #ifdef INVARIANTS 828 sq->sq_wchan = NULL; 829 #endif 830 #ifdef SLEEPQUEUE_PROFILING 831 sc->sc_depth--; 832 #endif 833 } else 834 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 835 LIST_REMOVE(td->td_sleepqueue, sq_hash); 836 837 if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0 && 838 td->td_lock == &sc->sc_lock) { 839 /* 840 * We ignore the situation where timeout subsystem was 841 * unable to stop our callout. The struct thread is 842 * type-stable, the callout will use the correct 843 * memory when running. The checks of the 844 * td_sleeptimo value in this function and in 845 * sleepq_timeout() ensure that the thread does not 846 * get spurious wakeups, even if the callout was reset 847 * or thread reused. 848 * 849 * We also cannot safely stop the callout if a scheduler 850 * lock is held since softclock_thread() forces a lock 851 * order of callout lock -> scheduler lock. The thread 852 * lock will be a scheduler lock only if the thread is 853 * preparing to go to sleep, so this is hopefully a rare 854 * scenario. 855 */ 856 callout_stop(&td->td_slpcallout); 857 } 858 859 td->td_wmesg = NULL; 860 td->td_wchan = NULL; 861 td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT); 862 863 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 864 (void *)td, (long)td->td_proc->p_pid, td->td_name); 865 } 866 867 void 868 sleepq_remove_nested(struct thread *td) 869 { 870 struct sleepqueue_chain *sc; 871 struct sleepqueue *sq; 872 const void *wchan; 873 874 MPASS(TD_ON_SLEEPQ(td)); 875 876 wchan = td->td_wchan; 877 sc = SC_LOOKUP(wchan); 878 mtx_lock_spin(&sc->sc_lock); 879 sq = sleepq_lookup(wchan); 880 MPASS(sq != NULL); 881 thread_lock(td); 882 sleepq_remove_thread(sq, td); 883 mtx_unlock_spin(&sc->sc_lock); 884 /* Returns with the thread lock owned. */ 885 } 886 887 #ifdef INVARIANTS 888 /* 889 * UMA zone item deallocator. 890 */ 891 static void 892 sleepq_dtor(void *mem, int size, void *arg) 893 { 894 struct sleepqueue *sq; 895 int i; 896 897 sq = mem; 898 for (i = 0; i < NR_SLEEPQS; i++) { 899 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 900 MPASS(sq->sq_blockedcnt[i] == 0); 901 } 902 } 903 #endif 904 905 /* 906 * UMA zone item initializer. 907 */ 908 static int 909 sleepq_init(void *mem, int size, int flags) 910 { 911 struct sleepqueue *sq; 912 int i; 913 914 bzero(mem, size); 915 sq = mem; 916 for (i = 0; i < NR_SLEEPQS; i++) { 917 TAILQ_INIT(&sq->sq_blocked[i]); 918 sq->sq_blockedcnt[i] = 0; 919 } 920 LIST_INIT(&sq->sq_free); 921 return (0); 922 } 923 924 /* 925 * Find thread sleeping on a wait channel and resume it. 926 */ 927 int 928 sleepq_signal(const void *wchan, int flags, int pri, int queue) 929 { 930 struct sleepqueue_chain *sc; 931 struct sleepqueue *sq; 932 struct threadqueue *head; 933 struct thread *td, *besttd; 934 int wakeup_swapper; 935 936 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 937 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 938 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 939 sq = sleepq_lookup(wchan); 940 if (sq == NULL) { 941 if (flags & SLEEPQ_DROP) 942 sleepq_release(wchan); 943 return (0); 944 } 945 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 946 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 947 948 head = &sq->sq_blocked[queue]; 949 if (flags & SLEEPQ_UNFAIR) { 950 /* 951 * Find the most recently sleeping thread, but try to 952 * skip threads still in process of context switch to 953 * avoid spinning on the thread lock. 954 */ 955 sc = SC_LOOKUP(wchan); 956 besttd = TAILQ_LAST_FAST(head, thread, td_slpq); 957 while (besttd->td_lock != &sc->sc_lock) { 958 td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq); 959 if (td == NULL) 960 break; 961 besttd = td; 962 } 963 } else { 964 /* 965 * Find the highest priority thread on the queue. If there 966 * is a tie, use the thread that first appears in the queue 967 * as it has been sleeping the longest since threads are 968 * always added to the tail of sleep queues. 969 */ 970 besttd = td = TAILQ_FIRST(head); 971 while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) { 972 if (td->td_priority < besttd->td_priority) 973 besttd = td; 974 } 975 } 976 MPASS(besttd != NULL); 977 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri, 978 (flags & SLEEPQ_DROP) ? 0 : SRQ_HOLD); 979 return (wakeup_swapper); 980 } 981 982 static bool 983 match_any(struct thread *td __unused) 984 { 985 986 return (true); 987 } 988 989 /* 990 * Resume all threads sleeping on a specified wait channel. 991 */ 992 int 993 sleepq_broadcast(const void *wchan, int flags, int pri, int queue) 994 { 995 struct sleepqueue *sq; 996 997 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 998 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 999 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1000 sq = sleepq_lookup(wchan); 1001 if (sq == NULL) 1002 return (0); 1003 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 1004 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 1005 1006 return (sleepq_remove_matching(sq, queue, match_any, pri)); 1007 } 1008 1009 /* 1010 * Resume threads on the sleep queue that match the given predicate. 1011 */ 1012 int 1013 sleepq_remove_matching(struct sleepqueue *sq, int queue, 1014 bool (*matches)(struct thread *), int pri) 1015 { 1016 struct thread *td, *tdn; 1017 int wakeup_swapper; 1018 1019 /* 1020 * The last thread will be given ownership of sq and may 1021 * re-enqueue itself before sleepq_resume_thread() returns, 1022 * so we must cache the "next" queue item at the beginning 1023 * of the final iteration. 1024 */ 1025 wakeup_swapper = 0; 1026 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 1027 if (matches(td)) 1028 wakeup_swapper |= sleepq_resume_thread(sq, td, pri, 1029 SRQ_HOLD); 1030 } 1031 1032 return (wakeup_swapper); 1033 } 1034 1035 /* 1036 * Time sleeping threads out. When the timeout expires, the thread is 1037 * removed from the sleep queue and made runnable if it is still asleep. 1038 */ 1039 static void 1040 sleepq_timeout(void *arg) 1041 { 1042 struct sleepqueue_chain *sc __unused; 1043 struct sleepqueue *sq; 1044 struct thread *td; 1045 const void *wchan; 1046 int wakeup_swapper; 1047 1048 td = arg; 1049 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 1050 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1051 1052 thread_lock(td); 1053 if (td->td_sleeptimo == 0 || 1054 td->td_sleeptimo > td->td_slpcallout.c_time) { 1055 /* 1056 * The thread does not want a timeout (yet). 1057 */ 1058 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 1059 /* 1060 * See if the thread is asleep and get the wait 1061 * channel if it is. 1062 */ 1063 wchan = td->td_wchan; 1064 sc = SC_LOOKUP(wchan); 1065 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 1066 sq = sleepq_lookup(wchan); 1067 MPASS(sq != NULL); 1068 td->td_flags |= TDF_TIMEOUT; 1069 wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0); 1070 if (wakeup_swapper) 1071 kick_proc0(); 1072 return; 1073 } else if (TD_ON_SLEEPQ(td)) { 1074 /* 1075 * If the thread is on the SLEEPQ but isn't sleeping 1076 * yet, it can either be on another CPU in between 1077 * sleepq_add() and one of the sleepq_*wait*() 1078 * routines or it can be in sleepq_catch_signals(). 1079 */ 1080 td->td_flags |= TDF_TIMEOUT; 1081 } 1082 thread_unlock(td); 1083 } 1084 1085 /* 1086 * Resumes a specific thread from the sleep queue associated with a specific 1087 * wait channel if it is on that queue. 1088 */ 1089 void 1090 sleepq_remove(struct thread *td, const void *wchan) 1091 { 1092 struct sleepqueue_chain *sc; 1093 struct sleepqueue *sq; 1094 int wakeup_swapper; 1095 1096 /* 1097 * Look up the sleep queue for this wait channel, then re-check 1098 * that the thread is asleep on that channel, if it is not, then 1099 * bail. 1100 */ 1101 MPASS(wchan != NULL); 1102 sc = SC_LOOKUP(wchan); 1103 mtx_lock_spin(&sc->sc_lock); 1104 /* 1105 * We can not lock the thread here as it may be sleeping on a 1106 * different sleepq. However, holding the sleepq lock for this 1107 * wchan can guarantee that we do not miss a wakeup for this 1108 * channel. The asserts below will catch any false positives. 1109 */ 1110 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 1111 mtx_unlock_spin(&sc->sc_lock); 1112 return; 1113 } 1114 1115 /* Thread is asleep on sleep queue sq, so wake it up. */ 1116 sq = sleepq_lookup(wchan); 1117 MPASS(sq != NULL); 1118 MPASS(td->td_wchan == wchan); 1119 wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0); 1120 if (wakeup_swapper) 1121 kick_proc0(); 1122 } 1123 1124 /* 1125 * Abort a thread as if an interrupt had occurred. Only abort 1126 * interruptible waits (unfortunately it isn't safe to abort others). 1127 * 1128 * Requires thread lock on entry, releases on return. 1129 */ 1130 int 1131 sleepq_abort(struct thread *td, int intrval) 1132 { 1133 struct sleepqueue *sq; 1134 const void *wchan; 1135 1136 THREAD_LOCK_ASSERT(td, MA_OWNED); 1137 MPASS(TD_ON_SLEEPQ(td)); 1138 MPASS(td->td_flags & TDF_SINTR); 1139 MPASS((intrval == 0 && (td->td_flags & TDF_SIGWAIT) != 0) || 1140 intrval == EINTR || intrval == ERESTART); 1141 1142 /* 1143 * If the TDF_TIMEOUT flag is set, just leave. A 1144 * timeout is scheduled anyhow. 1145 */ 1146 if (td->td_flags & TDF_TIMEOUT) { 1147 thread_unlock(td); 1148 return (0); 1149 } 1150 1151 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1152 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1153 td->td_intrval = intrval; 1154 1155 /* 1156 * If the thread has not slept yet it will find the signal in 1157 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1158 * we have to do it here. 1159 */ 1160 if (!TD_IS_SLEEPING(td)) { 1161 thread_unlock(td); 1162 return (0); 1163 } 1164 wchan = td->td_wchan; 1165 MPASS(wchan != NULL); 1166 sq = sleepq_lookup(wchan); 1167 MPASS(sq != NULL); 1168 1169 /* Thread is asleep on sleep queue sq, so wake it up. */ 1170 return (sleepq_resume_thread(sq, td, 0, 0)); 1171 } 1172 1173 void 1174 sleepq_chains_remove_matching(bool (*matches)(struct thread *)) 1175 { 1176 struct sleepqueue_chain *sc; 1177 struct sleepqueue *sq, *sq1; 1178 int i, wakeup_swapper; 1179 1180 wakeup_swapper = 0; 1181 for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) { 1182 if (LIST_EMPTY(&sc->sc_queues)) { 1183 continue; 1184 } 1185 mtx_lock_spin(&sc->sc_lock); 1186 LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) { 1187 for (i = 0; i < NR_SLEEPQS; ++i) { 1188 wakeup_swapper |= sleepq_remove_matching(sq, i, 1189 matches, 0); 1190 } 1191 } 1192 mtx_unlock_spin(&sc->sc_lock); 1193 } 1194 if (wakeup_swapper) { 1195 kick_proc0(); 1196 } 1197 } 1198 1199 /* 1200 * Prints the stacks of all threads presently sleeping on wchan/queue to 1201 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1202 * printed. Typically, this will equal the number of threads sleeping on the 1203 * queue, but may be less if sb overflowed before all stacks were printed. 1204 */ 1205 #ifdef STACK 1206 int 1207 sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue, 1208 int *count_stacks_printed) 1209 { 1210 struct thread *td, *td_next; 1211 struct sleepqueue *sq; 1212 struct stack **st; 1213 struct sbuf **td_infos; 1214 int i, stack_idx, error, stacks_to_allocate; 1215 bool finished; 1216 1217 error = 0; 1218 finished = false; 1219 1220 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1221 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1222 1223 stacks_to_allocate = 10; 1224 for (i = 0; i < 3 && !finished ; i++) { 1225 /* We cannot malloc while holding the queue's spinlock, so 1226 * we do our mallocs now, and hope it is enough. If it 1227 * isn't, we will free these, drop the lock, malloc more, 1228 * and try again, up to a point. After that point we will 1229 * give up and report ENOMEM. We also cannot write to sb 1230 * during this time since the client may have set the 1231 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1232 * malloc as we print to it. So we defer actually printing 1233 * to sb until after we drop the spinlock. 1234 */ 1235 1236 /* Where we will store the stacks. */ 1237 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1238 M_TEMP, M_WAITOK); 1239 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1240 stack_idx++) 1241 st[stack_idx] = stack_create(M_WAITOK); 1242 1243 /* Where we will store the td name, tid, etc. */ 1244 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1245 M_TEMP, M_WAITOK); 1246 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1247 stack_idx++) 1248 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1249 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1250 SBUF_FIXEDLEN); 1251 1252 sleepq_lock(wchan); 1253 sq = sleepq_lookup(wchan); 1254 if (sq == NULL) { 1255 /* This sleepq does not exist; exit and return ENOENT. */ 1256 error = ENOENT; 1257 finished = true; 1258 sleepq_release(wchan); 1259 goto loop_end; 1260 } 1261 1262 stack_idx = 0; 1263 /* Save thread info */ 1264 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1265 td_next) { 1266 if (stack_idx >= stacks_to_allocate) 1267 goto loop_end; 1268 1269 /* Note the td_lock is equal to the sleepq_lock here. */ 1270 (void)stack_save_td(st[stack_idx], td); 1271 1272 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1273 td->td_tid, td->td_name, td); 1274 1275 ++stack_idx; 1276 } 1277 1278 finished = true; 1279 sleepq_release(wchan); 1280 1281 /* Print the stacks */ 1282 for (i = 0; i < stack_idx; i++) { 1283 sbuf_finish(td_infos[i]); 1284 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1285 stack_sbuf_print(sb, st[i]); 1286 sbuf_printf(sb, "\n"); 1287 1288 error = sbuf_error(sb); 1289 if (error == 0) 1290 *count_stacks_printed = stack_idx; 1291 } 1292 1293 loop_end: 1294 if (!finished) 1295 sleepq_release(wchan); 1296 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1297 stack_idx++) 1298 stack_destroy(st[stack_idx]); 1299 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1300 stack_idx++) 1301 sbuf_delete(td_infos[stack_idx]); 1302 free(st, M_TEMP); 1303 free(td_infos, M_TEMP); 1304 stacks_to_allocate *= 10; 1305 } 1306 1307 if (!finished && error == 0) 1308 error = ENOMEM; 1309 1310 return (error); 1311 } 1312 #endif 1313 1314 #ifdef SLEEPQUEUE_PROFILING 1315 #define SLEEPQ_PROF_LOCATIONS 1024 1316 #define SLEEPQ_SBUFSIZE 512 1317 struct sleepq_prof { 1318 LIST_ENTRY(sleepq_prof) sp_link; 1319 const char *sp_wmesg; 1320 long sp_count; 1321 }; 1322 1323 LIST_HEAD(sqphead, sleepq_prof); 1324 1325 struct sqphead sleepq_prof_free; 1326 struct sqphead sleepq_hash[SC_TABLESIZE]; 1327 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1328 static struct mtx sleepq_prof_lock; 1329 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1330 1331 static void 1332 sleepq_profile(const char *wmesg) 1333 { 1334 struct sleepq_prof *sp; 1335 1336 mtx_lock_spin(&sleepq_prof_lock); 1337 if (prof_enabled == 0) 1338 goto unlock; 1339 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1340 if (sp->sp_wmesg == wmesg) 1341 goto done; 1342 sp = LIST_FIRST(&sleepq_prof_free); 1343 if (sp == NULL) 1344 goto unlock; 1345 sp->sp_wmesg = wmesg; 1346 LIST_REMOVE(sp, sp_link); 1347 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1348 done: 1349 sp->sp_count++; 1350 unlock: 1351 mtx_unlock_spin(&sleepq_prof_lock); 1352 return; 1353 } 1354 1355 static void 1356 sleepq_prof_reset(void) 1357 { 1358 struct sleepq_prof *sp; 1359 int enabled; 1360 int i; 1361 1362 mtx_lock_spin(&sleepq_prof_lock); 1363 enabled = prof_enabled; 1364 prof_enabled = 0; 1365 for (i = 0; i < SC_TABLESIZE; i++) 1366 LIST_INIT(&sleepq_hash[i]); 1367 LIST_INIT(&sleepq_prof_free); 1368 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1369 sp = &sleepq_profent[i]; 1370 sp->sp_wmesg = NULL; 1371 sp->sp_count = 0; 1372 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1373 } 1374 prof_enabled = enabled; 1375 mtx_unlock_spin(&sleepq_prof_lock); 1376 } 1377 1378 static int 1379 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1380 { 1381 int error, v; 1382 1383 v = prof_enabled; 1384 error = sysctl_handle_int(oidp, &v, v, req); 1385 if (error) 1386 return (error); 1387 if (req->newptr == NULL) 1388 return (error); 1389 if (v == prof_enabled) 1390 return (0); 1391 if (v == 1) 1392 sleepq_prof_reset(); 1393 mtx_lock_spin(&sleepq_prof_lock); 1394 prof_enabled = !!v; 1395 mtx_unlock_spin(&sleepq_prof_lock); 1396 1397 return (0); 1398 } 1399 1400 static int 1401 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1402 { 1403 int error, v; 1404 1405 v = 0; 1406 error = sysctl_handle_int(oidp, &v, 0, req); 1407 if (error) 1408 return (error); 1409 if (req->newptr == NULL) 1410 return (error); 1411 if (v == 0) 1412 return (0); 1413 sleepq_prof_reset(); 1414 1415 return (0); 1416 } 1417 1418 static int 1419 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1420 { 1421 struct sleepq_prof *sp; 1422 struct sbuf *sb; 1423 int enabled; 1424 int error; 1425 int i; 1426 1427 error = sysctl_wire_old_buffer(req, 0); 1428 if (error != 0) 1429 return (error); 1430 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1431 sbuf_printf(sb, "\nwmesg\tcount\n"); 1432 enabled = prof_enabled; 1433 mtx_lock_spin(&sleepq_prof_lock); 1434 prof_enabled = 0; 1435 mtx_unlock_spin(&sleepq_prof_lock); 1436 for (i = 0; i < SC_TABLESIZE; i++) { 1437 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1438 sbuf_printf(sb, "%s\t%ld\n", 1439 sp->sp_wmesg, sp->sp_count); 1440 } 1441 } 1442 mtx_lock_spin(&sleepq_prof_lock); 1443 prof_enabled = enabled; 1444 mtx_unlock_spin(&sleepq_prof_lock); 1445 1446 error = sbuf_finish(sb); 1447 sbuf_delete(sb); 1448 return (error); 1449 } 1450 1451 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, 1452 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, 1453 dump_sleepq_prof_stats, "A", 1454 "Sleepqueue profiling statistics"); 1455 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, 1456 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 1457 reset_sleepq_prof_stats, "I", 1458 "Reset sleepqueue profiling statistics"); 1459 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, 1460 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 1461 enable_sleepq_prof, "I", 1462 "Enable sleepqueue profiling"); 1463 #endif 1464 1465 #ifdef DDB 1466 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1467 { 1468 struct sleepqueue_chain *sc; 1469 struct sleepqueue *sq; 1470 #ifdef INVARIANTS 1471 struct lock_object *lock; 1472 #endif 1473 struct thread *td; 1474 void *wchan; 1475 int i; 1476 1477 if (!have_addr) 1478 return; 1479 1480 /* 1481 * First, see if there is an active sleep queue for the wait channel 1482 * indicated by the address. 1483 */ 1484 wchan = (void *)addr; 1485 sc = SC_LOOKUP(wchan); 1486 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1487 if (sq->sq_wchan == wchan) 1488 goto found; 1489 1490 /* 1491 * Second, see if there is an active sleep queue at the address 1492 * indicated. 1493 */ 1494 for (i = 0; i < SC_TABLESIZE; i++) 1495 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1496 if (sq == (struct sleepqueue *)addr) 1497 goto found; 1498 } 1499 1500 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1501 return; 1502 found: 1503 db_printf("Wait channel: %p\n", sq->sq_wchan); 1504 db_printf("Queue type: %d\n", sq->sq_type); 1505 #ifdef INVARIANTS 1506 if (sq->sq_lock) { 1507 lock = sq->sq_lock; 1508 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1509 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1510 } 1511 #endif 1512 db_printf("Blocked threads:\n"); 1513 for (i = 0; i < NR_SLEEPQS; i++) { 1514 db_printf("\nQueue[%d]:\n", i); 1515 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1516 db_printf("\tempty\n"); 1517 else 1518 TAILQ_FOREACH(td, &sq->sq_blocked[i], 1519 td_slpq) { 1520 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1521 td->td_tid, td->td_proc->p_pid, 1522 td->td_name); 1523 } 1524 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1525 } 1526 } 1527 1528 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1529 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1530 #endif 1531