xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 995dc984471c92c03daad19a1d35af46c086ef3e)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_sched.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/lock.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/sched.h>
77 #include <sys/signalvar.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/sysctl.h>
80 
81 #include <vm/uma.h>
82 
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86 
87 /*
88  * Constants for the hash table of sleep queue chains.  These constants are
89  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
90  * Basically, we ignore the lower 8 bits of the address since most wait
91  * channel pointers are aligned and only look at the next 7 bits for the
92  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
93  */
94 #define	SC_TABLESIZE	128			/* Must be power of 2. */
95 #define	SC_MASK		(SC_TABLESIZE - 1)
96 #define	SC_SHIFT	8
97 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
98 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
99 #define NR_SLEEPQS      2
100 /*
101  * There two different lists of sleep queues.  Both lists are connected
102  * via the sq_hash entries.  The first list is the sleep queue chain list
103  * that a sleep queue is on when it is attached to a wait channel.  The
104  * second list is the free list hung off of a sleep queue that is attached
105  * to a wait channel.
106  *
107  * Each sleep queue also contains the wait channel it is attached to, the
108  * list of threads blocked on that wait channel, flags specific to the
109  * wait channel, and the lock used to synchronize with a wait channel.
110  * The flags are used to catch mismatches between the various consumers
111  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
112  * The lock pointer is only used when invariants are enabled for various
113  * debugging checks.
114  *
115  * Locking key:
116  *  c - sleep queue chain lock
117  */
118 struct sleepqueue {
119 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
120 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
121 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
122 	void	*sq_wchan;			/* (c) Wait channel. */
123 #ifdef INVARIANTS
124 	int	sq_type;			/* (c) Queue type. */
125 	struct lock_object *sq_lock;		/* (c) Associated lock. */
126 #endif
127 };
128 
129 struct sleepqueue_chain {
130 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
131 	struct mtx sc_lock;			/* Spin lock for this chain. */
132 #ifdef SLEEPQUEUE_PROFILING
133 	u_int	sc_depth;			/* Length of sc_queues. */
134 	u_int	sc_max_depth;			/* Max length of sc_queues. */
135 #endif
136 };
137 
138 #ifdef SLEEPQUEUE_PROFILING
139 u_int sleepq_max_depth;
140 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
141 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
142     "sleepq chain stats");
143 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
144     0, "maxmimum depth achieved of a single chain");
145 #endif
146 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
147 static uma_zone_t sleepq_zone;
148 
149 /*
150  * Prototypes for non-exported routines.
151  */
152 static int	sleepq_catch_signals(void *wchan);
153 static int	sleepq_check_signals(void);
154 static int	sleepq_check_timeout(void);
155 #ifdef INVARIANTS
156 static void	sleepq_dtor(void *mem, int size, void *arg);
157 #endif
158 static int	sleepq_init(void *mem, int size, int flags);
159 static void	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
160 		    int pri);
161 static void	sleepq_switch(void *wchan);
162 static void	sleepq_timeout(void *arg);
163 
164 /*
165  * Early initialization of sleep queues that is called from the sleepinit()
166  * SYSINIT.
167  */
168 void
169 init_sleepqueues(void)
170 {
171 #ifdef SLEEPQUEUE_PROFILING
172 	struct sysctl_oid *chain_oid;
173 	char chain_name[10];
174 #endif
175 	int i;
176 
177 	for (i = 0; i < SC_TABLESIZE; i++) {
178 		LIST_INIT(&sleepq_chains[i].sc_queues);
179 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
180 		    MTX_SPIN | MTX_RECURSE);
181 #ifdef SLEEPQUEUE_PROFILING
182 		snprintf(chain_name, sizeof(chain_name), "%d", i);
183 		chain_oid = SYSCTL_ADD_NODE(NULL,
184 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
185 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
186 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
187 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
188 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
189 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
190 		    NULL);
191 #endif
192 	}
193 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
194 #ifdef INVARIANTS
195 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
196 #else
197 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
198 #endif
199 
200 	thread0.td_sleepqueue = sleepq_alloc();
201 }
202 
203 /*
204  * Get a sleep queue for a new thread.
205  */
206 struct sleepqueue *
207 sleepq_alloc(void)
208 {
209 
210 	return (uma_zalloc(sleepq_zone, M_WAITOK));
211 }
212 
213 /*
214  * Free a sleep queue when a thread is destroyed.
215  */
216 void
217 sleepq_free(struct sleepqueue *sq)
218 {
219 
220 	uma_zfree(sleepq_zone, sq);
221 }
222 
223 /*
224  * Lock the sleep queue chain associated with the specified wait channel.
225  */
226 void
227 sleepq_lock(void *wchan)
228 {
229 	struct sleepqueue_chain *sc;
230 
231 	sc = SC_LOOKUP(wchan);
232 	mtx_lock_spin(&sc->sc_lock);
233 }
234 
235 /*
236  * Look up the sleep queue associated with a given wait channel in the hash
237  * table locking the associated sleep queue chain.  If no queue is found in
238  * the table, NULL is returned.
239  */
240 struct sleepqueue *
241 sleepq_lookup(void *wchan)
242 {
243 	struct sleepqueue_chain *sc;
244 	struct sleepqueue *sq;
245 
246 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
247 	sc = SC_LOOKUP(wchan);
248 	mtx_assert(&sc->sc_lock, MA_OWNED);
249 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
250 		if (sq->sq_wchan == wchan)
251 			return (sq);
252 	return (NULL);
253 }
254 
255 /*
256  * Unlock the sleep queue chain associated with a given wait channel.
257  */
258 void
259 sleepq_release(void *wchan)
260 {
261 	struct sleepqueue_chain *sc;
262 
263 	sc = SC_LOOKUP(wchan);
264 	mtx_unlock_spin(&sc->sc_lock);
265 }
266 
267 /*
268  * Places the current thread on the sleep queue for the specified wait
269  * channel.  If INVARIANTS is enabled, then it associates the passed in
270  * lock with the sleepq to make sure it is held when that sleep queue is
271  * woken up.
272  */
273 void
274 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
275     int queue)
276 {
277 	struct sleepqueue_chain *sc;
278 	struct sleepqueue *sq;
279 	struct thread *td;
280 
281 	td = curthread;
282 	sc = SC_LOOKUP(wchan);
283 	mtx_assert(&sc->sc_lock, MA_OWNED);
284 	MPASS(td->td_sleepqueue != NULL);
285 	MPASS(wchan != NULL);
286 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
287 
288 	/* If this thread is not allowed to sleep, die a horrible death. */
289 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
290 	    ("Trying sleep, but thread marked as sleeping prohibited"));
291 
292 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
293 	sq = sleepq_lookup(wchan);
294 
295 	/*
296 	 * If the wait channel does not already have a sleep queue, use
297 	 * this thread's sleep queue.  Otherwise, insert the current thread
298 	 * into the sleep queue already in use by this wait channel.
299 	 */
300 	if (sq == NULL) {
301 #ifdef INVARIANTS
302 		int i;
303 
304 		sq = td->td_sleepqueue;
305 		for (i = 0; i < NR_SLEEPQS; i++)
306 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
307 				("thread's sleep queue %d is not empty", i));
308 		KASSERT(LIST_EMPTY(&sq->sq_free),
309 		    ("thread's sleep queue has a non-empty free list"));
310 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
311 		sq->sq_lock = lock;
312 		sq->sq_type = flags & SLEEPQ_TYPE;
313 #endif
314 #ifdef SLEEPQUEUE_PROFILING
315 		sc->sc_depth++;
316 		if (sc->sc_depth > sc->sc_max_depth) {
317 			sc->sc_max_depth = sc->sc_depth;
318 			if (sc->sc_max_depth > sleepq_max_depth)
319 				sleepq_max_depth = sc->sc_max_depth;
320 		}
321 #endif
322 		sq = td->td_sleepqueue;
323 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
324 		sq->sq_wchan = wchan;
325 	} else {
326 		MPASS(wchan == sq->sq_wchan);
327 		MPASS(lock == sq->sq_lock);
328 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
329 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
330 	}
331 	thread_lock(td);
332 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
333 	td->td_sleepqueue = NULL;
334 	td->td_sqqueue = queue;
335 	td->td_wchan = wchan;
336 	td->td_wmesg = wmesg;
337 	if (flags & SLEEPQ_INTERRUPTIBLE) {
338 		td->td_flags |= TDF_SINTR;
339 		td->td_flags &= ~TDF_SLEEPABORT;
340 	}
341 	thread_unlock(td);
342 }
343 
344 /*
345  * Sets a timeout that will remove the current thread from the specified
346  * sleep queue after timo ticks if the thread has not already been awakened.
347  */
348 void
349 sleepq_set_timeout(void *wchan, int timo)
350 {
351 	struct sleepqueue_chain *sc;
352 	struct thread *td;
353 
354 	td = curthread;
355 	sc = SC_LOOKUP(wchan);
356 	mtx_assert(&sc->sc_lock, MA_OWNED);
357 	MPASS(TD_ON_SLEEPQ(td));
358 	MPASS(td->td_sleepqueue == NULL);
359 	MPASS(wchan != NULL);
360 	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
361 }
362 
363 /*
364  * Marks the pending sleep of the current thread as interruptible and
365  * makes an initial check for pending signals before putting a thread
366  * to sleep. Enters and exits with the thread lock held.  Thread lock
367  * may have transitioned from the sleepq lock to a run lock.
368  */
369 static int
370 sleepq_catch_signals(void *wchan)
371 {
372 	struct sleepqueue_chain *sc;
373 	struct sleepqueue *sq;
374 	struct thread *td;
375 	struct proc *p;
376 	struct sigacts *ps;
377 	int sig, ret;
378 
379 	td = curthread;
380 	p = curproc;
381 	sc = SC_LOOKUP(wchan);
382 	mtx_assert(&sc->sc_lock, MA_OWNED);
383 	MPASS(wchan != NULL);
384 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
385 		(void *)td, (long)p->p_pid, td->td_name);
386 
387 	mtx_unlock_spin(&sc->sc_lock);
388 
389 	/* See if there are any pending signals for this thread. */
390 	PROC_LOCK(p);
391 	ps = p->p_sigacts;
392 	mtx_lock(&ps->ps_mtx);
393 	sig = cursig(td);
394 	if (sig == 0) {
395 		mtx_unlock(&ps->ps_mtx);
396 		ret = thread_suspend_check(1);
397 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
398 	} else {
399 		if (SIGISMEMBER(ps->ps_sigintr, sig))
400 			ret = EINTR;
401 		else
402 			ret = ERESTART;
403 		mtx_unlock(&ps->ps_mtx);
404 	}
405 	/*
406 	 * Lock sleepq chain before unlocking proc
407 	 * without this, we could lose a race.
408 	 */
409 	mtx_lock_spin(&sc->sc_lock);
410 	PROC_UNLOCK(p);
411 	thread_lock(td);
412 	if (ret == 0) {
413 		if (!(td->td_flags & TDF_INTERRUPT)) {
414 			sleepq_switch(wchan);
415 			return (0);
416 		}
417 		/* KSE threads tried unblocking us. */
418 		ret = td->td_intrval;
419 		MPASS(ret == EINTR || ret == ERESTART || ret == EWOULDBLOCK);
420 	}
421 	/*
422 	 * There were pending signals and this thread is still
423 	 * on the sleep queue, remove it from the sleep queue.
424 	 */
425 	if (TD_ON_SLEEPQ(td)) {
426 		sq = sleepq_lookup(wchan);
427 		sleepq_resume_thread(sq, td, -1);
428 	}
429 	mtx_unlock_spin(&sc->sc_lock);
430 	MPASS(td->td_lock != &sc->sc_lock);
431 	return (ret);
432 }
433 
434 /*
435  * Switches to another thread if we are still asleep on a sleep queue.
436  * Returns with thread lock.
437  */
438 static void
439 sleepq_switch(void *wchan)
440 {
441 	struct sleepqueue_chain *sc;
442 	struct sleepqueue *sq;
443 	struct thread *td;
444 
445 	td = curthread;
446 	sc = SC_LOOKUP(wchan);
447 	mtx_assert(&sc->sc_lock, MA_OWNED);
448 	THREAD_LOCK_ASSERT(td, MA_OWNED);
449 
450 	/*
451 	 * If we have a sleep queue, then we've already been woken up, so
452 	 * just return.
453 	 */
454 	if (td->td_sleepqueue != NULL) {
455 		mtx_unlock_spin(&sc->sc_lock);
456 		return;
457 	}
458 
459 	/*
460 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
461 	 * already but we are still on the sleep queue, so dequeue the
462 	 * thread and return.
463 	 */
464 	if (td->td_flags & TDF_TIMEOUT) {
465 		MPASS(TD_ON_SLEEPQ(td));
466 		sq = sleepq_lookup(wchan);
467 		sleepq_resume_thread(sq, td, -1);
468 		mtx_unlock_spin(&sc->sc_lock);
469 		return;
470 	}
471 
472 	thread_lock_set(td, &sc->sc_lock);
473 
474 	MPASS(td->td_sleepqueue == NULL);
475 	sched_sleep(td);
476 	TD_SET_SLEEPING(td);
477 	SCHED_STAT_INC(switch_sleepq);
478 	mi_switch(SW_VOL, NULL);
479 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
480 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
481 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
482 }
483 
484 /*
485  * Check to see if we timed out.
486  */
487 static int
488 sleepq_check_timeout(void)
489 {
490 	struct thread *td;
491 
492 	td = curthread;
493 	THREAD_LOCK_ASSERT(td, MA_OWNED);
494 
495 	/*
496 	 * If TDF_TIMEOUT is set, we timed out.
497 	 */
498 	if (td->td_flags & TDF_TIMEOUT) {
499 		td->td_flags &= ~TDF_TIMEOUT;
500 		return (EWOULDBLOCK);
501 	}
502 
503 	/*
504 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
505 	 * already been woken up.
506 	 */
507 	if (td->td_flags & TDF_TIMOFAIL)
508 		td->td_flags &= ~TDF_TIMOFAIL;
509 
510 	/*
511 	 * If callout_stop() fails, then the timeout is running on
512 	 * another CPU, so synchronize with it to avoid having it
513 	 * accidentally wake up a subsequent sleep.
514 	 */
515 	else if (callout_stop(&td->td_slpcallout) == 0) {
516 		td->td_flags |= TDF_TIMEOUT;
517 		TD_SET_SLEEPING(td);
518 		SCHED_STAT_INC(switch_sleepqtimo);
519 		mi_switch(SW_INVOL, NULL);
520 	}
521 	return (0);
522 }
523 
524 /*
525  * Check to see if we were awoken by a signal.
526  */
527 static int
528 sleepq_check_signals(void)
529 {
530 	struct thread *td;
531 
532 	td = curthread;
533 	THREAD_LOCK_ASSERT(td, MA_OWNED);
534 
535 	/* We are no longer in an interruptible sleep. */
536 	if (td->td_flags & TDF_SINTR)
537 		td->td_flags &= ~TDF_SINTR;
538 
539 	if (td->td_flags & TDF_SLEEPABORT) {
540 		td->td_flags &= ~TDF_SLEEPABORT;
541 		return (td->td_intrval);
542 	}
543 
544 	if (td->td_flags & TDF_INTERRUPT)
545 		return (td->td_intrval);
546 
547 	return (0);
548 }
549 
550 /*
551  * Block the current thread until it is awakened from its sleep queue.
552  */
553 void
554 sleepq_wait(void *wchan)
555 {
556 	struct thread *td;
557 
558 	td = curthread;
559 	MPASS(!(td->td_flags & TDF_SINTR));
560 	thread_lock(td);
561 	sleepq_switch(wchan);
562 	thread_unlock(td);
563 }
564 
565 /*
566  * Block the current thread until it is awakened from its sleep queue
567  * or it is interrupted by a signal.
568  */
569 int
570 sleepq_wait_sig(void *wchan)
571 {
572 	int rcatch;
573 	int rval;
574 
575 	rcatch = sleepq_catch_signals(wchan);
576 	rval = sleepq_check_signals();
577 	thread_unlock(curthread);
578 	if (rcatch)
579 		return (rcatch);
580 	return (rval);
581 }
582 
583 /*
584  * Block the current thread until it is awakened from its sleep queue
585  * or it times out while waiting.
586  */
587 int
588 sleepq_timedwait(void *wchan)
589 {
590 	struct thread *td;
591 	int rval;
592 
593 	td = curthread;
594 	MPASS(!(td->td_flags & TDF_SINTR));
595 	thread_lock(td);
596 	sleepq_switch(wchan);
597 	rval = sleepq_check_timeout();
598 	thread_unlock(td);
599 
600 	return (rval);
601 }
602 
603 /*
604  * Block the current thread until it is awakened from its sleep queue,
605  * it is interrupted by a signal, or it times out waiting to be awakened.
606  */
607 int
608 sleepq_timedwait_sig(void *wchan)
609 {
610 	int rcatch, rvalt, rvals;
611 
612 	rcatch = sleepq_catch_signals(wchan);
613 	rvalt = sleepq_check_timeout();
614 	rvals = sleepq_check_signals();
615 	thread_unlock(curthread);
616 	if (rcatch)
617 		return (rcatch);
618 	if (rvals)
619 		return (rvals);
620 	return (rvalt);
621 }
622 
623 /*
624  * Removes a thread from a sleep queue and makes it
625  * runnable.
626  */
627 static void
628 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
629 {
630 	struct sleepqueue_chain *sc;
631 
632 	MPASS(td != NULL);
633 	MPASS(sq->sq_wchan != NULL);
634 	MPASS(td->td_wchan == sq->sq_wchan);
635 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
636 	THREAD_LOCK_ASSERT(td, MA_OWNED);
637 	sc = SC_LOOKUP(sq->sq_wchan);
638 	mtx_assert(&sc->sc_lock, MA_OWNED);
639 
640 	/* Remove the thread from the queue. */
641 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
642 
643 	/*
644 	 * Get a sleep queue for this thread.  If this is the last waiter,
645 	 * use the queue itself and take it out of the chain, otherwise,
646 	 * remove a queue from the free list.
647 	 */
648 	if (LIST_EMPTY(&sq->sq_free)) {
649 		td->td_sleepqueue = sq;
650 #ifdef INVARIANTS
651 		sq->sq_wchan = NULL;
652 #endif
653 #ifdef SLEEPQUEUE_PROFILING
654 		sc->sc_depth--;
655 #endif
656 	} else
657 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
658 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
659 
660 	td->td_wmesg = NULL;
661 	td->td_wchan = NULL;
662 	td->td_flags &= ~TDF_SINTR;
663 
664 	/*
665 	 * Note that thread td might not be sleeping if it is running
666 	 * sleepq_catch_signals() on another CPU or is blocked on
667 	 * its proc lock to check signals.  It doesn't hurt to clear
668 	 * the sleeping flag if it isn't set though, so we just always
669 	 * do it.  However, we can't assert that it is set.
670 	 */
671 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
672 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
673 	TD_CLR_SLEEPING(td);
674 
675 	/* Adjust priority if requested. */
676 	MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
677 	if (pri != -1 && td->td_priority > pri)
678 		sched_prio(td, pri);
679 	setrunnable(td);
680 }
681 
682 #ifdef INVARIANTS
683 /*
684  * UMA zone item deallocator.
685  */
686 static void
687 sleepq_dtor(void *mem, int size, void *arg)
688 {
689 	struct sleepqueue *sq;
690 	int i;
691 
692 	sq = mem;
693 	for (i = 0; i < NR_SLEEPQS; i++)
694 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
695 }
696 #endif
697 
698 /*
699  * UMA zone item initializer.
700  */
701 static int
702 sleepq_init(void *mem, int size, int flags)
703 {
704 	struct sleepqueue *sq;
705 	int i;
706 
707 	bzero(mem, size);
708 	sq = mem;
709 	for (i = 0; i < NR_SLEEPQS; i++)
710 		TAILQ_INIT(&sq->sq_blocked[i]);
711 	LIST_INIT(&sq->sq_free);
712 	return (0);
713 }
714 
715 /*
716  * Find the highest priority thread sleeping on a wait channel and resume it.
717  */
718 void
719 sleepq_signal(void *wchan, int flags, int pri, int queue)
720 {
721 	struct sleepqueue *sq;
722 	struct thread *td, *besttd;
723 
724 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
725 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
726 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
727 	sq = sleepq_lookup(wchan);
728 	if (sq == NULL)
729 		return;
730 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
731 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
732 
733 	/*
734 	 * Find the highest priority thread on the queue.  If there is a
735 	 * tie, use the thread that first appears in the queue as it has
736 	 * been sleeping the longest since threads are always added to
737 	 * the tail of sleep queues.
738 	 */
739 	besttd = NULL;
740 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
741 		if (besttd == NULL || td->td_priority < besttd->td_priority)
742 			besttd = td;
743 	}
744 	MPASS(besttd != NULL);
745 	thread_lock(besttd);
746 	sleepq_resume_thread(sq, besttd, pri);
747 	thread_unlock(besttd);
748 }
749 
750 /*
751  * Resume all threads sleeping on a specified wait channel.
752  */
753 void
754 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
755 {
756 	struct sleepqueue *sq;
757 	struct thread *td;
758 
759 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
760 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
761 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
762 	sq = sleepq_lookup(wchan);
763 	if (sq == NULL) {
764 		sleepq_release(wchan);
765 		return;
766 	}
767 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
768 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
769 
770 	/* Resume all blocked threads on the sleep queue. */
771 	while (!TAILQ_EMPTY(&sq->sq_blocked[queue])) {
772 		td = TAILQ_FIRST(&sq->sq_blocked[queue]);
773 		thread_lock(td);
774 		sleepq_resume_thread(sq, td, pri);
775 		thread_unlock(td);
776 	}
777 	sleepq_release(wchan);
778 }
779 
780 /*
781  * Time sleeping threads out.  When the timeout expires, the thread is
782  * removed from the sleep queue and made runnable if it is still asleep.
783  */
784 static void
785 sleepq_timeout(void *arg)
786 {
787 	struct sleepqueue_chain *sc;
788 	struct sleepqueue *sq;
789 	struct thread *td;
790 	void *wchan;
791 
792 	td = arg;
793 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
794 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
795 
796 	/*
797 	 * First, see if the thread is asleep and get the wait channel if
798 	 * it is.
799 	 */
800 	thread_lock(td);
801 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
802 		wchan = td->td_wchan;
803 		sc = SC_LOOKUP(wchan);
804 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
805 		sq = sleepq_lookup(wchan);
806 		MPASS(sq != NULL);
807 		td->td_flags |= TDF_TIMEOUT;
808 		sleepq_resume_thread(sq, td, -1);
809 		thread_unlock(td);
810 		return;
811 	}
812 
813 	/*
814 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
815 	 * can either be on another CPU in between sleepq_add() and
816 	 * one of the sleepq_*wait*() routines or it can be in
817 	 * sleepq_catch_signals().
818 	 */
819 	if (TD_ON_SLEEPQ(td)) {
820 		td->td_flags |= TDF_TIMEOUT;
821 		thread_unlock(td);
822 		return;
823 	}
824 
825 	/*
826 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
827 	 * then the other thread has already yielded to us, so clear
828 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
829 	 * we know that the other thread is not on a sleep queue, but it
830 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
831 	 * to let it know that the timeout has already run and doesn't
832 	 * need to be canceled.
833 	 */
834 	if (td->td_flags & TDF_TIMEOUT) {
835 		MPASS(TD_IS_SLEEPING(td));
836 		td->td_flags &= ~TDF_TIMEOUT;
837 		TD_CLR_SLEEPING(td);
838 		setrunnable(td);
839 	} else
840 		td->td_flags |= TDF_TIMOFAIL;
841 	thread_unlock(td);
842 }
843 
844 /*
845  * Resumes a specific thread from the sleep queue associated with a specific
846  * wait channel if it is on that queue.
847  */
848 void
849 sleepq_remove(struct thread *td, void *wchan)
850 {
851 	struct sleepqueue *sq;
852 
853 	/*
854 	 * Look up the sleep queue for this wait channel, then re-check
855 	 * that the thread is asleep on that channel, if it is not, then
856 	 * bail.
857 	 */
858 	MPASS(wchan != NULL);
859 	sleepq_lock(wchan);
860 	sq = sleepq_lookup(wchan);
861 	/*
862 	 * We can not lock the thread here as it may be sleeping on a
863 	 * different sleepq.  However, holding the sleepq lock for this
864 	 * wchan can guarantee that we do not miss a wakeup for this
865 	 * channel.  The asserts below will catch any false positives.
866 	 */
867 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
868 		sleepq_release(wchan);
869 		return;
870 	}
871 	/* Thread is asleep on sleep queue sq, so wake it up. */
872 	thread_lock(td);
873 	MPASS(sq != NULL);
874 	MPASS(td->td_wchan == wchan);
875 	sleepq_resume_thread(sq, td, -1);
876 	thread_unlock(td);
877 	sleepq_release(wchan);
878 }
879 
880 /*
881  * Abort a thread as if an interrupt had occurred.  Only abort
882  * interruptible waits (unfortunately it isn't safe to abort others).
883  */
884 void
885 sleepq_abort(struct thread *td, int intrval)
886 {
887 	struct sleepqueue *sq;
888 	void *wchan;
889 
890 	THREAD_LOCK_ASSERT(td, MA_OWNED);
891 	MPASS(TD_ON_SLEEPQ(td));
892 	MPASS(td->td_flags & TDF_SINTR);
893 	MPASS(intrval == EINTR || intrval == ERESTART);
894 
895 	/*
896 	 * If the TDF_TIMEOUT flag is set, just leave. A
897 	 * timeout is scheduled anyhow.
898 	 */
899 	if (td->td_flags & TDF_TIMEOUT)
900 		return;
901 
902 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
903 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
904 	td->td_intrval = intrval;
905 	td->td_flags |= TDF_SLEEPABORT;
906 	/*
907 	 * If the thread has not slept yet it will find the signal in
908 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
909 	 * we have to do it here.
910 	 */
911 	if (!TD_IS_SLEEPING(td))
912 		return;
913 	wchan = td->td_wchan;
914 	MPASS(wchan != NULL);
915 	sq = sleepq_lookup(wchan);
916 	MPASS(sq != NULL);
917 
918 	/* Thread is asleep on sleep queue sq, so wake it up. */
919 	sleepq_resume_thread(sq, td, -1);
920 }
921 
922 #ifdef DDB
923 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
924 {
925 	struct sleepqueue_chain *sc;
926 	struct sleepqueue *sq;
927 #ifdef INVARIANTS
928 	struct lock_object *lock;
929 #endif
930 	struct thread *td;
931 	void *wchan;
932 	int i;
933 
934 	if (!have_addr)
935 		return;
936 
937 	/*
938 	 * First, see if there is an active sleep queue for the wait channel
939 	 * indicated by the address.
940 	 */
941 	wchan = (void *)addr;
942 	sc = SC_LOOKUP(wchan);
943 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
944 		if (sq->sq_wchan == wchan)
945 			goto found;
946 
947 	/*
948 	 * Second, see if there is an active sleep queue at the address
949 	 * indicated.
950 	 */
951 	for (i = 0; i < SC_TABLESIZE; i++)
952 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
953 			if (sq == (struct sleepqueue *)addr)
954 				goto found;
955 		}
956 
957 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
958 	return;
959 found:
960 	db_printf("Wait channel: %p\n", sq->sq_wchan);
961 #ifdef INVARIANTS
962 	db_printf("Queue type: %d\n", sq->sq_type);
963 	if (sq->sq_lock) {
964 		lock = sq->sq_lock;
965 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
966 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
967 	}
968 #endif
969 	db_printf("Blocked threads:\n");
970 	for (i = 0; i < NR_SLEEPQS; i++) {
971 		db_printf("\nQueue[%d]:\n", i);
972 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
973 			db_printf("\tempty\n");
974 		else
975 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
976 				      td_slpq) {
977 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
978 					  td->td_tid, td->td_proc->p_pid,
979 					  td->td_name[i] != '\0' ? td->td_name :
980 					  td->td_name);
981 			}
982 	}
983 }
984 
985 /* Alias 'show sleepqueue' to 'show sleepq'. */
986 DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL);
987 #endif
988