1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* 29 * Implementation of sleep queues used to hold queue of threads blocked on 30 * a wait channel. Sleep queues are different from turnstiles in that wait 31 * channels are not owned by anyone, so there is no priority propagation. 32 * Sleep queues can also provide a timeout and can also be interrupted by 33 * signals. That said, there are several similarities between the turnstile 34 * and sleep queue implementations. (Note: turnstiles were implemented 35 * first.) For example, both use a hash table of the same size where each 36 * bucket is referred to as a "chain" that contains both a spin lock and 37 * a linked list of queues. An individual queue is located by using a hash 38 * to pick a chain, locking the chain, and then walking the chain searching 39 * for the queue. This means that a wait channel object does not need to 40 * embed its queue head just as locks do not embed their turnstile queue 41 * head. Threads also carry around a sleep queue that they lend to the 42 * wait channel when blocking. Just as in turnstiles, the queue includes 43 * a free list of the sleep queues of other threads blocked on the same 44 * wait channel in the case of multiple waiters. 45 * 46 * Some additional functionality provided by sleep queues include the 47 * ability to set a timeout. The timeout is managed using a per-thread 48 * callout that resumes a thread if it is asleep. A thread may also 49 * catch signals while it is asleep (aka an interruptible sleep). The 50 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 51 * sleep queues also provide some extra assertions. One is not allowed to 52 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 53 * must consistently use the same lock to synchronize with a wait channel, 54 * though this check is currently only a warning for sleep/wakeup due to 55 * pre-existing abuse of that API. The same lock must also be held when 56 * awakening threads, though that is currently only enforced for condition 57 * variables. 58 */ 59 60 #include <sys/cdefs.h> 61 #include "opt_sleepqueue_profiling.h" 62 #include "opt_ddb.h" 63 #include "opt_sched.h" 64 #include "opt_stack.h" 65 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/lock.h> 69 #include <sys/kernel.h> 70 #include <sys/ktr.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/sbuf.h> 74 #include <sys/sched.h> 75 #include <sys/sdt.h> 76 #include <sys/signalvar.h> 77 #include <sys/sleepqueue.h> 78 #include <sys/stack.h> 79 #include <sys/sysctl.h> 80 #include <sys/time.h> 81 #ifdef EPOCH_TRACE 82 #include <sys/epoch.h> 83 #endif 84 85 #include <machine/atomic.h> 86 87 #include <vm/uma.h> 88 89 #ifdef DDB 90 #include <ddb/ddb.h> 91 #endif 92 93 /* 94 * Constants for the hash table of sleep queue chains. 95 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 96 */ 97 #ifndef SC_TABLESIZE 98 #define SC_TABLESIZE 256 99 #endif 100 CTASSERT(powerof2(SC_TABLESIZE)); 101 #define SC_MASK (SC_TABLESIZE - 1) 102 #define SC_SHIFT 8 103 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 104 SC_MASK) 105 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 106 #define NR_SLEEPQS 2 107 /* 108 * There are two different lists of sleep queues. Both lists are connected 109 * via the sq_hash entries. The first list is the sleep queue chain list 110 * that a sleep queue is on when it is attached to a wait channel. The 111 * second list is the free list hung off of a sleep queue that is attached 112 * to a wait channel. 113 * 114 * Each sleep queue also contains the wait channel it is attached to, the 115 * list of threads blocked on that wait channel, flags specific to the 116 * wait channel, and the lock used to synchronize with a wait channel. 117 * The flags are used to catch mismatches between the various consumers 118 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 119 * The lock pointer is only used when invariants are enabled for various 120 * debugging checks. 121 * 122 * Locking key: 123 * c - sleep queue chain lock 124 */ 125 struct sleepqueue { 126 struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 127 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 128 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 129 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 130 const void *sq_wchan; /* (c) Wait channel. */ 131 int sq_type; /* (c) Queue type. */ 132 #ifdef INVARIANTS 133 struct lock_object *sq_lock; /* (c) Associated lock. */ 134 #endif 135 }; 136 137 struct sleepqueue_chain { 138 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 139 struct mtx sc_lock; /* Spin lock for this chain. */ 140 #ifdef SLEEPQUEUE_PROFILING 141 u_int sc_depth; /* Length of sc_queues. */ 142 u_int sc_max_depth; /* Max length of sc_queues. */ 143 #endif 144 } __aligned(CACHE_LINE_SIZE); 145 146 #ifdef SLEEPQUEUE_PROFILING 147 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 148 "sleepq profiling"); 149 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, 150 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 151 "sleepq chain stats"); 152 static u_int sleepq_max_depth; 153 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 154 0, "maxmimum depth achieved of a single chain"); 155 156 static void sleepq_profile(const char *wmesg); 157 static int prof_enabled; 158 #endif 159 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 160 static uma_zone_t sleepq_zone; 161 162 /* 163 * Prototypes for non-exported routines. 164 */ 165 static int sleepq_catch_signals(const void *wchan, int pri); 166 static inline int sleepq_check_signals(void); 167 static inline int sleepq_check_timeout(void); 168 #ifdef INVARIANTS 169 static void sleepq_dtor(void *mem, int size, void *arg); 170 #endif 171 static int sleepq_init(void *mem, int size, int flags); 172 static void sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 173 int pri, int srqflags); 174 static void sleepq_remove_thread(struct sleepqueue *sq, struct thread *td); 175 static void sleepq_switch(const void *wchan, int pri); 176 static void sleepq_timeout(void *arg); 177 178 SDT_PROBE_DECLARE(sched, , , sleep); 179 SDT_PROBE_DECLARE(sched, , , wakeup); 180 181 /* 182 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 183 * Note that it must happen after sleepinit() has been fully executed, so 184 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 185 */ 186 #ifdef SLEEPQUEUE_PROFILING 187 static void 188 init_sleepqueue_profiling(void) 189 { 190 char chain_name[10]; 191 struct sysctl_oid *chain_oid; 192 u_int i; 193 194 for (i = 0; i < SC_TABLESIZE; i++) { 195 snprintf(chain_name, sizeof(chain_name), "%u", i); 196 chain_oid = SYSCTL_ADD_NODE(NULL, 197 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 198 chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 199 "sleepq chain stats"); 200 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 201 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 202 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 203 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 204 NULL); 205 } 206 } 207 208 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 209 init_sleepqueue_profiling, NULL); 210 #endif 211 212 /* 213 * Early initialization of sleep queues that is called from the sleepinit() 214 * SYSINIT. 215 */ 216 void 217 init_sleepqueues(void) 218 { 219 int i; 220 221 for (i = 0; i < SC_TABLESIZE; i++) { 222 LIST_INIT(&sleepq_chains[i].sc_queues); 223 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 224 MTX_SPIN); 225 } 226 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 227 #ifdef INVARIANTS 228 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 229 #else 230 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 231 #endif 232 233 thread0.td_sleepqueue = sleepq_alloc(); 234 } 235 236 /* 237 * Get a sleep queue for a new thread. 238 */ 239 struct sleepqueue * 240 sleepq_alloc(void) 241 { 242 243 return (uma_zalloc(sleepq_zone, M_WAITOK)); 244 } 245 246 /* 247 * Free a sleep queue when a thread is destroyed. 248 */ 249 void 250 sleepq_free(struct sleepqueue *sq) 251 { 252 253 uma_zfree(sleepq_zone, sq); 254 } 255 256 /* 257 * Lock the sleep queue chain associated with the specified wait channel. 258 */ 259 void 260 sleepq_lock(const void *wchan) 261 { 262 struct sleepqueue_chain *sc; 263 264 sc = SC_LOOKUP(wchan); 265 mtx_lock_spin(&sc->sc_lock); 266 } 267 268 /* 269 * Look up the sleep queue associated with a given wait channel in the hash 270 * table locking the associated sleep queue chain. If no queue is found in 271 * the table, NULL is returned. 272 */ 273 struct sleepqueue * 274 sleepq_lookup(const void *wchan) 275 { 276 struct sleepqueue_chain *sc; 277 struct sleepqueue *sq; 278 279 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 280 sc = SC_LOOKUP(wchan); 281 mtx_assert(&sc->sc_lock, MA_OWNED); 282 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 283 if (sq->sq_wchan == wchan) 284 return (sq); 285 return (NULL); 286 } 287 288 /* 289 * Unlock the sleep queue chain associated with a given wait channel. 290 */ 291 void 292 sleepq_release(const void *wchan) 293 { 294 struct sleepqueue_chain *sc; 295 296 sc = SC_LOOKUP(wchan); 297 mtx_unlock_spin(&sc->sc_lock); 298 } 299 300 /* 301 * Places the current thread on the sleep queue for the specified wait 302 * channel. If INVARIANTS is enabled, then it associates the passed in 303 * lock with the sleepq to make sure it is held when that sleep queue is 304 * woken up. 305 */ 306 void 307 sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg, 308 int flags, int queue) 309 { 310 struct sleepqueue_chain *sc; 311 struct sleepqueue *sq; 312 struct thread *td; 313 314 td = curthread; 315 sc = SC_LOOKUP(wchan); 316 mtx_assert(&sc->sc_lock, MA_OWNED); 317 MPASS(td->td_sleepqueue != NULL); 318 MPASS(wchan != NULL); 319 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 320 321 /* If this thread is not allowed to sleep, die a horrible death. */ 322 if (__predict_false(!THREAD_CAN_SLEEP())) { 323 #ifdef EPOCH_TRACE 324 epoch_trace_list(curthread); 325 #endif 326 KASSERT(0, 327 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 328 __func__, td, wchan)); 329 } 330 331 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 332 sq = sleepq_lookup(wchan); 333 334 /* 335 * If the wait channel does not already have a sleep queue, use 336 * this thread's sleep queue. Otherwise, insert the current thread 337 * into the sleep queue already in use by this wait channel. 338 */ 339 if (sq == NULL) { 340 #ifdef INVARIANTS 341 int i; 342 343 sq = td->td_sleepqueue; 344 for (i = 0; i < NR_SLEEPQS; i++) { 345 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 346 ("thread's sleep queue %d is not empty", i)); 347 KASSERT(sq->sq_blockedcnt[i] == 0, 348 ("thread's sleep queue %d count mismatches", i)); 349 } 350 KASSERT(LIST_EMPTY(&sq->sq_free), 351 ("thread's sleep queue has a non-empty free list")); 352 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 353 sq->sq_lock = lock; 354 #endif 355 #ifdef SLEEPQUEUE_PROFILING 356 sc->sc_depth++; 357 if (sc->sc_depth > sc->sc_max_depth) { 358 sc->sc_max_depth = sc->sc_depth; 359 if (sc->sc_max_depth > sleepq_max_depth) 360 sleepq_max_depth = sc->sc_max_depth; 361 } 362 #endif 363 sq = td->td_sleepqueue; 364 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 365 sq->sq_wchan = wchan; 366 sq->sq_type = flags & SLEEPQ_TYPE; 367 } else { 368 MPASS(wchan == sq->sq_wchan); 369 MPASS(lock == sq->sq_lock); 370 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 371 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 372 } 373 thread_lock(td); 374 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 375 sq->sq_blockedcnt[queue]++; 376 td->td_sleepqueue = NULL; 377 td->td_sqqueue = queue; 378 td->td_wchan = wchan; 379 td->td_wmesg = wmesg; 380 if (flags & SLEEPQ_INTERRUPTIBLE) { 381 td->td_intrval = 0; 382 td->td_flags |= TDF_SINTR; 383 } 384 td->td_flags &= ~TDF_TIMEOUT; 385 thread_unlock(td); 386 } 387 388 /* 389 * Sets a timeout that will remove the current thread from the 390 * specified sleep queue at the specified time if the thread has not 391 * already been awakened. Flags are from C_* (callout) namespace. 392 */ 393 void 394 sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr, 395 int flags) 396 { 397 struct sleepqueue_chain *sc __unused; 398 struct thread *td; 399 sbintime_t pr1; 400 401 td = curthread; 402 sc = SC_LOOKUP(wchan); 403 mtx_assert(&sc->sc_lock, MA_OWNED); 404 MPASS(TD_ON_SLEEPQ(td)); 405 MPASS(td->td_sleepqueue == NULL); 406 MPASS(wchan != NULL); 407 if (cold && td == &thread0) 408 panic("timed sleep before timers are working"); 409 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 410 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 411 thread_lock(td); 412 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 413 thread_unlock(td); 414 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 415 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 416 C_DIRECT_EXEC); 417 } 418 419 /* 420 * Return the number of actual sleepers for the specified queue. 421 */ 422 u_int 423 sleepq_sleepcnt(const void *wchan, int queue) 424 { 425 struct sleepqueue *sq; 426 427 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 428 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 429 sq = sleepq_lookup(wchan); 430 if (sq == NULL) 431 return (0); 432 return (sq->sq_blockedcnt[queue]); 433 } 434 435 static int 436 sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc) 437 { 438 struct proc *p; 439 int ret; 440 441 mtx_assert(&sc->sc_lock, MA_OWNED); 442 443 if ((td->td_pflags & TDP_WAKEUP) != 0) { 444 td->td_pflags &= ~TDP_WAKEUP; 445 thread_lock(td); 446 return (EINTR); 447 } 448 449 /* 450 * See if there are any pending signals or suspension requests for this 451 * thread. If not, we can switch immediately. 452 */ 453 thread_lock(td); 454 if (!td_ast_pending(td, TDA_SIG) && !td_ast_pending(td, TDA_SUSPEND)) 455 return (0); 456 457 thread_unlock(td); 458 mtx_unlock_spin(&sc->sc_lock); 459 460 p = td->td_proc; 461 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 462 (void *)td, (long)p->p_pid, td->td_name); 463 PROC_LOCK(p); 464 465 /* 466 * Check for suspension first. Checking for signals and then 467 * suspending could result in a missed signal, since a signal 468 * can be delivered while this thread is suspended. 469 */ 470 ret = sig_ast_checksusp(td); 471 if (ret != 0) { 472 PROC_UNLOCK(p); 473 mtx_lock_spin(&sc->sc_lock); 474 thread_lock(td); 475 return (ret); 476 } 477 478 ret = sig_ast_needsigchk(td); 479 480 /* 481 * Lock the per-process spinlock prior to dropping the 482 * PROC_LOCK to avoid a signal delivery race. 483 * PROC_LOCK, PROC_SLOCK, and thread_lock() are 484 * currently held in tdsendsignal() and thread_single(). 485 */ 486 PROC_SLOCK(p); 487 mtx_lock_spin(&sc->sc_lock); 488 PROC_UNLOCK(p); 489 thread_lock(td); 490 PROC_SUNLOCK(p); 491 492 return (ret); 493 } 494 495 /* 496 * Marks the pending sleep of the current thread as interruptible and 497 * makes an initial check for pending signals before putting a thread 498 * to sleep. Enters and exits with the thread lock held. Thread lock 499 * may have transitioned from the sleepq lock to a run lock. 500 */ 501 static int 502 sleepq_catch_signals(const void *wchan, int pri) 503 { 504 struct thread *td; 505 struct sleepqueue_chain *sc; 506 struct sleepqueue *sq; 507 int ret; 508 509 sc = SC_LOOKUP(wchan); 510 mtx_assert(&sc->sc_lock, MA_OWNED); 511 MPASS(wchan != NULL); 512 td = curthread; 513 514 ret = sleepq_check_ast_sc_locked(td, sc); 515 THREAD_LOCK_ASSERT(td, MA_OWNED); 516 mtx_assert(&sc->sc_lock, MA_OWNED); 517 518 if (ret == 0) { 519 /* 520 * No pending signals and no suspension requests found. 521 * Switch the thread off the cpu. 522 */ 523 sleepq_switch(wchan, pri); 524 } else { 525 /* 526 * There were pending signals and this thread is still 527 * on the sleep queue, remove it from the sleep queue. 528 */ 529 if (TD_ON_SLEEPQ(td)) { 530 sq = sleepq_lookup(wchan); 531 sleepq_remove_thread(sq, td); 532 } 533 MPASS(td->td_lock != &sc->sc_lock); 534 mtx_unlock_spin(&sc->sc_lock); 535 thread_unlock(td); 536 } 537 return (ret); 538 } 539 540 /* 541 * Switches to another thread if we are still asleep on a sleep queue. 542 * Returns with thread lock. 543 */ 544 static void 545 sleepq_switch(const void *wchan, int pri) 546 { 547 struct sleepqueue_chain *sc; 548 struct sleepqueue *sq; 549 struct thread *td; 550 bool rtc_changed; 551 552 td = curthread; 553 sc = SC_LOOKUP(wchan); 554 mtx_assert(&sc->sc_lock, MA_OWNED); 555 THREAD_LOCK_ASSERT(td, MA_OWNED); 556 557 /* 558 * If we have a sleep queue, then we've already been woken up, so 559 * just return. 560 */ 561 if (td->td_sleepqueue != NULL) { 562 mtx_unlock_spin(&sc->sc_lock); 563 thread_unlock(td); 564 return; 565 } 566 567 /* 568 * If TDF_TIMEOUT is set, then our sleep has been timed out 569 * already but we are still on the sleep queue, so dequeue the 570 * thread and return. 571 * 572 * Do the same if the real-time clock has been adjusted since this 573 * thread calculated its timeout based on that clock. This handles 574 * the following race: 575 * - The Ts thread needs to sleep until an absolute real-clock time. 576 * It copies the global rtc_generation into curthread->td_rtcgen, 577 * reads the RTC, and calculates a sleep duration based on that time. 578 * See umtxq_sleep() for an example. 579 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes 580 * threads that are sleeping until an absolute real-clock time. 581 * See tc_setclock() and the POSIX specification of clock_settime(). 582 * - Ts reaches the code below. It holds the sleepqueue chain lock, 583 * so Tc has finished waking, so this thread must test td_rtcgen. 584 * (The declaration of td_rtcgen refers to this comment.) 585 */ 586 rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation; 587 if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) { 588 if (rtc_changed) { 589 td->td_rtcgen = 0; 590 } 591 MPASS(TD_ON_SLEEPQ(td)); 592 sq = sleepq_lookup(wchan); 593 sleepq_remove_thread(sq, td); 594 mtx_unlock_spin(&sc->sc_lock); 595 thread_unlock(td); 596 return; 597 } 598 #ifdef SLEEPQUEUE_PROFILING 599 if (prof_enabled) 600 sleepq_profile(td->td_wmesg); 601 #endif 602 MPASS(td->td_sleepqueue == NULL); 603 sched_sleep(td, pri); 604 thread_lock_set(td, &sc->sc_lock); 605 SDT_PROBE0(sched, , , sleep); 606 TD_SET_SLEEPING(td); 607 mi_switch(SW_VOL | SWT_SLEEPQ); 608 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 609 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 610 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 611 } 612 613 /* 614 * Check to see if we timed out. 615 */ 616 static inline int 617 sleepq_check_timeout(void) 618 { 619 struct thread *td; 620 int res; 621 622 res = 0; 623 td = curthread; 624 if (td->td_sleeptimo != 0) { 625 if (td->td_sleeptimo <= sbinuptime()) 626 res = EWOULDBLOCK; 627 td->td_sleeptimo = 0; 628 } 629 return (res); 630 } 631 632 /* 633 * Check to see if we were awoken by a signal. 634 */ 635 static inline int 636 sleepq_check_signals(void) 637 { 638 struct thread *td; 639 640 td = curthread; 641 KASSERT((td->td_flags & TDF_SINTR) == 0, 642 ("thread %p still in interruptible sleep?", td)); 643 644 return (td->td_intrval); 645 } 646 647 /* 648 * Block the current thread until it is awakened from its sleep queue. 649 */ 650 void 651 sleepq_wait(const void *wchan, int pri) 652 { 653 struct thread *td; 654 655 td = curthread; 656 MPASS(!(td->td_flags & TDF_SINTR)); 657 thread_lock(td); 658 sleepq_switch(wchan, pri); 659 } 660 661 /* 662 * Block the current thread until it is awakened from its sleep queue 663 * or it is interrupted by a signal. 664 */ 665 int 666 sleepq_wait_sig(const void *wchan, int pri) 667 { 668 int rcatch; 669 670 rcatch = sleepq_catch_signals(wchan, pri); 671 if (rcatch) 672 return (rcatch); 673 return (sleepq_check_signals()); 674 } 675 676 /* 677 * Block the current thread until it is awakened from its sleep queue 678 * or it times out while waiting. 679 */ 680 int 681 sleepq_timedwait(const void *wchan, int pri) 682 { 683 struct thread *td; 684 685 td = curthread; 686 MPASS(!(td->td_flags & TDF_SINTR)); 687 688 thread_lock(td); 689 sleepq_switch(wchan, pri); 690 691 return (sleepq_check_timeout()); 692 } 693 694 /* 695 * Block the current thread until it is awakened from its sleep queue, 696 * it is interrupted by a signal, or it times out waiting to be awakened. 697 */ 698 int 699 sleepq_timedwait_sig(const void *wchan, int pri) 700 { 701 int rcatch, rvalt, rvals; 702 703 rcatch = sleepq_catch_signals(wchan, pri); 704 /* We must always call check_timeout() to clear sleeptimo. */ 705 rvalt = sleepq_check_timeout(); 706 rvals = sleepq_check_signals(); 707 if (rcatch) 708 return (rcatch); 709 if (rvals) 710 return (rvals); 711 return (rvalt); 712 } 713 714 /* 715 * Returns the type of sleepqueue given a waitchannel. 716 */ 717 int 718 sleepq_type(const void *wchan) 719 { 720 struct sleepqueue *sq; 721 int type; 722 723 MPASS(wchan != NULL); 724 725 sq = sleepq_lookup(wchan); 726 if (sq == NULL) 727 return (-1); 728 type = sq->sq_type; 729 730 return (type); 731 } 732 733 /* 734 * Removes a thread from a sleep queue and makes it runnable. 735 * 736 * Requires the sc chain locked on entry. If SRQ_HOLD is specified it will 737 * be locked on return. Returns without the thread lock held. 738 */ 739 static void 740 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri, 741 int srqflags) 742 { 743 struct sleepqueue_chain *sc; 744 bool drop; 745 746 MPASS(td != NULL); 747 MPASS(sq->sq_wchan != NULL); 748 MPASS(td->td_wchan == sq->sq_wchan); 749 750 sc = SC_LOOKUP(sq->sq_wchan); 751 mtx_assert(&sc->sc_lock, MA_OWNED); 752 753 /* 754 * Avoid recursing on the chain lock. If the locks don't match we 755 * need to acquire the thread lock which setrunnable will drop for 756 * us. In this case we need to drop the chain lock afterwards. 757 * 758 * There is no race that will make td_lock equal to sc_lock because 759 * we hold sc_lock. 760 */ 761 drop = false; 762 if (!TD_IS_SLEEPING(td)) { 763 thread_lock(td); 764 drop = true; 765 } else 766 thread_lock_block_wait(td); 767 768 /* Remove thread from the sleepq. */ 769 sleepq_remove_thread(sq, td); 770 771 /* If we're done with the sleepqueue release it. */ 772 if ((srqflags & SRQ_HOLD) == 0 && drop) 773 mtx_unlock_spin(&sc->sc_lock); 774 775 /* Adjust priority if requested. */ 776 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 777 if (pri != 0 && td->td_priority > pri && 778 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 779 sched_prio(td, pri); 780 781 /* 782 * Note that thread td might not be sleeping if it is running 783 * sleepq_catch_signals() on another CPU or is blocked on its 784 * proc lock to check signals. There's no need to mark the 785 * thread runnable in that case. 786 */ 787 if (TD_IS_SLEEPING(td)) { 788 MPASS(!drop); 789 TD_CLR_SLEEPING(td); 790 setrunnable(td, srqflags); 791 } else { 792 MPASS(drop); 793 thread_unlock(td); 794 } 795 } 796 797 static void 798 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td) 799 { 800 struct sleepqueue_chain *sc __unused; 801 802 MPASS(td != NULL); 803 MPASS(sq->sq_wchan != NULL); 804 MPASS(td->td_wchan == sq->sq_wchan); 805 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 806 THREAD_LOCK_ASSERT(td, MA_OWNED); 807 sc = SC_LOOKUP(sq->sq_wchan); 808 mtx_assert(&sc->sc_lock, MA_OWNED); 809 810 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 811 812 /* Remove the thread from the queue. */ 813 sq->sq_blockedcnt[td->td_sqqueue]--; 814 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 815 816 /* 817 * Get a sleep queue for this thread. If this is the last waiter, 818 * use the queue itself and take it out of the chain, otherwise, 819 * remove a queue from the free list. 820 */ 821 if (LIST_EMPTY(&sq->sq_free)) { 822 td->td_sleepqueue = sq; 823 #ifdef INVARIANTS 824 sq->sq_wchan = NULL; 825 #endif 826 #ifdef SLEEPQUEUE_PROFILING 827 sc->sc_depth--; 828 #endif 829 } else 830 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 831 LIST_REMOVE(td->td_sleepqueue, sq_hash); 832 833 if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0 && 834 td->td_lock == &sc->sc_lock) { 835 /* 836 * We ignore the situation where timeout subsystem was 837 * unable to stop our callout. The struct thread is 838 * type-stable, the callout will use the correct 839 * memory when running. The checks of the 840 * td_sleeptimo value in this function and in 841 * sleepq_timeout() ensure that the thread does not 842 * get spurious wakeups, even if the callout was reset 843 * or thread reused. 844 * 845 * We also cannot safely stop the callout if a scheduler 846 * lock is held since softclock_thread() forces a lock 847 * order of callout lock -> scheduler lock. The thread 848 * lock will be a scheduler lock only if the thread is 849 * preparing to go to sleep, so this is hopefully a rare 850 * scenario. 851 */ 852 callout_stop(&td->td_slpcallout); 853 } 854 855 td->td_wmesg = NULL; 856 td->td_wchan = NULL; 857 td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT); 858 859 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 860 (void *)td, (long)td->td_proc->p_pid, td->td_name); 861 } 862 863 void 864 sleepq_remove_nested(struct thread *td) 865 { 866 struct sleepqueue_chain *sc; 867 struct sleepqueue *sq; 868 const void *wchan; 869 870 MPASS(TD_ON_SLEEPQ(td)); 871 872 wchan = td->td_wchan; 873 sc = SC_LOOKUP(wchan); 874 mtx_lock_spin(&sc->sc_lock); 875 sq = sleepq_lookup(wchan); 876 MPASS(sq != NULL); 877 thread_lock(td); 878 sleepq_remove_thread(sq, td); 879 mtx_unlock_spin(&sc->sc_lock); 880 /* Returns with the thread lock owned. */ 881 } 882 883 #ifdef INVARIANTS 884 /* 885 * UMA zone item deallocator. 886 */ 887 static void 888 sleepq_dtor(void *mem, int size, void *arg) 889 { 890 struct sleepqueue *sq; 891 int i; 892 893 sq = mem; 894 for (i = 0; i < NR_SLEEPQS; i++) { 895 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 896 MPASS(sq->sq_blockedcnt[i] == 0); 897 } 898 } 899 #endif 900 901 /* 902 * UMA zone item initializer. 903 */ 904 static int 905 sleepq_init(void *mem, int size, int flags) 906 { 907 struct sleepqueue *sq; 908 int i; 909 910 bzero(mem, size); 911 sq = mem; 912 for (i = 0; i < NR_SLEEPQS; i++) { 913 TAILQ_INIT(&sq->sq_blocked[i]); 914 sq->sq_blockedcnt[i] = 0; 915 } 916 LIST_INIT(&sq->sq_free); 917 return (0); 918 } 919 920 /* 921 * Find thread sleeping on a wait channel and resume it. 922 */ 923 void 924 sleepq_signal(const void *wchan, int flags, int pri, int queue) 925 { 926 struct sleepqueue_chain *sc; 927 struct sleepqueue *sq; 928 struct threadqueue *head; 929 struct thread *td, *besttd; 930 931 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 932 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 933 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 934 sq = sleepq_lookup(wchan); 935 if (sq == NULL) { 936 if (flags & SLEEPQ_DROP) 937 sleepq_release(wchan); 938 return; 939 } 940 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 941 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 942 943 head = &sq->sq_blocked[queue]; 944 if (flags & SLEEPQ_UNFAIR) { 945 /* 946 * Find the most recently sleeping thread, but try to 947 * skip threads still in process of context switch to 948 * avoid spinning on the thread lock. 949 */ 950 sc = SC_LOOKUP(wchan); 951 besttd = TAILQ_LAST_FAST(head, thread, td_slpq); 952 while (besttd->td_lock != &sc->sc_lock) { 953 td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq); 954 if (td == NULL) 955 break; 956 besttd = td; 957 } 958 } else { 959 /* 960 * Find the highest priority thread on the queue. If there 961 * is a tie, use the thread that first appears in the queue 962 * as it has been sleeping the longest since threads are 963 * always added to the tail of sleep queues. 964 */ 965 besttd = td = TAILQ_FIRST(head); 966 while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) { 967 if (td->td_priority < besttd->td_priority) 968 besttd = td; 969 } 970 } 971 MPASS(besttd != NULL); 972 sleepq_resume_thread(sq, besttd, pri, 973 (flags & SLEEPQ_DROP) ? 0 : SRQ_HOLD); 974 } 975 976 static bool 977 match_any(struct thread *td __unused) 978 { 979 980 return (true); 981 } 982 983 /* 984 * Resume all threads sleeping on a specified wait channel. 985 */ 986 void 987 sleepq_broadcast(const void *wchan, int flags, int pri, int queue) 988 { 989 struct sleepqueue *sq; 990 991 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 992 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 993 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 994 sq = sleepq_lookup(wchan); 995 if (sq != NULL) { 996 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 997 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 998 999 sleepq_remove_matching(sq, queue, match_any, pri); 1000 } 1001 } 1002 1003 /* 1004 * Resume threads on the sleep queue that match the given predicate. 1005 */ 1006 void 1007 sleepq_remove_matching(struct sleepqueue *sq, int queue, 1008 bool (*matches)(struct thread *), int pri) 1009 { 1010 struct thread *td, *tdn; 1011 1012 /* 1013 * The last thread will be given ownership of sq and may 1014 * re-enqueue itself before sleepq_resume_thread() returns, 1015 * so we must cache the "next" queue item at the beginning 1016 * of the final iteration. 1017 */ 1018 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 1019 if (matches(td)) 1020 sleepq_resume_thread(sq, td, pri, SRQ_HOLD); 1021 } 1022 } 1023 1024 /* 1025 * Time sleeping threads out. When the timeout expires, the thread is 1026 * removed from the sleep queue and made runnable if it is still asleep. 1027 */ 1028 static void 1029 sleepq_timeout(void *arg) 1030 { 1031 struct sleepqueue_chain *sc __unused; 1032 struct sleepqueue *sq; 1033 struct thread *td; 1034 const void *wchan; 1035 1036 td = arg; 1037 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 1038 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1039 1040 thread_lock(td); 1041 if (td->td_sleeptimo == 0 || 1042 td->td_sleeptimo > td->td_slpcallout.c_time) { 1043 /* 1044 * The thread does not want a timeout (yet). 1045 */ 1046 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 1047 /* 1048 * See if the thread is asleep and get the wait 1049 * channel if it is. 1050 */ 1051 wchan = td->td_wchan; 1052 sc = SC_LOOKUP(wchan); 1053 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 1054 sq = sleepq_lookup(wchan); 1055 MPASS(sq != NULL); 1056 td->td_flags |= TDF_TIMEOUT; 1057 sleepq_resume_thread(sq, td, 0, 0); 1058 return; 1059 } else if (TD_ON_SLEEPQ(td)) { 1060 /* 1061 * If the thread is on the SLEEPQ but isn't sleeping 1062 * yet, it can either be on another CPU in between 1063 * sleepq_add() and one of the sleepq_*wait*() 1064 * routines or it can be in sleepq_catch_signals(). 1065 */ 1066 td->td_flags |= TDF_TIMEOUT; 1067 } 1068 thread_unlock(td); 1069 } 1070 1071 /* 1072 * Resumes a specific thread from the sleep queue associated with a specific 1073 * wait channel if it is on that queue. 1074 */ 1075 void 1076 sleepq_remove(struct thread *td, const void *wchan) 1077 { 1078 struct sleepqueue_chain *sc; 1079 struct sleepqueue *sq; 1080 1081 /* 1082 * Look up the sleep queue for this wait channel, then re-check 1083 * that the thread is asleep on that channel, if it is not, then 1084 * bail. 1085 */ 1086 MPASS(wchan != NULL); 1087 sc = SC_LOOKUP(wchan); 1088 mtx_lock_spin(&sc->sc_lock); 1089 /* 1090 * We can not lock the thread here as it may be sleeping on a 1091 * different sleepq. However, holding the sleepq lock for this 1092 * wchan can guarantee that we do not miss a wakeup for this 1093 * channel. The asserts below will catch any false positives. 1094 */ 1095 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 1096 mtx_unlock_spin(&sc->sc_lock); 1097 return; 1098 } 1099 1100 /* Thread is asleep on sleep queue sq, so wake it up. */ 1101 sq = sleepq_lookup(wchan); 1102 MPASS(sq != NULL); 1103 MPASS(td->td_wchan == wchan); 1104 sleepq_resume_thread(sq, td, 0, 0); 1105 } 1106 1107 /* 1108 * Abort a thread as if an interrupt had occurred. Only abort 1109 * interruptible waits (unfortunately it isn't safe to abort others). 1110 * 1111 * Requires thread lock on entry, releases on return. 1112 */ 1113 void 1114 sleepq_abort(struct thread *td, int intrval) 1115 { 1116 struct sleepqueue *sq; 1117 const void *wchan; 1118 1119 THREAD_LOCK_ASSERT(td, MA_OWNED); 1120 MPASS(TD_ON_SLEEPQ(td)); 1121 MPASS(td->td_flags & TDF_SINTR); 1122 MPASS((intrval == 0 && (td->td_flags & TDF_SIGWAIT) != 0) || 1123 intrval == EINTR || intrval == ERESTART); 1124 1125 /* 1126 * If the TDF_TIMEOUT flag is set, just leave. A 1127 * timeout is scheduled anyhow. 1128 */ 1129 if (td->td_flags & TDF_TIMEOUT) { 1130 thread_unlock(td); 1131 return; 1132 } 1133 1134 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1135 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1136 td->td_intrval = intrval; 1137 1138 /* 1139 * If the thread has not slept yet it will find the signal in 1140 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1141 * we have to do it here. 1142 */ 1143 if (!TD_IS_SLEEPING(td)) { 1144 thread_unlock(td); 1145 return; 1146 } 1147 wchan = td->td_wchan; 1148 MPASS(wchan != NULL); 1149 sq = sleepq_lookup(wchan); 1150 MPASS(sq != NULL); 1151 1152 /* Thread is asleep on sleep queue sq, so wake it up. */ 1153 sleepq_resume_thread(sq, td, 0, 0); 1154 } 1155 1156 void 1157 sleepq_chains_remove_matching(bool (*matches)(struct thread *)) 1158 { 1159 struct sleepqueue_chain *sc; 1160 struct sleepqueue *sq, *sq1; 1161 int i; 1162 1163 for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) { 1164 if (LIST_EMPTY(&sc->sc_queues)) { 1165 continue; 1166 } 1167 mtx_lock_spin(&sc->sc_lock); 1168 LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) { 1169 for (i = 0; i < NR_SLEEPQS; ++i) 1170 sleepq_remove_matching(sq, i, matches, 0); 1171 } 1172 mtx_unlock_spin(&sc->sc_lock); 1173 } 1174 } 1175 1176 /* 1177 * Prints the stacks of all threads presently sleeping on wchan/queue to 1178 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1179 * printed. Typically, this will equal the number of threads sleeping on the 1180 * queue, but may be less if sb overflowed before all stacks were printed. 1181 */ 1182 #ifdef STACK 1183 int 1184 sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue, 1185 int *count_stacks_printed) 1186 { 1187 struct thread *td, *td_next; 1188 struct sleepqueue *sq; 1189 struct stack **st; 1190 struct sbuf **td_infos; 1191 int i, stack_idx, error, stacks_to_allocate; 1192 bool finished; 1193 1194 error = 0; 1195 finished = false; 1196 1197 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1198 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1199 1200 stacks_to_allocate = 10; 1201 for (i = 0; i < 3 && !finished ; i++) { 1202 /* We cannot malloc while holding the queue's spinlock, so 1203 * we do our mallocs now, and hope it is enough. If it 1204 * isn't, we will free these, drop the lock, malloc more, 1205 * and try again, up to a point. After that point we will 1206 * give up and report ENOMEM. We also cannot write to sb 1207 * during this time since the client may have set the 1208 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1209 * malloc as we print to it. So we defer actually printing 1210 * to sb until after we drop the spinlock. 1211 */ 1212 1213 /* Where we will store the stacks. */ 1214 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1215 M_TEMP, M_WAITOK); 1216 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1217 stack_idx++) 1218 st[stack_idx] = stack_create(M_WAITOK); 1219 1220 /* Where we will store the td name, tid, etc. */ 1221 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1222 M_TEMP, M_WAITOK); 1223 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1224 stack_idx++) 1225 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1226 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1227 SBUF_FIXEDLEN); 1228 1229 sleepq_lock(wchan); 1230 sq = sleepq_lookup(wchan); 1231 if (sq == NULL) { 1232 /* This sleepq does not exist; exit and return ENOENT. */ 1233 error = ENOENT; 1234 finished = true; 1235 sleepq_release(wchan); 1236 goto loop_end; 1237 } 1238 1239 stack_idx = 0; 1240 /* Save thread info */ 1241 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1242 td_next) { 1243 if (stack_idx >= stacks_to_allocate) 1244 goto loop_end; 1245 1246 /* Note the td_lock is equal to the sleepq_lock here. */ 1247 (void)stack_save_td(st[stack_idx], td); 1248 1249 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1250 td->td_tid, td->td_name, td); 1251 1252 ++stack_idx; 1253 } 1254 1255 finished = true; 1256 sleepq_release(wchan); 1257 1258 /* Print the stacks */ 1259 for (i = 0; i < stack_idx; i++) { 1260 sbuf_finish(td_infos[i]); 1261 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1262 stack_sbuf_print(sb, st[i]); 1263 sbuf_putc(sb, '\n'); 1264 1265 error = sbuf_error(sb); 1266 if (error == 0) 1267 *count_stacks_printed = stack_idx; 1268 } 1269 1270 loop_end: 1271 if (!finished) 1272 sleepq_release(wchan); 1273 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1274 stack_idx++) 1275 stack_destroy(st[stack_idx]); 1276 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1277 stack_idx++) 1278 sbuf_delete(td_infos[stack_idx]); 1279 free(st, M_TEMP); 1280 free(td_infos, M_TEMP); 1281 stacks_to_allocate *= 10; 1282 } 1283 1284 if (!finished && error == 0) 1285 error = ENOMEM; 1286 1287 return (error); 1288 } 1289 #endif 1290 1291 #ifdef SLEEPQUEUE_PROFILING 1292 #define SLEEPQ_PROF_LOCATIONS 1024 1293 #define SLEEPQ_SBUFSIZE 512 1294 struct sleepq_prof { 1295 LIST_ENTRY(sleepq_prof) sp_link; 1296 const char *sp_wmesg; 1297 long sp_count; 1298 }; 1299 1300 LIST_HEAD(sqphead, sleepq_prof); 1301 1302 struct sqphead sleepq_prof_free; 1303 struct sqphead sleepq_hash[SC_TABLESIZE]; 1304 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1305 static struct mtx sleepq_prof_lock; 1306 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1307 1308 static void 1309 sleepq_profile(const char *wmesg) 1310 { 1311 struct sleepq_prof *sp; 1312 1313 mtx_lock_spin(&sleepq_prof_lock); 1314 if (prof_enabled == 0) 1315 goto unlock; 1316 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1317 if (sp->sp_wmesg == wmesg) 1318 goto done; 1319 sp = LIST_FIRST(&sleepq_prof_free); 1320 if (sp == NULL) 1321 goto unlock; 1322 sp->sp_wmesg = wmesg; 1323 LIST_REMOVE(sp, sp_link); 1324 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1325 done: 1326 sp->sp_count++; 1327 unlock: 1328 mtx_unlock_spin(&sleepq_prof_lock); 1329 return; 1330 } 1331 1332 static void 1333 sleepq_prof_reset(void) 1334 { 1335 struct sleepq_prof *sp; 1336 int enabled; 1337 int i; 1338 1339 mtx_lock_spin(&sleepq_prof_lock); 1340 enabled = prof_enabled; 1341 prof_enabled = 0; 1342 for (i = 0; i < SC_TABLESIZE; i++) 1343 LIST_INIT(&sleepq_hash[i]); 1344 LIST_INIT(&sleepq_prof_free); 1345 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1346 sp = &sleepq_profent[i]; 1347 sp->sp_wmesg = NULL; 1348 sp->sp_count = 0; 1349 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1350 } 1351 prof_enabled = enabled; 1352 mtx_unlock_spin(&sleepq_prof_lock); 1353 } 1354 1355 static int 1356 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1357 { 1358 int error, v; 1359 1360 v = prof_enabled; 1361 error = sysctl_handle_int(oidp, &v, v, req); 1362 if (error) 1363 return (error); 1364 if (req->newptr == NULL) 1365 return (error); 1366 if (v == prof_enabled) 1367 return (0); 1368 if (v == 1) 1369 sleepq_prof_reset(); 1370 mtx_lock_spin(&sleepq_prof_lock); 1371 prof_enabled = !!v; 1372 mtx_unlock_spin(&sleepq_prof_lock); 1373 1374 return (0); 1375 } 1376 1377 static int 1378 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1379 { 1380 int error, v; 1381 1382 v = 0; 1383 error = sysctl_handle_int(oidp, &v, 0, req); 1384 if (error) 1385 return (error); 1386 if (req->newptr == NULL) 1387 return (error); 1388 if (v == 0) 1389 return (0); 1390 sleepq_prof_reset(); 1391 1392 return (0); 1393 } 1394 1395 static int 1396 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1397 { 1398 struct sleepq_prof *sp; 1399 struct sbuf *sb; 1400 int enabled; 1401 int error; 1402 int i; 1403 1404 error = sysctl_wire_old_buffer(req, 0); 1405 if (error != 0) 1406 return (error); 1407 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1408 sbuf_cat(sb, "\nwmesg\tcount\n"); 1409 enabled = prof_enabled; 1410 mtx_lock_spin(&sleepq_prof_lock); 1411 prof_enabled = 0; 1412 mtx_unlock_spin(&sleepq_prof_lock); 1413 for (i = 0; i < SC_TABLESIZE; i++) { 1414 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1415 sbuf_printf(sb, "%s\t%ld\n", 1416 sp->sp_wmesg, sp->sp_count); 1417 } 1418 } 1419 mtx_lock_spin(&sleepq_prof_lock); 1420 prof_enabled = enabled; 1421 mtx_unlock_spin(&sleepq_prof_lock); 1422 1423 error = sbuf_finish(sb); 1424 sbuf_delete(sb); 1425 return (error); 1426 } 1427 1428 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, 1429 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, 1430 dump_sleepq_prof_stats, "A", 1431 "Sleepqueue profiling statistics"); 1432 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, 1433 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 1434 reset_sleepq_prof_stats, "I", 1435 "Reset sleepqueue profiling statistics"); 1436 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, 1437 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 1438 enable_sleepq_prof, "I", 1439 "Enable sleepqueue profiling"); 1440 #endif 1441 1442 #ifdef DDB 1443 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1444 { 1445 struct sleepqueue_chain *sc; 1446 struct sleepqueue *sq; 1447 #ifdef INVARIANTS 1448 struct lock_object *lock; 1449 #endif 1450 struct thread *td; 1451 void *wchan; 1452 int i; 1453 1454 if (!have_addr) 1455 return; 1456 1457 /* 1458 * First, see if there is an active sleep queue for the wait channel 1459 * indicated by the address. 1460 */ 1461 wchan = (void *)addr; 1462 sc = SC_LOOKUP(wchan); 1463 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1464 if (sq->sq_wchan == wchan) 1465 goto found; 1466 1467 /* 1468 * Second, see if there is an active sleep queue at the address 1469 * indicated. 1470 */ 1471 for (i = 0; i < SC_TABLESIZE; i++) 1472 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1473 if (sq == (struct sleepqueue *)addr) 1474 goto found; 1475 } 1476 1477 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1478 return; 1479 found: 1480 db_printf("Wait channel: %p\n", sq->sq_wchan); 1481 db_printf("Queue type: %d\n", sq->sq_type); 1482 #ifdef INVARIANTS 1483 if (sq->sq_lock) { 1484 lock = sq->sq_lock; 1485 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1486 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1487 } 1488 #endif 1489 db_printf("Blocked threads:\n"); 1490 for (i = 0; i < NR_SLEEPQS; i++) { 1491 db_printf("\nQueue[%d]:\n", i); 1492 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1493 db_printf("\tempty\n"); 1494 else 1495 TAILQ_FOREACH(td, &sq->sq_blocked[i], 1496 td_slpq) { 1497 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1498 td->td_tid, td->td_proc->p_pid, 1499 td->td_name); 1500 } 1501 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1502 } 1503 } 1504 1505 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1506 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1507 #endif 1508