xref: /freebsd/sys/kern/subr_sleepqueue.c (revision a9490b81b032b43cdb3c8c76b4d01bbad9ff82c1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * Implementation of sleep queues used to hold queue of threads blocked on
30  * a wait channel.  Sleep queues are different from turnstiles in that wait
31  * channels are not owned by anyone, so there is no priority propagation.
32  * Sleep queues can also provide a timeout and can also be interrupted by
33  * signals.  That said, there are several similarities between the turnstile
34  * and sleep queue implementations.  (Note: turnstiles were implemented
35  * first.)  For example, both use a hash table of the same size where each
36  * bucket is referred to as a "chain" that contains both a spin lock and
37  * a linked list of queues.  An individual queue is located by using a hash
38  * to pick a chain, locking the chain, and then walking the chain searching
39  * for the queue.  This means that a wait channel object does not need to
40  * embed its queue head just as locks do not embed their turnstile queue
41  * head.  Threads also carry around a sleep queue that they lend to the
42  * wait channel when blocking.  Just as in turnstiles, the queue includes
43  * a free list of the sleep queues of other threads blocked on the same
44  * wait channel in the case of multiple waiters.
45  *
46  * Some additional functionality provided by sleep queues include the
47  * ability to set a timeout.  The timeout is managed using a per-thread
48  * callout that resumes a thread if it is asleep.  A thread may also
49  * catch signals while it is asleep (aka an interruptible sleep).  The
50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51  * sleep queues also provide some extra assertions.  One is not allowed to
52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53  * must consistently use the same lock to synchronize with a wait channel,
54  * though this check is currently only a warning for sleep/wakeup due to
55  * pre-existing abuse of that API.  The same lock must also be held when
56  * awakening threads, though that is currently only enforced for condition
57  * variables.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_sleepqueue_profiling.h"
64 #include "opt_ddb.h"
65 #include "opt_sched.h"
66 #include "opt_stack.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sdt.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/stack.h>
81 #include <sys/sysctl.h>
82 #include <sys/time.h>
83 #ifdef EPOCH_TRACE
84 #include <sys/epoch.h>
85 #endif
86 
87 #include <machine/atomic.h>
88 
89 #include <vm/uma.h>
90 
91 #ifdef DDB
92 #include <ddb/ddb.h>
93 #endif
94 
95 /*
96  * Constants for the hash table of sleep queue chains.
97  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
98  */
99 #ifndef SC_TABLESIZE
100 #define	SC_TABLESIZE	256
101 #endif
102 CTASSERT(powerof2(SC_TABLESIZE));
103 #define	SC_MASK		(SC_TABLESIZE - 1)
104 #define	SC_SHIFT	8
105 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
106 			    SC_MASK)
107 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
108 #define NR_SLEEPQS      2
109 /*
110  * There are two different lists of sleep queues.  Both lists are connected
111  * via the sq_hash entries.  The first list is the sleep queue chain list
112  * that a sleep queue is on when it is attached to a wait channel.  The
113  * second list is the free list hung off of a sleep queue that is attached
114  * to a wait channel.
115  *
116  * Each sleep queue also contains the wait channel it is attached to, the
117  * list of threads blocked on that wait channel, flags specific to the
118  * wait channel, and the lock used to synchronize with a wait channel.
119  * The flags are used to catch mismatches between the various consumers
120  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
121  * The lock pointer is only used when invariants are enabled for various
122  * debugging checks.
123  *
124  * Locking key:
125  *  c - sleep queue chain lock
126  */
127 struct sleepqueue {
128 	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
129 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
130 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
131 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
132 	const void	*sq_wchan;		/* (c) Wait channel. */
133 	int	sq_type;			/* (c) Queue type. */
134 #ifdef INVARIANTS
135 	struct lock_object *sq_lock;		/* (c) Associated lock. */
136 #endif
137 };
138 
139 struct sleepqueue_chain {
140 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
141 	struct mtx sc_lock;			/* Spin lock for this chain. */
142 #ifdef SLEEPQUEUE_PROFILING
143 	u_int	sc_depth;			/* Length of sc_queues. */
144 	u_int	sc_max_depth;			/* Max length of sc_queues. */
145 #endif
146 } __aligned(CACHE_LINE_SIZE);
147 
148 #ifdef SLEEPQUEUE_PROFILING
149 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
150     "sleepq profiling");
151 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains,
152     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
153     "sleepq chain stats");
154 static u_int sleepq_max_depth;
155 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
156     0, "maxmimum depth achieved of a single chain");
157 
158 static void	sleepq_profile(const char *wmesg);
159 static int	prof_enabled;
160 #endif
161 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
162 static uma_zone_t sleepq_zone;
163 
164 /*
165  * Prototypes for non-exported routines.
166  */
167 static int	sleepq_catch_signals(const void *wchan, int pri);
168 static inline int sleepq_check_signals(void);
169 static inline int sleepq_check_timeout(void);
170 #ifdef INVARIANTS
171 static void	sleepq_dtor(void *mem, int size, void *arg);
172 #endif
173 static int	sleepq_init(void *mem, int size, int flags);
174 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
175 		    int pri, int srqflags);
176 static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
177 static void	sleepq_switch(const void *wchan, int pri);
178 static void	sleepq_timeout(void *arg);
179 
180 SDT_PROBE_DECLARE(sched, , , sleep);
181 SDT_PROBE_DECLARE(sched, , , wakeup);
182 
183 /*
184  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
185  * Note that it must happen after sleepinit() has been fully executed, so
186  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
187  */
188 #ifdef SLEEPQUEUE_PROFILING
189 static void
190 init_sleepqueue_profiling(void)
191 {
192 	char chain_name[10];
193 	struct sysctl_oid *chain_oid;
194 	u_int i;
195 
196 	for (i = 0; i < SC_TABLESIZE; i++) {
197 		snprintf(chain_name, sizeof(chain_name), "%u", i);
198 		chain_oid = SYSCTL_ADD_NODE(NULL,
199 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
200 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
201 		    "sleepq chain stats");
202 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
203 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
204 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
205 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
206 		    NULL);
207 	}
208 }
209 
210 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
211     init_sleepqueue_profiling, NULL);
212 #endif
213 
214 /*
215  * Early initialization of sleep queues that is called from the sleepinit()
216  * SYSINIT.
217  */
218 void
219 init_sleepqueues(void)
220 {
221 	int i;
222 
223 	for (i = 0; i < SC_TABLESIZE; i++) {
224 		LIST_INIT(&sleepq_chains[i].sc_queues);
225 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
226 		    MTX_SPIN);
227 	}
228 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
229 #ifdef INVARIANTS
230 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
231 #else
232 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
233 #endif
234 
235 	thread0.td_sleepqueue = sleepq_alloc();
236 }
237 
238 /*
239  * Get a sleep queue for a new thread.
240  */
241 struct sleepqueue *
242 sleepq_alloc(void)
243 {
244 
245 	return (uma_zalloc(sleepq_zone, M_WAITOK));
246 }
247 
248 /*
249  * Free a sleep queue when a thread is destroyed.
250  */
251 void
252 sleepq_free(struct sleepqueue *sq)
253 {
254 
255 	uma_zfree(sleepq_zone, sq);
256 }
257 
258 /*
259  * Lock the sleep queue chain associated with the specified wait channel.
260  */
261 void
262 sleepq_lock(const void *wchan)
263 {
264 	struct sleepqueue_chain *sc;
265 
266 	sc = SC_LOOKUP(wchan);
267 	mtx_lock_spin(&sc->sc_lock);
268 }
269 
270 /*
271  * Look up the sleep queue associated with a given wait channel in the hash
272  * table locking the associated sleep queue chain.  If no queue is found in
273  * the table, NULL is returned.
274  */
275 struct sleepqueue *
276 sleepq_lookup(const void *wchan)
277 {
278 	struct sleepqueue_chain *sc;
279 	struct sleepqueue *sq;
280 
281 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
282 	sc = SC_LOOKUP(wchan);
283 	mtx_assert(&sc->sc_lock, MA_OWNED);
284 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
285 		if (sq->sq_wchan == wchan)
286 			return (sq);
287 	return (NULL);
288 }
289 
290 /*
291  * Unlock the sleep queue chain associated with a given wait channel.
292  */
293 void
294 sleepq_release(const void *wchan)
295 {
296 	struct sleepqueue_chain *sc;
297 
298 	sc = SC_LOOKUP(wchan);
299 	mtx_unlock_spin(&sc->sc_lock);
300 }
301 
302 /*
303  * Places the current thread on the sleep queue for the specified wait
304  * channel.  If INVARIANTS is enabled, then it associates the passed in
305  * lock with the sleepq to make sure it is held when that sleep queue is
306  * woken up.
307  */
308 void
309 sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg,
310     int flags, int queue)
311 {
312 	struct sleepqueue_chain *sc;
313 	struct sleepqueue *sq;
314 	struct thread *td;
315 
316 	td = curthread;
317 	sc = SC_LOOKUP(wchan);
318 	mtx_assert(&sc->sc_lock, MA_OWNED);
319 	MPASS(td->td_sleepqueue != NULL);
320 	MPASS(wchan != NULL);
321 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
322 
323 	/* If this thread is not allowed to sleep, die a horrible death. */
324 	if (__predict_false(!THREAD_CAN_SLEEP())) {
325 #ifdef EPOCH_TRACE
326 		epoch_trace_list(curthread);
327 #endif
328 		KASSERT(0,
329 		    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
330 		    __func__, td, wchan));
331 	}
332 
333 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
334 	sq = sleepq_lookup(wchan);
335 
336 	/*
337 	 * If the wait channel does not already have a sleep queue, use
338 	 * this thread's sleep queue.  Otherwise, insert the current thread
339 	 * into the sleep queue already in use by this wait channel.
340 	 */
341 	if (sq == NULL) {
342 #ifdef INVARIANTS
343 		int i;
344 
345 		sq = td->td_sleepqueue;
346 		for (i = 0; i < NR_SLEEPQS; i++) {
347 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
348 			    ("thread's sleep queue %d is not empty", i));
349 			KASSERT(sq->sq_blockedcnt[i] == 0,
350 			    ("thread's sleep queue %d count mismatches", i));
351 		}
352 		KASSERT(LIST_EMPTY(&sq->sq_free),
353 		    ("thread's sleep queue has a non-empty free list"));
354 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
355 		sq->sq_lock = lock;
356 #endif
357 #ifdef SLEEPQUEUE_PROFILING
358 		sc->sc_depth++;
359 		if (sc->sc_depth > sc->sc_max_depth) {
360 			sc->sc_max_depth = sc->sc_depth;
361 			if (sc->sc_max_depth > sleepq_max_depth)
362 				sleepq_max_depth = sc->sc_max_depth;
363 		}
364 #endif
365 		sq = td->td_sleepqueue;
366 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
367 		sq->sq_wchan = wchan;
368 		sq->sq_type = flags & SLEEPQ_TYPE;
369 	} else {
370 		MPASS(wchan == sq->sq_wchan);
371 		MPASS(lock == sq->sq_lock);
372 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
373 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
374 	}
375 	thread_lock(td);
376 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
377 	sq->sq_blockedcnt[queue]++;
378 	td->td_sleepqueue = NULL;
379 	td->td_sqqueue = queue;
380 	td->td_wchan = wchan;
381 	td->td_wmesg = wmesg;
382 	if (flags & SLEEPQ_INTERRUPTIBLE) {
383 		td->td_intrval = 0;
384 		td->td_flags |= TDF_SINTR;
385 	}
386 	td->td_flags &= ~TDF_TIMEOUT;
387 	thread_unlock(td);
388 }
389 
390 /*
391  * Sets a timeout that will remove the current thread from the
392  * specified sleep queue at the specified time if the thread has not
393  * already been awakened.  Flags are from C_* (callout) namespace.
394  */
395 void
396 sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr,
397     int flags)
398 {
399 	struct sleepqueue_chain *sc __unused;
400 	struct thread *td;
401 	sbintime_t pr1;
402 
403 	td = curthread;
404 	sc = SC_LOOKUP(wchan);
405 	mtx_assert(&sc->sc_lock, MA_OWNED);
406 	MPASS(TD_ON_SLEEPQ(td));
407 	MPASS(td->td_sleepqueue == NULL);
408 	MPASS(wchan != NULL);
409 	if (cold && td == &thread0)
410 		panic("timed sleep before timers are working");
411 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
412 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
413 	thread_lock(td);
414 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
415 	thread_unlock(td);
416 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
417 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
418 	    C_DIRECT_EXEC);
419 }
420 
421 /*
422  * Return the number of actual sleepers for the specified queue.
423  */
424 u_int
425 sleepq_sleepcnt(const void *wchan, int queue)
426 {
427 	struct sleepqueue *sq;
428 
429 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
430 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
431 	sq = sleepq_lookup(wchan);
432 	if (sq == NULL)
433 		return (0);
434 	return (sq->sq_blockedcnt[queue]);
435 }
436 
437 static int
438 sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc)
439 {
440 	struct proc *p;
441 	int ret;
442 
443 	mtx_assert(&sc->sc_lock, MA_OWNED);
444 
445 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
446 		td->td_pflags &= ~TDP_WAKEUP;
447 		thread_lock(td);
448 		return (EINTR);
449 	}
450 
451 	/*
452 	 * See if there are any pending signals or suspension requests for this
453 	 * thread.  If not, we can switch immediately.
454 	 */
455 	thread_lock(td);
456 	if (!td_ast_pending(td, TDA_SIG) && !td_ast_pending(td, TDA_SUSPEND))
457 		return (0);
458 
459 	thread_unlock(td);
460 	mtx_unlock_spin(&sc->sc_lock);
461 
462 	p = td->td_proc;
463 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
464 	    (void *)td, (long)p->p_pid, td->td_name);
465 	PROC_LOCK(p);
466 
467 	/*
468 	 * Check for suspension first. Checking for signals and then
469 	 * suspending could result in a missed signal, since a signal
470 	 * can be delivered while this thread is suspended.
471 	 */
472 	ret = sig_ast_checksusp(td);
473 	if (ret != 0) {
474 		PROC_UNLOCK(p);
475 		mtx_lock_spin(&sc->sc_lock);
476 		thread_lock(td);
477 		return (ret);
478 	}
479 
480 	ret = sig_ast_needsigchk(td);
481 
482 	/*
483 	 * Lock the per-process spinlock prior to dropping the
484 	 * PROC_LOCK to avoid a signal delivery race.
485 	 * PROC_LOCK, PROC_SLOCK, and thread_lock() are
486 	 * currently held in tdsendsignal() and thread_single().
487 	 */
488 	PROC_SLOCK(p);
489 	mtx_lock_spin(&sc->sc_lock);
490 	PROC_UNLOCK(p);
491 	thread_lock(td);
492 	PROC_SUNLOCK(p);
493 
494 	return (ret);
495 }
496 
497 /*
498  * Marks the pending sleep of the current thread as interruptible and
499  * makes an initial check for pending signals before putting a thread
500  * to sleep. Enters and exits with the thread lock held.  Thread lock
501  * may have transitioned from the sleepq lock to a run lock.
502  */
503 static int
504 sleepq_catch_signals(const void *wchan, int pri)
505 {
506 	struct thread *td;
507 	struct sleepqueue_chain *sc;
508 	struct sleepqueue *sq;
509 	int ret;
510 
511 	sc = SC_LOOKUP(wchan);
512 	mtx_assert(&sc->sc_lock, MA_OWNED);
513 	MPASS(wchan != NULL);
514 	td = curthread;
515 
516 	ret = sleepq_check_ast_sc_locked(td, sc);
517 	THREAD_LOCK_ASSERT(td, MA_OWNED);
518 	mtx_assert(&sc->sc_lock, MA_OWNED);
519 
520 	if (ret == 0) {
521 		/*
522 		 * No pending signals and no suspension requests found.
523 		 * Switch the thread off the cpu.
524 		 */
525 		sleepq_switch(wchan, pri);
526 	} else {
527 		/*
528 		 * There were pending signals and this thread is still
529 		 * on the sleep queue, remove it from the sleep queue.
530 		 */
531 		if (TD_ON_SLEEPQ(td)) {
532 			sq = sleepq_lookup(wchan);
533 			sleepq_remove_thread(sq, td);
534 		}
535 		MPASS(td->td_lock != &sc->sc_lock);
536 		mtx_unlock_spin(&sc->sc_lock);
537 		thread_unlock(td);
538 	}
539 	return (ret);
540 }
541 
542 /*
543  * Switches to another thread if we are still asleep on a sleep queue.
544  * Returns with thread lock.
545  */
546 static void
547 sleepq_switch(const void *wchan, int pri)
548 {
549 	struct sleepqueue_chain *sc;
550 	struct sleepqueue *sq;
551 	struct thread *td;
552 	bool rtc_changed;
553 
554 	td = curthread;
555 	sc = SC_LOOKUP(wchan);
556 	mtx_assert(&sc->sc_lock, MA_OWNED);
557 	THREAD_LOCK_ASSERT(td, MA_OWNED);
558 
559 	/*
560 	 * If we have a sleep queue, then we've already been woken up, so
561 	 * just return.
562 	 */
563 	if (td->td_sleepqueue != NULL) {
564 		mtx_unlock_spin(&sc->sc_lock);
565 		thread_unlock(td);
566 		return;
567 	}
568 
569 	/*
570 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
571 	 * already but we are still on the sleep queue, so dequeue the
572 	 * thread and return.
573 	 *
574 	 * Do the same if the real-time clock has been adjusted since this
575 	 * thread calculated its timeout based on that clock.  This handles
576 	 * the following race:
577 	 * - The Ts thread needs to sleep until an absolute real-clock time.
578 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
579 	 *   reads the RTC, and calculates a sleep duration based on that time.
580 	 *   See umtxq_sleep() for an example.
581 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
582 	 *   threads that are sleeping until an absolute real-clock time.
583 	 *   See tc_setclock() and the POSIX specification of clock_settime().
584 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
585 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
586 	 * (The declaration of td_rtcgen refers to this comment.)
587 	 */
588 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
589 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
590 		if (rtc_changed) {
591 			td->td_rtcgen = 0;
592 		}
593 		MPASS(TD_ON_SLEEPQ(td));
594 		sq = sleepq_lookup(wchan);
595 		sleepq_remove_thread(sq, td);
596 		mtx_unlock_spin(&sc->sc_lock);
597 		thread_unlock(td);
598 		return;
599 	}
600 #ifdef SLEEPQUEUE_PROFILING
601 	if (prof_enabled)
602 		sleepq_profile(td->td_wmesg);
603 #endif
604 	MPASS(td->td_sleepqueue == NULL);
605 	sched_sleep(td, pri);
606 	thread_lock_set(td, &sc->sc_lock);
607 	SDT_PROBE0(sched, , , sleep);
608 	TD_SET_SLEEPING(td);
609 	mi_switch(SW_VOL | SWT_SLEEPQ);
610 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
611 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
612 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
613 }
614 
615 /*
616  * Check to see if we timed out.
617  */
618 static inline int
619 sleepq_check_timeout(void)
620 {
621 	struct thread *td;
622 	int res;
623 
624 	res = 0;
625 	td = curthread;
626 	if (td->td_sleeptimo != 0) {
627 		if (td->td_sleeptimo <= sbinuptime())
628 			res = EWOULDBLOCK;
629 		td->td_sleeptimo = 0;
630 	}
631 	return (res);
632 }
633 
634 /*
635  * Check to see if we were awoken by a signal.
636  */
637 static inline int
638 sleepq_check_signals(void)
639 {
640 	struct thread *td;
641 
642 	td = curthread;
643 	KASSERT((td->td_flags & TDF_SINTR) == 0,
644 	    ("thread %p still in interruptible sleep?", td));
645 
646 	return (td->td_intrval);
647 }
648 
649 /*
650  * Block the current thread until it is awakened from its sleep queue.
651  */
652 void
653 sleepq_wait(const void *wchan, int pri)
654 {
655 	struct thread *td;
656 
657 	td = curthread;
658 	MPASS(!(td->td_flags & TDF_SINTR));
659 	thread_lock(td);
660 	sleepq_switch(wchan, pri);
661 }
662 
663 /*
664  * Block the current thread until it is awakened from its sleep queue
665  * or it is interrupted by a signal.
666  */
667 int
668 sleepq_wait_sig(const void *wchan, int pri)
669 {
670 	int rcatch;
671 
672 	rcatch = sleepq_catch_signals(wchan, pri);
673 	if (rcatch)
674 		return (rcatch);
675 	return (sleepq_check_signals());
676 }
677 
678 /*
679  * Block the current thread until it is awakened from its sleep queue
680  * or it times out while waiting.
681  */
682 int
683 sleepq_timedwait(const void *wchan, int pri)
684 {
685 	struct thread *td;
686 
687 	td = curthread;
688 	MPASS(!(td->td_flags & TDF_SINTR));
689 
690 	thread_lock(td);
691 	sleepq_switch(wchan, pri);
692 
693 	return (sleepq_check_timeout());
694 }
695 
696 /*
697  * Block the current thread until it is awakened from its sleep queue,
698  * it is interrupted by a signal, or it times out waiting to be awakened.
699  */
700 int
701 sleepq_timedwait_sig(const void *wchan, int pri)
702 {
703 	int rcatch, rvalt, rvals;
704 
705 	rcatch = sleepq_catch_signals(wchan, pri);
706 	/* We must always call check_timeout() to clear sleeptimo. */
707 	rvalt = sleepq_check_timeout();
708 	rvals = sleepq_check_signals();
709 	if (rcatch)
710 		return (rcatch);
711 	if (rvals)
712 		return (rvals);
713 	return (rvalt);
714 }
715 
716 /*
717  * Returns the type of sleepqueue given a waitchannel.
718  */
719 int
720 sleepq_type(const void *wchan)
721 {
722 	struct sleepqueue *sq;
723 	int type;
724 
725 	MPASS(wchan != NULL);
726 
727 	sq = sleepq_lookup(wchan);
728 	if (sq == NULL)
729 		return (-1);
730 	type = sq->sq_type;
731 
732 	return (type);
733 }
734 
735 /*
736  * Removes a thread from a sleep queue and makes it
737  * runnable.
738  *
739  * Requires the sc chain locked on entry.  If SRQ_HOLD is specified it will
740  * be locked on return.  Returns without the thread lock held.
741  */
742 static int
743 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri,
744     int srqflags)
745 {
746 	struct sleepqueue_chain *sc;
747 	bool drop;
748 
749 	MPASS(td != NULL);
750 	MPASS(sq->sq_wchan != NULL);
751 	MPASS(td->td_wchan == sq->sq_wchan);
752 
753 	sc = SC_LOOKUP(sq->sq_wchan);
754 	mtx_assert(&sc->sc_lock, MA_OWNED);
755 
756 	/*
757 	 * Avoid recursing on the chain lock.  If the locks don't match we
758 	 * need to acquire the thread lock which setrunnable will drop for
759 	 * us.  In this case we need to drop the chain lock afterwards.
760 	 *
761 	 * There is no race that will make td_lock equal to sc_lock because
762 	 * we hold sc_lock.
763 	 */
764 	drop = false;
765 	if (!TD_IS_SLEEPING(td)) {
766 		thread_lock(td);
767 		drop = true;
768 	} else
769 		thread_lock_block_wait(td);
770 
771 	/* Remove thread from the sleepq. */
772 	sleepq_remove_thread(sq, td);
773 
774 	/* If we're done with the sleepqueue release it. */
775 	if ((srqflags & SRQ_HOLD) == 0 && drop)
776 		mtx_unlock_spin(&sc->sc_lock);
777 
778 	/* Adjust priority if requested. */
779 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
780 	if (pri != 0 && td->td_priority > pri &&
781 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
782 		sched_prio(td, pri);
783 
784 	/*
785 	 * Note that thread td might not be sleeping if it is running
786 	 * sleepq_catch_signals() on another CPU or is blocked on its
787 	 * proc lock to check signals.  There's no need to mark the
788 	 * thread runnable in that case.
789 	 */
790 	if (TD_IS_SLEEPING(td)) {
791 		MPASS(!drop);
792 		TD_CLR_SLEEPING(td);
793 		return (setrunnable(td, srqflags));
794 	}
795 	MPASS(drop);
796 	thread_unlock(td);
797 
798 	return (0);
799 }
800 
801 static void
802 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
803 {
804 	struct sleepqueue_chain *sc __unused;
805 
806 	MPASS(td != NULL);
807 	MPASS(sq->sq_wchan != NULL);
808 	MPASS(td->td_wchan == sq->sq_wchan);
809 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
810 	THREAD_LOCK_ASSERT(td, MA_OWNED);
811 	sc = SC_LOOKUP(sq->sq_wchan);
812 	mtx_assert(&sc->sc_lock, MA_OWNED);
813 
814 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
815 
816 	/* Remove the thread from the queue. */
817 	sq->sq_blockedcnt[td->td_sqqueue]--;
818 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
819 
820 	/*
821 	 * Get a sleep queue for this thread.  If this is the last waiter,
822 	 * use the queue itself and take it out of the chain, otherwise,
823 	 * remove a queue from the free list.
824 	 */
825 	if (LIST_EMPTY(&sq->sq_free)) {
826 		td->td_sleepqueue = sq;
827 #ifdef INVARIANTS
828 		sq->sq_wchan = NULL;
829 #endif
830 #ifdef SLEEPQUEUE_PROFILING
831 		sc->sc_depth--;
832 #endif
833 	} else
834 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
835 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
836 
837 	if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0 &&
838 	    td->td_lock == &sc->sc_lock) {
839 		/*
840 		 * We ignore the situation where timeout subsystem was
841 		 * unable to stop our callout.  The struct thread is
842 		 * type-stable, the callout will use the correct
843 		 * memory when running.  The checks of the
844 		 * td_sleeptimo value in this function and in
845 		 * sleepq_timeout() ensure that the thread does not
846 		 * get spurious wakeups, even if the callout was reset
847 		 * or thread reused.
848 		 *
849 		 * We also cannot safely stop the callout if a scheduler
850 		 * lock is held since softclock_thread() forces a lock
851 		 * order of callout lock -> scheduler lock.  The thread
852 		 * lock will be a scheduler lock only if the thread is
853 		 * preparing to go to sleep, so this is hopefully a rare
854 		 * scenario.
855 		 */
856 		callout_stop(&td->td_slpcallout);
857 	}
858 
859 	td->td_wmesg = NULL;
860 	td->td_wchan = NULL;
861 	td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT);
862 
863 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
864 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
865 }
866 
867 void
868 sleepq_remove_nested(struct thread *td)
869 {
870 	struct sleepqueue_chain *sc;
871 	struct sleepqueue *sq;
872 	const void *wchan;
873 
874 	MPASS(TD_ON_SLEEPQ(td));
875 
876 	wchan = td->td_wchan;
877 	sc = SC_LOOKUP(wchan);
878 	mtx_lock_spin(&sc->sc_lock);
879 	sq = sleepq_lookup(wchan);
880 	MPASS(sq != NULL);
881 	thread_lock(td);
882 	sleepq_remove_thread(sq, td);
883 	mtx_unlock_spin(&sc->sc_lock);
884 	/* Returns with the thread lock owned. */
885 }
886 
887 #ifdef INVARIANTS
888 /*
889  * UMA zone item deallocator.
890  */
891 static void
892 sleepq_dtor(void *mem, int size, void *arg)
893 {
894 	struct sleepqueue *sq;
895 	int i;
896 
897 	sq = mem;
898 	for (i = 0; i < NR_SLEEPQS; i++) {
899 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
900 		MPASS(sq->sq_blockedcnt[i] == 0);
901 	}
902 }
903 #endif
904 
905 /*
906  * UMA zone item initializer.
907  */
908 static int
909 sleepq_init(void *mem, int size, int flags)
910 {
911 	struct sleepqueue *sq;
912 	int i;
913 
914 	bzero(mem, size);
915 	sq = mem;
916 	for (i = 0; i < NR_SLEEPQS; i++) {
917 		TAILQ_INIT(&sq->sq_blocked[i]);
918 		sq->sq_blockedcnt[i] = 0;
919 	}
920 	LIST_INIT(&sq->sq_free);
921 	return (0);
922 }
923 
924 /*
925  * Find thread sleeping on a wait channel and resume it.
926  */
927 int
928 sleepq_signal(const void *wchan, int flags, int pri, int queue)
929 {
930 	struct sleepqueue_chain *sc;
931 	struct sleepqueue *sq;
932 	struct threadqueue *head;
933 	struct thread *td, *besttd;
934 	int wakeup_swapper;
935 
936 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
937 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
938 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
939 	sq = sleepq_lookup(wchan);
940 	if (sq == NULL) {
941 		if (flags & SLEEPQ_DROP)
942 			sleepq_release(wchan);
943 		return (0);
944 	}
945 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
946 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
947 
948 	head = &sq->sq_blocked[queue];
949 	if (flags & SLEEPQ_UNFAIR) {
950 		/*
951 		 * Find the most recently sleeping thread, but try to
952 		 * skip threads still in process of context switch to
953 		 * avoid spinning on the thread lock.
954 		 */
955 		sc = SC_LOOKUP(wchan);
956 		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
957 		while (besttd->td_lock != &sc->sc_lock) {
958 			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
959 			if (td == NULL)
960 				break;
961 			besttd = td;
962 		}
963 	} else {
964 		/*
965 		 * Find the highest priority thread on the queue.  If there
966 		 * is a tie, use the thread that first appears in the queue
967 		 * as it has been sleeping the longest since threads are
968 		 * always added to the tail of sleep queues.
969 		 */
970 		besttd = td = TAILQ_FIRST(head);
971 		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
972 			if (td->td_priority < besttd->td_priority)
973 				besttd = td;
974 		}
975 	}
976 	MPASS(besttd != NULL);
977 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri,
978 	    (flags & SLEEPQ_DROP) ? 0 : SRQ_HOLD);
979 	return (wakeup_swapper);
980 }
981 
982 static bool
983 match_any(struct thread *td __unused)
984 {
985 
986 	return (true);
987 }
988 
989 /*
990  * Resume all threads sleeping on a specified wait channel.
991  */
992 int
993 sleepq_broadcast(const void *wchan, int flags, int pri, int queue)
994 {
995 	struct sleepqueue *sq;
996 
997 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
998 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
999 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1000 	sq = sleepq_lookup(wchan);
1001 	if (sq == NULL)
1002 		return (0);
1003 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
1004 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
1005 
1006 	return (sleepq_remove_matching(sq, queue, match_any, pri));
1007 }
1008 
1009 /*
1010  * Resume threads on the sleep queue that match the given predicate.
1011  */
1012 int
1013 sleepq_remove_matching(struct sleepqueue *sq, int queue,
1014     bool (*matches)(struct thread *), int pri)
1015 {
1016 	struct thread *td, *tdn;
1017 	int wakeup_swapper;
1018 
1019 	/*
1020 	 * The last thread will be given ownership of sq and may
1021 	 * re-enqueue itself before sleepq_resume_thread() returns,
1022 	 * so we must cache the "next" queue item at the beginning
1023 	 * of the final iteration.
1024 	 */
1025 	wakeup_swapper = 0;
1026 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
1027 		if (matches(td))
1028 			wakeup_swapper |= sleepq_resume_thread(sq, td, pri,
1029 			    SRQ_HOLD);
1030 	}
1031 
1032 	return (wakeup_swapper);
1033 }
1034 
1035 /*
1036  * Time sleeping threads out.  When the timeout expires, the thread is
1037  * removed from the sleep queue and made runnable if it is still asleep.
1038  */
1039 static void
1040 sleepq_timeout(void *arg)
1041 {
1042 	struct sleepqueue_chain *sc __unused;
1043 	struct sleepqueue *sq;
1044 	struct thread *td;
1045 	const void *wchan;
1046 	int wakeup_swapper;
1047 
1048 	td = arg;
1049 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1050 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1051 
1052 	thread_lock(td);
1053 	if (td->td_sleeptimo == 0 ||
1054 	    td->td_sleeptimo > td->td_slpcallout.c_time) {
1055 		/*
1056 		 * The thread does not want a timeout (yet).
1057 		 */
1058 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1059 		/*
1060 		 * See if the thread is asleep and get the wait
1061 		 * channel if it is.
1062 		 */
1063 		wchan = td->td_wchan;
1064 		sc = SC_LOOKUP(wchan);
1065 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1066 		sq = sleepq_lookup(wchan);
1067 		MPASS(sq != NULL);
1068 		td->td_flags |= TDF_TIMEOUT;
1069 		wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1070 		if (wakeup_swapper)
1071 			kick_proc0();
1072 		return;
1073 	} else if (TD_ON_SLEEPQ(td)) {
1074 		/*
1075 		 * If the thread is on the SLEEPQ but isn't sleeping
1076 		 * yet, it can either be on another CPU in between
1077 		 * sleepq_add() and one of the sleepq_*wait*()
1078 		 * routines or it can be in sleepq_catch_signals().
1079 		 */
1080 		td->td_flags |= TDF_TIMEOUT;
1081 	}
1082 	thread_unlock(td);
1083 }
1084 
1085 /*
1086  * Resumes a specific thread from the sleep queue associated with a specific
1087  * wait channel if it is on that queue.
1088  */
1089 void
1090 sleepq_remove(struct thread *td, const void *wchan)
1091 {
1092 	struct sleepqueue_chain *sc;
1093 	struct sleepqueue *sq;
1094 	int wakeup_swapper;
1095 
1096 	/*
1097 	 * Look up the sleep queue for this wait channel, then re-check
1098 	 * that the thread is asleep on that channel, if it is not, then
1099 	 * bail.
1100 	 */
1101 	MPASS(wchan != NULL);
1102 	sc = SC_LOOKUP(wchan);
1103 	mtx_lock_spin(&sc->sc_lock);
1104 	/*
1105 	 * We can not lock the thread here as it may be sleeping on a
1106 	 * different sleepq.  However, holding the sleepq lock for this
1107 	 * wchan can guarantee that we do not miss a wakeup for this
1108 	 * channel.  The asserts below will catch any false positives.
1109 	 */
1110 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1111 		mtx_unlock_spin(&sc->sc_lock);
1112 		return;
1113 	}
1114 
1115 	/* Thread is asleep on sleep queue sq, so wake it up. */
1116 	sq = sleepq_lookup(wchan);
1117 	MPASS(sq != NULL);
1118 	MPASS(td->td_wchan == wchan);
1119 	wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1120 	if (wakeup_swapper)
1121 		kick_proc0();
1122 }
1123 
1124 /*
1125  * Abort a thread as if an interrupt had occurred.  Only abort
1126  * interruptible waits (unfortunately it isn't safe to abort others).
1127  *
1128  * Requires thread lock on entry, releases on return.
1129  */
1130 int
1131 sleepq_abort(struct thread *td, int intrval)
1132 {
1133 	struct sleepqueue *sq;
1134 	const void *wchan;
1135 
1136 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1137 	MPASS(TD_ON_SLEEPQ(td));
1138 	MPASS(td->td_flags & TDF_SINTR);
1139 	MPASS((intrval == 0 && (td->td_flags & TDF_SIGWAIT) != 0) ||
1140 	    intrval == EINTR || intrval == ERESTART);
1141 
1142 	/*
1143 	 * If the TDF_TIMEOUT flag is set, just leave. A
1144 	 * timeout is scheduled anyhow.
1145 	 */
1146 	if (td->td_flags & TDF_TIMEOUT) {
1147 		thread_unlock(td);
1148 		return (0);
1149 	}
1150 
1151 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1152 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1153 	td->td_intrval = intrval;
1154 
1155 	/*
1156 	 * If the thread has not slept yet it will find the signal in
1157 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1158 	 * we have to do it here.
1159 	 */
1160 	if (!TD_IS_SLEEPING(td)) {
1161 		thread_unlock(td);
1162 		return (0);
1163 	}
1164 	wchan = td->td_wchan;
1165 	MPASS(wchan != NULL);
1166 	sq = sleepq_lookup(wchan);
1167 	MPASS(sq != NULL);
1168 
1169 	/* Thread is asleep on sleep queue sq, so wake it up. */
1170 	return (sleepq_resume_thread(sq, td, 0, 0));
1171 }
1172 
1173 void
1174 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1175 {
1176 	struct sleepqueue_chain *sc;
1177 	struct sleepqueue *sq, *sq1;
1178 	int i, wakeup_swapper;
1179 
1180 	wakeup_swapper = 0;
1181 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1182 		if (LIST_EMPTY(&sc->sc_queues)) {
1183 			continue;
1184 		}
1185 		mtx_lock_spin(&sc->sc_lock);
1186 		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1187 			for (i = 0; i < NR_SLEEPQS; ++i) {
1188 				wakeup_swapper |= sleepq_remove_matching(sq, i,
1189 				    matches, 0);
1190 			}
1191 		}
1192 		mtx_unlock_spin(&sc->sc_lock);
1193 	}
1194 	if (wakeup_swapper) {
1195 		kick_proc0();
1196 	}
1197 }
1198 
1199 /*
1200  * Prints the stacks of all threads presently sleeping on wchan/queue to
1201  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1202  * printed.  Typically, this will equal the number of threads sleeping on the
1203  * queue, but may be less if sb overflowed before all stacks were printed.
1204  */
1205 #ifdef STACK
1206 int
1207 sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue,
1208     int *count_stacks_printed)
1209 {
1210 	struct thread *td, *td_next;
1211 	struct sleepqueue *sq;
1212 	struct stack **st;
1213 	struct sbuf **td_infos;
1214 	int i, stack_idx, error, stacks_to_allocate;
1215 	bool finished;
1216 
1217 	error = 0;
1218 	finished = false;
1219 
1220 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1221 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1222 
1223 	stacks_to_allocate = 10;
1224 	for (i = 0; i < 3 && !finished ; i++) {
1225 		/* We cannot malloc while holding the queue's spinlock, so
1226 		 * we do our mallocs now, and hope it is enough.  If it
1227 		 * isn't, we will free these, drop the lock, malloc more,
1228 		 * and try again, up to a point.  After that point we will
1229 		 * give up and report ENOMEM. We also cannot write to sb
1230 		 * during this time since the client may have set the
1231 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1232 		 * malloc as we print to it.  So we defer actually printing
1233 		 * to sb until after we drop the spinlock.
1234 		 */
1235 
1236 		/* Where we will store the stacks. */
1237 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1238 		    M_TEMP, M_WAITOK);
1239 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1240 		    stack_idx++)
1241 			st[stack_idx] = stack_create(M_WAITOK);
1242 
1243 		/* Where we will store the td name, tid, etc. */
1244 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1245 		    M_TEMP, M_WAITOK);
1246 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1247 		    stack_idx++)
1248 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1249 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1250 			    SBUF_FIXEDLEN);
1251 
1252 		sleepq_lock(wchan);
1253 		sq = sleepq_lookup(wchan);
1254 		if (sq == NULL) {
1255 			/* This sleepq does not exist; exit and return ENOENT. */
1256 			error = ENOENT;
1257 			finished = true;
1258 			sleepq_release(wchan);
1259 			goto loop_end;
1260 		}
1261 
1262 		stack_idx = 0;
1263 		/* Save thread info */
1264 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1265 		    td_next) {
1266 			if (stack_idx >= stacks_to_allocate)
1267 				goto loop_end;
1268 
1269 			/* Note the td_lock is equal to the sleepq_lock here. */
1270 			(void)stack_save_td(st[stack_idx], td);
1271 
1272 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1273 			    td->td_tid, td->td_name, td);
1274 
1275 			++stack_idx;
1276 		}
1277 
1278 		finished = true;
1279 		sleepq_release(wchan);
1280 
1281 		/* Print the stacks */
1282 		for (i = 0; i < stack_idx; i++) {
1283 			sbuf_finish(td_infos[i]);
1284 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1285 			stack_sbuf_print(sb, st[i]);
1286 			sbuf_printf(sb, "\n");
1287 
1288 			error = sbuf_error(sb);
1289 			if (error == 0)
1290 				*count_stacks_printed = stack_idx;
1291 		}
1292 
1293 loop_end:
1294 		if (!finished)
1295 			sleepq_release(wchan);
1296 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1297 		    stack_idx++)
1298 			stack_destroy(st[stack_idx]);
1299 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1300 		    stack_idx++)
1301 			sbuf_delete(td_infos[stack_idx]);
1302 		free(st, M_TEMP);
1303 		free(td_infos, M_TEMP);
1304 		stacks_to_allocate *= 10;
1305 	}
1306 
1307 	if (!finished && error == 0)
1308 		error = ENOMEM;
1309 
1310 	return (error);
1311 }
1312 #endif
1313 
1314 #ifdef SLEEPQUEUE_PROFILING
1315 #define	SLEEPQ_PROF_LOCATIONS	1024
1316 #define	SLEEPQ_SBUFSIZE		512
1317 struct sleepq_prof {
1318 	LIST_ENTRY(sleepq_prof) sp_link;
1319 	const char	*sp_wmesg;
1320 	long		sp_count;
1321 };
1322 
1323 LIST_HEAD(sqphead, sleepq_prof);
1324 
1325 struct sqphead sleepq_prof_free;
1326 struct sqphead sleepq_hash[SC_TABLESIZE];
1327 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1328 static struct mtx sleepq_prof_lock;
1329 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1330 
1331 static void
1332 sleepq_profile(const char *wmesg)
1333 {
1334 	struct sleepq_prof *sp;
1335 
1336 	mtx_lock_spin(&sleepq_prof_lock);
1337 	if (prof_enabled == 0)
1338 		goto unlock;
1339 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1340 		if (sp->sp_wmesg == wmesg)
1341 			goto done;
1342 	sp = LIST_FIRST(&sleepq_prof_free);
1343 	if (sp == NULL)
1344 		goto unlock;
1345 	sp->sp_wmesg = wmesg;
1346 	LIST_REMOVE(sp, sp_link);
1347 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1348 done:
1349 	sp->sp_count++;
1350 unlock:
1351 	mtx_unlock_spin(&sleepq_prof_lock);
1352 	return;
1353 }
1354 
1355 static void
1356 sleepq_prof_reset(void)
1357 {
1358 	struct sleepq_prof *sp;
1359 	int enabled;
1360 	int i;
1361 
1362 	mtx_lock_spin(&sleepq_prof_lock);
1363 	enabled = prof_enabled;
1364 	prof_enabled = 0;
1365 	for (i = 0; i < SC_TABLESIZE; i++)
1366 		LIST_INIT(&sleepq_hash[i]);
1367 	LIST_INIT(&sleepq_prof_free);
1368 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1369 		sp = &sleepq_profent[i];
1370 		sp->sp_wmesg = NULL;
1371 		sp->sp_count = 0;
1372 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1373 	}
1374 	prof_enabled = enabled;
1375 	mtx_unlock_spin(&sleepq_prof_lock);
1376 }
1377 
1378 static int
1379 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1380 {
1381 	int error, v;
1382 
1383 	v = prof_enabled;
1384 	error = sysctl_handle_int(oidp, &v, v, req);
1385 	if (error)
1386 		return (error);
1387 	if (req->newptr == NULL)
1388 		return (error);
1389 	if (v == prof_enabled)
1390 		return (0);
1391 	if (v == 1)
1392 		sleepq_prof_reset();
1393 	mtx_lock_spin(&sleepq_prof_lock);
1394 	prof_enabled = !!v;
1395 	mtx_unlock_spin(&sleepq_prof_lock);
1396 
1397 	return (0);
1398 }
1399 
1400 static int
1401 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1402 {
1403 	int error, v;
1404 
1405 	v = 0;
1406 	error = sysctl_handle_int(oidp, &v, 0, req);
1407 	if (error)
1408 		return (error);
1409 	if (req->newptr == NULL)
1410 		return (error);
1411 	if (v == 0)
1412 		return (0);
1413 	sleepq_prof_reset();
1414 
1415 	return (0);
1416 }
1417 
1418 static int
1419 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1420 {
1421 	struct sleepq_prof *sp;
1422 	struct sbuf *sb;
1423 	int enabled;
1424 	int error;
1425 	int i;
1426 
1427 	error = sysctl_wire_old_buffer(req, 0);
1428 	if (error != 0)
1429 		return (error);
1430 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1431 	sbuf_printf(sb, "\nwmesg\tcount\n");
1432 	enabled = prof_enabled;
1433 	mtx_lock_spin(&sleepq_prof_lock);
1434 	prof_enabled = 0;
1435 	mtx_unlock_spin(&sleepq_prof_lock);
1436 	for (i = 0; i < SC_TABLESIZE; i++) {
1437 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1438 			sbuf_printf(sb, "%s\t%ld\n",
1439 			    sp->sp_wmesg, sp->sp_count);
1440 		}
1441 	}
1442 	mtx_lock_spin(&sleepq_prof_lock);
1443 	prof_enabled = enabled;
1444 	mtx_unlock_spin(&sleepq_prof_lock);
1445 
1446 	error = sbuf_finish(sb);
1447 	sbuf_delete(sb);
1448 	return (error);
1449 }
1450 
1451 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats,
1452     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
1453     dump_sleepq_prof_stats, "A",
1454     "Sleepqueue profiling statistics");
1455 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset,
1456     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1457     reset_sleepq_prof_stats, "I",
1458     "Reset sleepqueue profiling statistics");
1459 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable,
1460     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1461     enable_sleepq_prof, "I",
1462     "Enable sleepqueue profiling");
1463 #endif
1464 
1465 #ifdef DDB
1466 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1467 {
1468 	struct sleepqueue_chain *sc;
1469 	struct sleepqueue *sq;
1470 #ifdef INVARIANTS
1471 	struct lock_object *lock;
1472 #endif
1473 	struct thread *td;
1474 	void *wchan;
1475 	int i;
1476 
1477 	if (!have_addr)
1478 		return;
1479 
1480 	/*
1481 	 * First, see if there is an active sleep queue for the wait channel
1482 	 * indicated by the address.
1483 	 */
1484 	wchan = (void *)addr;
1485 	sc = SC_LOOKUP(wchan);
1486 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1487 		if (sq->sq_wchan == wchan)
1488 			goto found;
1489 
1490 	/*
1491 	 * Second, see if there is an active sleep queue at the address
1492 	 * indicated.
1493 	 */
1494 	for (i = 0; i < SC_TABLESIZE; i++)
1495 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1496 			if (sq == (struct sleepqueue *)addr)
1497 				goto found;
1498 		}
1499 
1500 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1501 	return;
1502 found:
1503 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1504 	db_printf("Queue type: %d\n", sq->sq_type);
1505 #ifdef INVARIANTS
1506 	if (sq->sq_lock) {
1507 		lock = sq->sq_lock;
1508 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1509 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1510 	}
1511 #endif
1512 	db_printf("Blocked threads:\n");
1513 	for (i = 0; i < NR_SLEEPQS; i++) {
1514 		db_printf("\nQueue[%d]:\n", i);
1515 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1516 			db_printf("\tempty\n");
1517 		else
1518 			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1519 				      td_slpq) {
1520 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1521 					  td->td_tid, td->td_proc->p_pid,
1522 					  td->td_name);
1523 			}
1524 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1525 	}
1526 }
1527 
1528 /* Alias 'show sleepqueue' to 'show sleepq'. */
1529 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1530 #endif
1531