xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 96474d2a3fa895fb9636183403fc8ca7ccf60216)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * Implementation of sleep queues used to hold queue of threads blocked on
30  * a wait channel.  Sleep queues are different from turnstiles in that wait
31  * channels are not owned by anyone, so there is no priority propagation.
32  * Sleep queues can also provide a timeout and can also be interrupted by
33  * signals.  That said, there are several similarities between the turnstile
34  * and sleep queue implementations.  (Note: turnstiles were implemented
35  * first.)  For example, both use a hash table of the same size where each
36  * bucket is referred to as a "chain" that contains both a spin lock and
37  * a linked list of queues.  An individual queue is located by using a hash
38  * to pick a chain, locking the chain, and then walking the chain searching
39  * for the queue.  This means that a wait channel object does not need to
40  * embed its queue head just as locks do not embed their turnstile queue
41  * head.  Threads also carry around a sleep queue that they lend to the
42  * wait channel when blocking.  Just as in turnstiles, the queue includes
43  * a free list of the sleep queues of other threads blocked on the same
44  * wait channel in the case of multiple waiters.
45  *
46  * Some additional functionality provided by sleep queues include the
47  * ability to set a timeout.  The timeout is managed using a per-thread
48  * callout that resumes a thread if it is asleep.  A thread may also
49  * catch signals while it is asleep (aka an interruptible sleep).  The
50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51  * sleep queues also provide some extra assertions.  One is not allowed to
52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53  * must consistently use the same lock to synchronize with a wait channel,
54  * though this check is currently only a warning for sleep/wakeup due to
55  * pre-existing abuse of that API.  The same lock must also be held when
56  * awakening threads, though that is currently only enforced for condition
57  * variables.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_sleepqueue_profiling.h"
64 #include "opt_ddb.h"
65 #include "opt_sched.h"
66 #include "opt_stack.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sdt.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/stack.h>
81 #include <sys/sysctl.h>
82 #include <sys/time.h>
83 #ifdef EPOCH_TRACE
84 #include <sys/epoch.h>
85 #endif
86 
87 #include <machine/atomic.h>
88 
89 #include <vm/uma.h>
90 
91 #ifdef DDB
92 #include <ddb/ddb.h>
93 #endif
94 
95 /*
96  * Constants for the hash table of sleep queue chains.
97  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
98  */
99 #ifndef SC_TABLESIZE
100 #define	SC_TABLESIZE	256
101 #endif
102 CTASSERT(powerof2(SC_TABLESIZE));
103 #define	SC_MASK		(SC_TABLESIZE - 1)
104 #define	SC_SHIFT	8
105 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
106 			    SC_MASK)
107 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
108 #define NR_SLEEPQS      2
109 /*
110  * There are two different lists of sleep queues.  Both lists are connected
111  * via the sq_hash entries.  The first list is the sleep queue chain list
112  * that a sleep queue is on when it is attached to a wait channel.  The
113  * second list is the free list hung off of a sleep queue that is attached
114  * to a wait channel.
115  *
116  * Each sleep queue also contains the wait channel it is attached to, the
117  * list of threads blocked on that wait channel, flags specific to the
118  * wait channel, and the lock used to synchronize with a wait channel.
119  * The flags are used to catch mismatches between the various consumers
120  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
121  * The lock pointer is only used when invariants are enabled for various
122  * debugging checks.
123  *
124  * Locking key:
125  *  c - sleep queue chain lock
126  */
127 struct sleepqueue {
128 	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
129 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
130 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
131 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
132 	const void	*sq_wchan;		/* (c) Wait channel. */
133 	int	sq_type;			/* (c) Queue type. */
134 #ifdef INVARIANTS
135 	struct lock_object *sq_lock;		/* (c) Associated lock. */
136 #endif
137 };
138 
139 struct sleepqueue_chain {
140 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
141 	struct mtx sc_lock;			/* Spin lock for this chain. */
142 #ifdef SLEEPQUEUE_PROFILING
143 	u_int	sc_depth;			/* Length of sc_queues. */
144 	u_int	sc_max_depth;			/* Max length of sc_queues. */
145 #endif
146 } __aligned(CACHE_LINE_SIZE);
147 
148 #ifdef SLEEPQUEUE_PROFILING
149 u_int sleepq_max_depth;
150 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
151     "sleepq profiling");
152 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains,
153     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
154     "sleepq chain stats");
155 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
156     0, "maxmimum depth achieved of a single chain");
157 
158 static void	sleepq_profile(const char *wmesg);
159 static int	prof_enabled;
160 #endif
161 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
162 static uma_zone_t sleepq_zone;
163 
164 /*
165  * Prototypes for non-exported routines.
166  */
167 static int	sleepq_catch_signals(const void *wchan, int pri);
168 static inline int sleepq_check_signals(void);
169 static inline int sleepq_check_timeout(void);
170 #ifdef INVARIANTS
171 static void	sleepq_dtor(void *mem, int size, void *arg);
172 #endif
173 static int	sleepq_init(void *mem, int size, int flags);
174 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
175 		    int pri, int srqflags);
176 static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
177 static void	sleepq_switch(const void *wchan, int pri);
178 static void	sleepq_timeout(void *arg);
179 
180 SDT_PROBE_DECLARE(sched, , , sleep);
181 SDT_PROBE_DECLARE(sched, , , wakeup);
182 
183 /*
184  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
185  * Note that it must happen after sleepinit() has been fully executed, so
186  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
187  */
188 #ifdef SLEEPQUEUE_PROFILING
189 static void
190 init_sleepqueue_profiling(void)
191 {
192 	char chain_name[10];
193 	struct sysctl_oid *chain_oid;
194 	u_int i;
195 
196 	for (i = 0; i < SC_TABLESIZE; i++) {
197 		snprintf(chain_name, sizeof(chain_name), "%u", i);
198 		chain_oid = SYSCTL_ADD_NODE(NULL,
199 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
200 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
201 		    "sleepq chain stats");
202 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
203 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
204 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
205 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
206 		    NULL);
207 	}
208 }
209 
210 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
211     init_sleepqueue_profiling, NULL);
212 #endif
213 
214 /*
215  * Early initialization of sleep queues that is called from the sleepinit()
216  * SYSINIT.
217  */
218 void
219 init_sleepqueues(void)
220 {
221 	int i;
222 
223 	for (i = 0; i < SC_TABLESIZE; i++) {
224 		LIST_INIT(&sleepq_chains[i].sc_queues);
225 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
226 		    MTX_SPIN);
227 	}
228 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
229 #ifdef INVARIANTS
230 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
231 #else
232 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
233 #endif
234 
235 	thread0.td_sleepqueue = sleepq_alloc();
236 }
237 
238 /*
239  * Get a sleep queue for a new thread.
240  */
241 struct sleepqueue *
242 sleepq_alloc(void)
243 {
244 
245 	return (uma_zalloc(sleepq_zone, M_WAITOK));
246 }
247 
248 /*
249  * Free a sleep queue when a thread is destroyed.
250  */
251 void
252 sleepq_free(struct sleepqueue *sq)
253 {
254 
255 	uma_zfree(sleepq_zone, sq);
256 }
257 
258 /*
259  * Lock the sleep queue chain associated with the specified wait channel.
260  */
261 void
262 sleepq_lock(const void *wchan)
263 {
264 	struct sleepqueue_chain *sc;
265 
266 	sc = SC_LOOKUP(wchan);
267 	mtx_lock_spin(&sc->sc_lock);
268 }
269 
270 /*
271  * Look up the sleep queue associated with a given wait channel in the hash
272  * table locking the associated sleep queue chain.  If no queue is found in
273  * the table, NULL is returned.
274  */
275 struct sleepqueue *
276 sleepq_lookup(const void *wchan)
277 {
278 	struct sleepqueue_chain *sc;
279 	struct sleepqueue *sq;
280 
281 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
282 	sc = SC_LOOKUP(wchan);
283 	mtx_assert(&sc->sc_lock, MA_OWNED);
284 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
285 		if (sq->sq_wchan == wchan)
286 			return (sq);
287 	return (NULL);
288 }
289 
290 /*
291  * Unlock the sleep queue chain associated with a given wait channel.
292  */
293 void
294 sleepq_release(const void *wchan)
295 {
296 	struct sleepqueue_chain *sc;
297 
298 	sc = SC_LOOKUP(wchan);
299 	mtx_unlock_spin(&sc->sc_lock);
300 }
301 
302 /*
303  * Places the current thread on the sleep queue for the specified wait
304  * channel.  If INVARIANTS is enabled, then it associates the passed in
305  * lock with the sleepq to make sure it is held when that sleep queue is
306  * woken up.
307  */
308 void
309 sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg,
310     int flags, int queue)
311 {
312 	struct sleepqueue_chain *sc;
313 	struct sleepqueue *sq;
314 	struct thread *td;
315 
316 	td = curthread;
317 	sc = SC_LOOKUP(wchan);
318 	mtx_assert(&sc->sc_lock, MA_OWNED);
319 	MPASS(td->td_sleepqueue != NULL);
320 	MPASS(wchan != NULL);
321 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
322 
323 	/* If this thread is not allowed to sleep, die a horrible death. */
324 	if (__predict_false(!THREAD_CAN_SLEEP())) {
325 #ifdef EPOCH_TRACE
326 		epoch_trace_list(curthread);
327 #endif
328 		KASSERT(0,
329 		    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
330 		    __func__, td, wchan));
331 	}
332 
333 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
334 	sq = sleepq_lookup(wchan);
335 
336 	/*
337 	 * If the wait channel does not already have a sleep queue, use
338 	 * this thread's sleep queue.  Otherwise, insert the current thread
339 	 * into the sleep queue already in use by this wait channel.
340 	 */
341 	if (sq == NULL) {
342 #ifdef INVARIANTS
343 		int i;
344 
345 		sq = td->td_sleepqueue;
346 		for (i = 0; i < NR_SLEEPQS; i++) {
347 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
348 			    ("thread's sleep queue %d is not empty", i));
349 			KASSERT(sq->sq_blockedcnt[i] == 0,
350 			    ("thread's sleep queue %d count mismatches", i));
351 		}
352 		KASSERT(LIST_EMPTY(&sq->sq_free),
353 		    ("thread's sleep queue has a non-empty free list"));
354 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
355 		sq->sq_lock = lock;
356 #endif
357 #ifdef SLEEPQUEUE_PROFILING
358 		sc->sc_depth++;
359 		if (sc->sc_depth > sc->sc_max_depth) {
360 			sc->sc_max_depth = sc->sc_depth;
361 			if (sc->sc_max_depth > sleepq_max_depth)
362 				sleepq_max_depth = sc->sc_max_depth;
363 		}
364 #endif
365 		sq = td->td_sleepqueue;
366 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
367 		sq->sq_wchan = wchan;
368 		sq->sq_type = flags & SLEEPQ_TYPE;
369 	} else {
370 		MPASS(wchan == sq->sq_wchan);
371 		MPASS(lock == sq->sq_lock);
372 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
373 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
374 	}
375 	thread_lock(td);
376 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
377 	sq->sq_blockedcnt[queue]++;
378 	td->td_sleepqueue = NULL;
379 	td->td_sqqueue = queue;
380 	td->td_wchan = wchan;
381 	td->td_wmesg = wmesg;
382 	if (flags & SLEEPQ_INTERRUPTIBLE) {
383 		td->td_intrval = 0;
384 		td->td_flags |= TDF_SINTR;
385 	}
386 	td->td_flags &= ~TDF_TIMEOUT;
387 	thread_unlock(td);
388 }
389 
390 /*
391  * Sets a timeout that will remove the current thread from the specified
392  * sleep queue after timo ticks if the thread has not already been awakened.
393  */
394 void
395 sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr,
396     int flags)
397 {
398 	struct sleepqueue_chain *sc __unused;
399 	struct thread *td;
400 	sbintime_t pr1;
401 
402 	td = curthread;
403 	sc = SC_LOOKUP(wchan);
404 	mtx_assert(&sc->sc_lock, MA_OWNED);
405 	MPASS(TD_ON_SLEEPQ(td));
406 	MPASS(td->td_sleepqueue == NULL);
407 	MPASS(wchan != NULL);
408 	if (cold && td == &thread0)
409 		panic("timed sleep before timers are working");
410 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
411 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
412 	thread_lock(td);
413 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
414 	thread_unlock(td);
415 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
416 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
417 	    C_DIRECT_EXEC);
418 }
419 
420 /*
421  * Return the number of actual sleepers for the specified queue.
422  */
423 u_int
424 sleepq_sleepcnt(const void *wchan, int queue)
425 {
426 	struct sleepqueue *sq;
427 
428 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
429 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
430 	sq = sleepq_lookup(wchan);
431 	if (sq == NULL)
432 		return (0);
433 	return (sq->sq_blockedcnt[queue]);
434 }
435 
436 /*
437  * Marks the pending sleep of the current thread as interruptible and
438  * makes an initial check for pending signals before putting a thread
439  * to sleep. Enters and exits with the thread lock held.  Thread lock
440  * may have transitioned from the sleepq lock to a run lock.
441  */
442 static int
443 sleepq_catch_signals(const void *wchan, int pri)
444 {
445 	struct sleepqueue_chain *sc;
446 	struct sleepqueue *sq;
447 	struct thread *td;
448 	struct proc *p;
449 	struct sigacts *ps;
450 	int sig, ret;
451 
452 	ret = 0;
453 	td = curthread;
454 	p = curproc;
455 	sc = SC_LOOKUP(wchan);
456 	mtx_assert(&sc->sc_lock, MA_OWNED);
457 	MPASS(wchan != NULL);
458 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
459 		td->td_pflags &= ~TDP_WAKEUP;
460 		ret = EINTR;
461 		thread_lock(td);
462 		goto out;
463 	}
464 
465 	/*
466 	 * See if there are any pending signals or suspension requests for this
467 	 * thread.  If not, we can switch immediately.
468 	 */
469 	thread_lock(td);
470 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) {
471 		thread_unlock(td);
472 		mtx_unlock_spin(&sc->sc_lock);
473 		CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
474 			(void *)td, (long)p->p_pid, td->td_name);
475 		PROC_LOCK(p);
476 		/*
477 		 * Check for suspension first. Checking for signals and then
478 		 * suspending could result in a missed signal, since a signal
479 		 * can be delivered while this thread is suspended.
480 		 */
481 		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
482 			ret = thread_suspend_check(1);
483 			MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
484 			if (ret != 0) {
485 				PROC_UNLOCK(p);
486 				mtx_lock_spin(&sc->sc_lock);
487 				thread_lock(td);
488 				goto out;
489 			}
490 		}
491 		if ((td->td_flags & TDF_NEEDSIGCHK) != 0) {
492 			ps = p->p_sigacts;
493 			mtx_lock(&ps->ps_mtx);
494 			sig = cursig(td);
495 			if (sig == -1) {
496 				mtx_unlock(&ps->ps_mtx);
497 				KASSERT((td->td_flags & TDF_SBDRY) != 0,
498 				    ("lost TDF_SBDRY"));
499 				KASSERT(TD_SBDRY_INTR(td),
500 				    ("lost TDF_SERESTART of TDF_SEINTR"));
501 				KASSERT((td->td_flags &
502 				    (TDF_SEINTR | TDF_SERESTART)) !=
503 				    (TDF_SEINTR | TDF_SERESTART),
504 				    ("both TDF_SEINTR and TDF_SERESTART"));
505 				ret = TD_SBDRY_ERRNO(td);
506 			} else if (sig != 0) {
507 				ret = SIGISMEMBER(ps->ps_sigintr, sig) ?
508 				    EINTR : ERESTART;
509 				mtx_unlock(&ps->ps_mtx);
510 			} else {
511 				mtx_unlock(&ps->ps_mtx);
512 			}
513 
514 			/*
515 			 * Do not go into sleep if this thread was the
516 			 * ptrace(2) attach leader.  cursig() consumed
517 			 * SIGSTOP from PT_ATTACH, but we usually act
518 			 * on the signal by interrupting sleep, and
519 			 * should do that here as well.
520 			 */
521 			if ((td->td_dbgflags & TDB_FSTP) != 0) {
522 				if (ret == 0)
523 					ret = EINTR;
524 				td->td_dbgflags &= ~TDB_FSTP;
525 			}
526 		}
527 		/*
528 		 * Lock the per-process spinlock prior to dropping the PROC_LOCK
529 		 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
530 		 * thread_lock() are currently held in tdsendsignal().
531 		 */
532 		PROC_SLOCK(p);
533 		mtx_lock_spin(&sc->sc_lock);
534 		PROC_UNLOCK(p);
535 		thread_lock(td);
536 		PROC_SUNLOCK(p);
537 	}
538 	if (ret == 0) {
539 		sleepq_switch(wchan, pri);
540 		return (0);
541 	}
542 out:
543 	/*
544 	 * There were pending signals and this thread is still
545 	 * on the sleep queue, remove it from the sleep queue.
546 	 */
547 	if (TD_ON_SLEEPQ(td)) {
548 		sq = sleepq_lookup(wchan);
549 		sleepq_remove_thread(sq, td);
550 	}
551 	MPASS(td->td_lock != &sc->sc_lock);
552 	mtx_unlock_spin(&sc->sc_lock);
553 	thread_unlock(td);
554 
555 	return (ret);
556 }
557 
558 /*
559  * Switches to another thread if we are still asleep on a sleep queue.
560  * Returns with thread lock.
561  */
562 static void
563 sleepq_switch(const void *wchan, int pri)
564 {
565 	struct sleepqueue_chain *sc;
566 	struct sleepqueue *sq;
567 	struct thread *td;
568 	bool rtc_changed;
569 
570 	td = curthread;
571 	sc = SC_LOOKUP(wchan);
572 	mtx_assert(&sc->sc_lock, MA_OWNED);
573 	THREAD_LOCK_ASSERT(td, MA_OWNED);
574 
575 	/*
576 	 * If we have a sleep queue, then we've already been woken up, so
577 	 * just return.
578 	 */
579 	if (td->td_sleepqueue != NULL) {
580 		mtx_unlock_spin(&sc->sc_lock);
581 		thread_unlock(td);
582 		return;
583 	}
584 
585 	/*
586 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
587 	 * already but we are still on the sleep queue, so dequeue the
588 	 * thread and return.
589 	 *
590 	 * Do the same if the real-time clock has been adjusted since this
591 	 * thread calculated its timeout based on that clock.  This handles
592 	 * the following race:
593 	 * - The Ts thread needs to sleep until an absolute real-clock time.
594 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
595 	 *   reads the RTC, and calculates a sleep duration based on that time.
596 	 *   See umtxq_sleep() for an example.
597 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
598 	 *   threads that are sleeping until an absolute real-clock time.
599 	 *   See tc_setclock() and the POSIX specification of clock_settime().
600 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
601 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
602 	 * (The declaration of td_rtcgen refers to this comment.)
603 	 */
604 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
605 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
606 		if (rtc_changed) {
607 			td->td_rtcgen = 0;
608 		}
609 		MPASS(TD_ON_SLEEPQ(td));
610 		sq = sleepq_lookup(wchan);
611 		sleepq_remove_thread(sq, td);
612 		mtx_unlock_spin(&sc->sc_lock);
613 		thread_unlock(td);
614 		return;
615 	}
616 #ifdef SLEEPQUEUE_PROFILING
617 	if (prof_enabled)
618 		sleepq_profile(td->td_wmesg);
619 #endif
620 	MPASS(td->td_sleepqueue == NULL);
621 	sched_sleep(td, pri);
622 	thread_lock_set(td, &sc->sc_lock);
623 	SDT_PROBE0(sched, , , sleep);
624 	TD_SET_SLEEPING(td);
625 	mi_switch(SW_VOL | SWT_SLEEPQ);
626 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
627 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
628 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
629 }
630 
631 /*
632  * Check to see if we timed out.
633  */
634 static inline int
635 sleepq_check_timeout(void)
636 {
637 	struct thread *td;
638 	int res;
639 
640 	res = 0;
641 	td = curthread;
642 	if (td->td_sleeptimo != 0) {
643 		if (td->td_sleeptimo <= sbinuptime())
644 			res = EWOULDBLOCK;
645 		td->td_sleeptimo = 0;
646 	}
647 	return (res);
648 }
649 
650 /*
651  * Check to see if we were awoken by a signal.
652  */
653 static inline int
654 sleepq_check_signals(void)
655 {
656 	struct thread *td;
657 
658 	td = curthread;
659 	KASSERT((td->td_flags & TDF_SINTR) == 0,
660 	    ("thread %p still in interruptible sleep?", td));
661 
662 	return (td->td_intrval);
663 }
664 
665 /*
666  * Block the current thread until it is awakened from its sleep queue.
667  */
668 void
669 sleepq_wait(const void *wchan, int pri)
670 {
671 	struct thread *td;
672 
673 	td = curthread;
674 	MPASS(!(td->td_flags & TDF_SINTR));
675 	thread_lock(td);
676 	sleepq_switch(wchan, pri);
677 }
678 
679 /*
680  * Block the current thread until it is awakened from its sleep queue
681  * or it is interrupted by a signal.
682  */
683 int
684 sleepq_wait_sig(const void *wchan, int pri)
685 {
686 	int rcatch;
687 
688 	rcatch = sleepq_catch_signals(wchan, pri);
689 	if (rcatch)
690 		return (rcatch);
691 	return (sleepq_check_signals());
692 }
693 
694 /*
695  * Block the current thread until it is awakened from its sleep queue
696  * or it times out while waiting.
697  */
698 int
699 sleepq_timedwait(const void *wchan, int pri)
700 {
701 	struct thread *td;
702 
703 	td = curthread;
704 	MPASS(!(td->td_flags & TDF_SINTR));
705 
706 	thread_lock(td);
707 	sleepq_switch(wchan, pri);
708 
709 	return (sleepq_check_timeout());
710 }
711 
712 /*
713  * Block the current thread until it is awakened from its sleep queue,
714  * it is interrupted by a signal, or it times out waiting to be awakened.
715  */
716 int
717 sleepq_timedwait_sig(const void *wchan, int pri)
718 {
719 	int rcatch, rvalt, rvals;
720 
721 	rcatch = sleepq_catch_signals(wchan, pri);
722 	/* We must always call check_timeout() to clear sleeptimo. */
723 	rvalt = sleepq_check_timeout();
724 	rvals = sleepq_check_signals();
725 	if (rcatch)
726 		return (rcatch);
727 	if (rvals)
728 		return (rvals);
729 	return (rvalt);
730 }
731 
732 /*
733  * Returns the type of sleepqueue given a waitchannel.
734  */
735 int
736 sleepq_type(const void *wchan)
737 {
738 	struct sleepqueue *sq;
739 	int type;
740 
741 	MPASS(wchan != NULL);
742 
743 	sq = sleepq_lookup(wchan);
744 	if (sq == NULL)
745 		return (-1);
746 	type = sq->sq_type;
747 
748 	return (type);
749 }
750 
751 /*
752  * Removes a thread from a sleep queue and makes it
753  * runnable.
754  *
755  * Requires the sc chain locked on entry.  If SRQ_HOLD is specified it will
756  * be locked on return.  Returns without the thread lock held.
757  */
758 static int
759 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri,
760     int srqflags)
761 {
762 	struct sleepqueue_chain *sc;
763 	bool drop;
764 
765 	MPASS(td != NULL);
766 	MPASS(sq->sq_wchan != NULL);
767 	MPASS(td->td_wchan == sq->sq_wchan);
768 
769 	sc = SC_LOOKUP(sq->sq_wchan);
770 	mtx_assert(&sc->sc_lock, MA_OWNED);
771 
772 	/*
773 	 * Avoid recursing on the chain lock.  If the locks don't match we
774 	 * need to acquire the thread lock which setrunnable will drop for
775 	 * us.  In this case we need to drop the chain lock afterwards.
776 	 *
777 	 * There is no race that will make td_lock equal to sc_lock because
778 	 * we hold sc_lock.
779 	 */
780 	drop = false;
781 	if (!TD_IS_SLEEPING(td)) {
782 		thread_lock(td);
783 		drop = true;
784 	} else
785 		thread_lock_block_wait(td);
786 
787 	/* Remove thread from the sleepq. */
788 	sleepq_remove_thread(sq, td);
789 
790 	/* If we're done with the sleepqueue release it. */
791 	if ((srqflags & SRQ_HOLD) == 0 && drop)
792 		mtx_unlock_spin(&sc->sc_lock);
793 
794 	/* Adjust priority if requested. */
795 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
796 	if (pri != 0 && td->td_priority > pri &&
797 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
798 		sched_prio(td, pri);
799 
800 	/*
801 	 * Note that thread td might not be sleeping if it is running
802 	 * sleepq_catch_signals() on another CPU or is blocked on its
803 	 * proc lock to check signals.  There's no need to mark the
804 	 * thread runnable in that case.
805 	 */
806 	if (TD_IS_SLEEPING(td)) {
807 		MPASS(!drop);
808 		TD_CLR_SLEEPING(td);
809 		return (setrunnable(td, srqflags));
810 	}
811 	MPASS(drop);
812 	thread_unlock(td);
813 
814 	return (0);
815 }
816 
817 static void
818 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
819 {
820 	struct sleepqueue_chain *sc __unused;
821 
822 	MPASS(td != NULL);
823 	MPASS(sq->sq_wchan != NULL);
824 	MPASS(td->td_wchan == sq->sq_wchan);
825 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
826 	THREAD_LOCK_ASSERT(td, MA_OWNED);
827 	sc = SC_LOOKUP(sq->sq_wchan);
828 	mtx_assert(&sc->sc_lock, MA_OWNED);
829 
830 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
831 
832 	/* Remove the thread from the queue. */
833 	sq->sq_blockedcnt[td->td_sqqueue]--;
834 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
835 
836 	/*
837 	 * Get a sleep queue for this thread.  If this is the last waiter,
838 	 * use the queue itself and take it out of the chain, otherwise,
839 	 * remove a queue from the free list.
840 	 */
841 	if (LIST_EMPTY(&sq->sq_free)) {
842 		td->td_sleepqueue = sq;
843 #ifdef INVARIANTS
844 		sq->sq_wchan = NULL;
845 #endif
846 #ifdef SLEEPQUEUE_PROFILING
847 		sc->sc_depth--;
848 #endif
849 	} else
850 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
851 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
852 
853 	if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0)
854 		/*
855 		 * We ignore the situation where timeout subsystem was
856 		 * unable to stop our callout.  The struct thread is
857 		 * type-stable, the callout will use the correct
858 		 * memory when running.  The checks of the
859 		 * td_sleeptimo value in this function and in
860 		 * sleepq_timeout() ensure that the thread does not
861 		 * get spurious wakeups, even if the callout was reset
862 		 * or thread reused.
863 		 */
864 		callout_stop(&td->td_slpcallout);
865 
866 	td->td_wmesg = NULL;
867 	td->td_wchan = NULL;
868 	td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT);
869 
870 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
871 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
872 }
873 
874 #ifdef INVARIANTS
875 /*
876  * UMA zone item deallocator.
877  */
878 static void
879 sleepq_dtor(void *mem, int size, void *arg)
880 {
881 	struct sleepqueue *sq;
882 	int i;
883 
884 	sq = mem;
885 	for (i = 0; i < NR_SLEEPQS; i++) {
886 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
887 		MPASS(sq->sq_blockedcnt[i] == 0);
888 	}
889 }
890 #endif
891 
892 /*
893  * UMA zone item initializer.
894  */
895 static int
896 sleepq_init(void *mem, int size, int flags)
897 {
898 	struct sleepqueue *sq;
899 	int i;
900 
901 	bzero(mem, size);
902 	sq = mem;
903 	for (i = 0; i < NR_SLEEPQS; i++) {
904 		TAILQ_INIT(&sq->sq_blocked[i]);
905 		sq->sq_blockedcnt[i] = 0;
906 	}
907 	LIST_INIT(&sq->sq_free);
908 	return (0);
909 }
910 
911 /*
912  * Find thread sleeping on a wait channel and resume it.
913  */
914 int
915 sleepq_signal(const void *wchan, int flags, int pri, int queue)
916 {
917 	struct sleepqueue_chain *sc;
918 	struct sleepqueue *sq;
919 	struct threadqueue *head;
920 	struct thread *td, *besttd;
921 	int wakeup_swapper;
922 
923 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
924 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
925 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
926 	sq = sleepq_lookup(wchan);
927 	if (sq == NULL)
928 		return (0);
929 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
930 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
931 
932 	head = &sq->sq_blocked[queue];
933 	if (flags & SLEEPQ_UNFAIR) {
934 		/*
935 		 * Find the most recently sleeping thread, but try to
936 		 * skip threads still in process of context switch to
937 		 * avoid spinning on the thread lock.
938 		 */
939 		sc = SC_LOOKUP(wchan);
940 		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
941 		while (besttd->td_lock != &sc->sc_lock) {
942 			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
943 			if (td == NULL)
944 				break;
945 			besttd = td;
946 		}
947 	} else {
948 		/*
949 		 * Find the highest priority thread on the queue.  If there
950 		 * is a tie, use the thread that first appears in the queue
951 		 * as it has been sleeping the longest since threads are
952 		 * always added to the tail of sleep queues.
953 		 */
954 		besttd = td = TAILQ_FIRST(head);
955 		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
956 			if (td->td_priority < besttd->td_priority)
957 				besttd = td;
958 		}
959 	}
960 	MPASS(besttd != NULL);
961 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri, SRQ_HOLD);
962 	return (wakeup_swapper);
963 }
964 
965 static bool
966 match_any(struct thread *td __unused)
967 {
968 
969 	return (true);
970 }
971 
972 /*
973  * Resume all threads sleeping on a specified wait channel.
974  */
975 int
976 sleepq_broadcast(const void *wchan, int flags, int pri, int queue)
977 {
978 	struct sleepqueue *sq;
979 
980 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
981 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
982 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
983 	sq = sleepq_lookup(wchan);
984 	if (sq == NULL)
985 		return (0);
986 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
987 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
988 
989 	return (sleepq_remove_matching(sq, queue, match_any, pri));
990 }
991 
992 /*
993  * Resume threads on the sleep queue that match the given predicate.
994  */
995 int
996 sleepq_remove_matching(struct sleepqueue *sq, int queue,
997     bool (*matches)(struct thread *), int pri)
998 {
999 	struct thread *td, *tdn;
1000 	int wakeup_swapper;
1001 
1002 	/*
1003 	 * The last thread will be given ownership of sq and may
1004 	 * re-enqueue itself before sleepq_resume_thread() returns,
1005 	 * so we must cache the "next" queue item at the beginning
1006 	 * of the final iteration.
1007 	 */
1008 	wakeup_swapper = 0;
1009 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
1010 		if (matches(td))
1011 			wakeup_swapper |= sleepq_resume_thread(sq, td, pri,
1012 			    SRQ_HOLD);
1013 	}
1014 
1015 	return (wakeup_swapper);
1016 }
1017 
1018 /*
1019  * Time sleeping threads out.  When the timeout expires, the thread is
1020  * removed from the sleep queue and made runnable if it is still asleep.
1021  */
1022 static void
1023 sleepq_timeout(void *arg)
1024 {
1025 	struct sleepqueue_chain *sc __unused;
1026 	struct sleepqueue *sq;
1027 	struct thread *td;
1028 	const void *wchan;
1029 	int wakeup_swapper;
1030 
1031 	td = arg;
1032 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1033 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1034 
1035 	thread_lock(td);
1036 	if (td->td_sleeptimo == 0 || td->td_sleeptimo > sbinuptime()) {
1037 		/*
1038 		 * The thread does not want a timeout (yet).
1039 		 */
1040 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1041 		/*
1042 		 * See if the thread is asleep and get the wait
1043 		 * channel if it is.
1044 		 */
1045 		wchan = td->td_wchan;
1046 		sc = SC_LOOKUP(wchan);
1047 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1048 		sq = sleepq_lookup(wchan);
1049 		MPASS(sq != NULL);
1050 		td->td_flags |= TDF_TIMEOUT;
1051 		wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1052 		if (wakeup_swapper)
1053 			kick_proc0();
1054 		return;
1055 	} else if (TD_ON_SLEEPQ(td)) {
1056 		/*
1057 		 * If the thread is on the SLEEPQ but isn't sleeping
1058 		 * yet, it can either be on another CPU in between
1059 		 * sleepq_add() and one of the sleepq_*wait*()
1060 		 * routines or it can be in sleepq_catch_signals().
1061 		 */
1062 		td->td_flags |= TDF_TIMEOUT;
1063 	}
1064 	thread_unlock(td);
1065 }
1066 
1067 /*
1068  * Resumes a specific thread from the sleep queue associated with a specific
1069  * wait channel if it is on that queue.
1070  */
1071 void
1072 sleepq_remove(struct thread *td, const void *wchan)
1073 {
1074 	struct sleepqueue_chain *sc;
1075 	struct sleepqueue *sq;
1076 	int wakeup_swapper;
1077 
1078 	/*
1079 	 * Look up the sleep queue for this wait channel, then re-check
1080 	 * that the thread is asleep on that channel, if it is not, then
1081 	 * bail.
1082 	 */
1083 	MPASS(wchan != NULL);
1084 	sc = SC_LOOKUP(wchan);
1085 	mtx_lock_spin(&sc->sc_lock);
1086 	/*
1087 	 * We can not lock the thread here as it may be sleeping on a
1088 	 * different sleepq.  However, holding the sleepq lock for this
1089 	 * wchan can guarantee that we do not miss a wakeup for this
1090 	 * channel.  The asserts below will catch any false positives.
1091 	 */
1092 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1093 		mtx_unlock_spin(&sc->sc_lock);
1094 		return;
1095 	}
1096 
1097 	/* Thread is asleep on sleep queue sq, so wake it up. */
1098 	sq = sleepq_lookup(wchan);
1099 	MPASS(sq != NULL);
1100 	MPASS(td->td_wchan == wchan);
1101 	wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1102 	if (wakeup_swapper)
1103 		kick_proc0();
1104 }
1105 
1106 /*
1107  * Abort a thread as if an interrupt had occurred.  Only abort
1108  * interruptible waits (unfortunately it isn't safe to abort others).
1109  *
1110  * Requires thread lock on entry, releases on return.
1111  */
1112 int
1113 sleepq_abort(struct thread *td, int intrval)
1114 {
1115 	struct sleepqueue *sq;
1116 	const void *wchan;
1117 
1118 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1119 	MPASS(TD_ON_SLEEPQ(td));
1120 	MPASS(td->td_flags & TDF_SINTR);
1121 	MPASS(intrval == EINTR || intrval == ERESTART);
1122 
1123 	/*
1124 	 * If the TDF_TIMEOUT flag is set, just leave. A
1125 	 * timeout is scheduled anyhow.
1126 	 */
1127 	if (td->td_flags & TDF_TIMEOUT) {
1128 		thread_unlock(td);
1129 		return (0);
1130 	}
1131 
1132 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1133 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1134 	td->td_intrval = intrval;
1135 
1136 	/*
1137 	 * If the thread has not slept yet it will find the signal in
1138 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1139 	 * we have to do it here.
1140 	 */
1141 	if (!TD_IS_SLEEPING(td)) {
1142 		thread_unlock(td);
1143 		return (0);
1144 	}
1145 	wchan = td->td_wchan;
1146 	MPASS(wchan != NULL);
1147 	sq = sleepq_lookup(wchan);
1148 	MPASS(sq != NULL);
1149 
1150 	/* Thread is asleep on sleep queue sq, so wake it up. */
1151 	return (sleepq_resume_thread(sq, td, 0, 0));
1152 }
1153 
1154 void
1155 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1156 {
1157 	struct sleepqueue_chain *sc;
1158 	struct sleepqueue *sq, *sq1;
1159 	int i, wakeup_swapper;
1160 
1161 	wakeup_swapper = 0;
1162 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1163 		if (LIST_EMPTY(&sc->sc_queues)) {
1164 			continue;
1165 		}
1166 		mtx_lock_spin(&sc->sc_lock);
1167 		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1168 			for (i = 0; i < NR_SLEEPQS; ++i) {
1169 				wakeup_swapper |= sleepq_remove_matching(sq, i,
1170 				    matches, 0);
1171 			}
1172 		}
1173 		mtx_unlock_spin(&sc->sc_lock);
1174 	}
1175 	if (wakeup_swapper) {
1176 		kick_proc0();
1177 	}
1178 }
1179 
1180 /*
1181  * Prints the stacks of all threads presently sleeping on wchan/queue to
1182  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1183  * printed.  Typically, this will equal the number of threads sleeping on the
1184  * queue, but may be less if sb overflowed before all stacks were printed.
1185  */
1186 #ifdef STACK
1187 int
1188 sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue,
1189     int *count_stacks_printed)
1190 {
1191 	struct thread *td, *td_next;
1192 	struct sleepqueue *sq;
1193 	struct stack **st;
1194 	struct sbuf **td_infos;
1195 	int i, stack_idx, error, stacks_to_allocate;
1196 	bool finished;
1197 
1198 	error = 0;
1199 	finished = false;
1200 
1201 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1202 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1203 
1204 	stacks_to_allocate = 10;
1205 	for (i = 0; i < 3 && !finished ; i++) {
1206 		/* We cannot malloc while holding the queue's spinlock, so
1207 		 * we do our mallocs now, and hope it is enough.  If it
1208 		 * isn't, we will free these, drop the lock, malloc more,
1209 		 * and try again, up to a point.  After that point we will
1210 		 * give up and report ENOMEM. We also cannot write to sb
1211 		 * during this time since the client may have set the
1212 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1213 		 * malloc as we print to it.  So we defer actually printing
1214 		 * to sb until after we drop the spinlock.
1215 		 */
1216 
1217 		/* Where we will store the stacks. */
1218 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1219 		    M_TEMP, M_WAITOK);
1220 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1221 		    stack_idx++)
1222 			st[stack_idx] = stack_create(M_WAITOK);
1223 
1224 		/* Where we will store the td name, tid, etc. */
1225 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1226 		    M_TEMP, M_WAITOK);
1227 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1228 		    stack_idx++)
1229 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1230 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1231 			    SBUF_FIXEDLEN);
1232 
1233 		sleepq_lock(wchan);
1234 		sq = sleepq_lookup(wchan);
1235 		if (sq == NULL) {
1236 			/* This sleepq does not exist; exit and return ENOENT. */
1237 			error = ENOENT;
1238 			finished = true;
1239 			sleepq_release(wchan);
1240 			goto loop_end;
1241 		}
1242 
1243 		stack_idx = 0;
1244 		/* Save thread info */
1245 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1246 		    td_next) {
1247 			if (stack_idx >= stacks_to_allocate)
1248 				goto loop_end;
1249 
1250 			/* Note the td_lock is equal to the sleepq_lock here. */
1251 			(void)stack_save_td(st[stack_idx], td);
1252 
1253 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1254 			    td->td_tid, td->td_name, td);
1255 
1256 			++stack_idx;
1257 		}
1258 
1259 		finished = true;
1260 		sleepq_release(wchan);
1261 
1262 		/* Print the stacks */
1263 		for (i = 0; i < stack_idx; i++) {
1264 			sbuf_finish(td_infos[i]);
1265 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1266 			stack_sbuf_print(sb, st[i]);
1267 			sbuf_printf(sb, "\n");
1268 
1269 			error = sbuf_error(sb);
1270 			if (error == 0)
1271 				*count_stacks_printed = stack_idx;
1272 		}
1273 
1274 loop_end:
1275 		if (!finished)
1276 			sleepq_release(wchan);
1277 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1278 		    stack_idx++)
1279 			stack_destroy(st[stack_idx]);
1280 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1281 		    stack_idx++)
1282 			sbuf_delete(td_infos[stack_idx]);
1283 		free(st, M_TEMP);
1284 		free(td_infos, M_TEMP);
1285 		stacks_to_allocate *= 10;
1286 	}
1287 
1288 	if (!finished && error == 0)
1289 		error = ENOMEM;
1290 
1291 	return (error);
1292 }
1293 #endif
1294 
1295 #ifdef SLEEPQUEUE_PROFILING
1296 #define	SLEEPQ_PROF_LOCATIONS	1024
1297 #define	SLEEPQ_SBUFSIZE		512
1298 struct sleepq_prof {
1299 	LIST_ENTRY(sleepq_prof) sp_link;
1300 	const char	*sp_wmesg;
1301 	long		sp_count;
1302 };
1303 
1304 LIST_HEAD(sqphead, sleepq_prof);
1305 
1306 struct sqphead sleepq_prof_free;
1307 struct sqphead sleepq_hash[SC_TABLESIZE];
1308 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1309 static struct mtx sleepq_prof_lock;
1310 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1311 
1312 static void
1313 sleepq_profile(const char *wmesg)
1314 {
1315 	struct sleepq_prof *sp;
1316 
1317 	mtx_lock_spin(&sleepq_prof_lock);
1318 	if (prof_enabled == 0)
1319 		goto unlock;
1320 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1321 		if (sp->sp_wmesg == wmesg)
1322 			goto done;
1323 	sp = LIST_FIRST(&sleepq_prof_free);
1324 	if (sp == NULL)
1325 		goto unlock;
1326 	sp->sp_wmesg = wmesg;
1327 	LIST_REMOVE(sp, sp_link);
1328 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1329 done:
1330 	sp->sp_count++;
1331 unlock:
1332 	mtx_unlock_spin(&sleepq_prof_lock);
1333 	return;
1334 }
1335 
1336 static void
1337 sleepq_prof_reset(void)
1338 {
1339 	struct sleepq_prof *sp;
1340 	int enabled;
1341 	int i;
1342 
1343 	mtx_lock_spin(&sleepq_prof_lock);
1344 	enabled = prof_enabled;
1345 	prof_enabled = 0;
1346 	for (i = 0; i < SC_TABLESIZE; i++)
1347 		LIST_INIT(&sleepq_hash[i]);
1348 	LIST_INIT(&sleepq_prof_free);
1349 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1350 		sp = &sleepq_profent[i];
1351 		sp->sp_wmesg = NULL;
1352 		sp->sp_count = 0;
1353 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1354 	}
1355 	prof_enabled = enabled;
1356 	mtx_unlock_spin(&sleepq_prof_lock);
1357 }
1358 
1359 static int
1360 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1361 {
1362 	int error, v;
1363 
1364 	v = prof_enabled;
1365 	error = sysctl_handle_int(oidp, &v, v, req);
1366 	if (error)
1367 		return (error);
1368 	if (req->newptr == NULL)
1369 		return (error);
1370 	if (v == prof_enabled)
1371 		return (0);
1372 	if (v == 1)
1373 		sleepq_prof_reset();
1374 	mtx_lock_spin(&sleepq_prof_lock);
1375 	prof_enabled = !!v;
1376 	mtx_unlock_spin(&sleepq_prof_lock);
1377 
1378 	return (0);
1379 }
1380 
1381 static int
1382 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1383 {
1384 	int error, v;
1385 
1386 	v = 0;
1387 	error = sysctl_handle_int(oidp, &v, 0, req);
1388 	if (error)
1389 		return (error);
1390 	if (req->newptr == NULL)
1391 		return (error);
1392 	if (v == 0)
1393 		return (0);
1394 	sleepq_prof_reset();
1395 
1396 	return (0);
1397 }
1398 
1399 static int
1400 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1401 {
1402 	struct sleepq_prof *sp;
1403 	struct sbuf *sb;
1404 	int enabled;
1405 	int error;
1406 	int i;
1407 
1408 	error = sysctl_wire_old_buffer(req, 0);
1409 	if (error != 0)
1410 		return (error);
1411 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1412 	sbuf_printf(sb, "\nwmesg\tcount\n");
1413 	enabled = prof_enabled;
1414 	mtx_lock_spin(&sleepq_prof_lock);
1415 	prof_enabled = 0;
1416 	mtx_unlock_spin(&sleepq_prof_lock);
1417 	for (i = 0; i < SC_TABLESIZE; i++) {
1418 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1419 			sbuf_printf(sb, "%s\t%ld\n",
1420 			    sp->sp_wmesg, sp->sp_count);
1421 		}
1422 	}
1423 	mtx_lock_spin(&sleepq_prof_lock);
1424 	prof_enabled = enabled;
1425 	mtx_unlock_spin(&sleepq_prof_lock);
1426 
1427 	error = sbuf_finish(sb);
1428 	sbuf_delete(sb);
1429 	return (error);
1430 }
1431 
1432 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats,
1433     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
1434     dump_sleepq_prof_stats, "A",
1435     "Sleepqueue profiling statistics");
1436 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset,
1437     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1438     reset_sleepq_prof_stats, "I",
1439     "Reset sleepqueue profiling statistics");
1440 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable,
1441     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1442     enable_sleepq_prof, "I",
1443     "Enable sleepqueue profiling");
1444 #endif
1445 
1446 #ifdef DDB
1447 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1448 {
1449 	struct sleepqueue_chain *sc;
1450 	struct sleepqueue *sq;
1451 #ifdef INVARIANTS
1452 	struct lock_object *lock;
1453 #endif
1454 	struct thread *td;
1455 	void *wchan;
1456 	int i;
1457 
1458 	if (!have_addr)
1459 		return;
1460 
1461 	/*
1462 	 * First, see if there is an active sleep queue for the wait channel
1463 	 * indicated by the address.
1464 	 */
1465 	wchan = (void *)addr;
1466 	sc = SC_LOOKUP(wchan);
1467 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1468 		if (sq->sq_wchan == wchan)
1469 			goto found;
1470 
1471 	/*
1472 	 * Second, see if there is an active sleep queue at the address
1473 	 * indicated.
1474 	 */
1475 	for (i = 0; i < SC_TABLESIZE; i++)
1476 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1477 			if (sq == (struct sleepqueue *)addr)
1478 				goto found;
1479 		}
1480 
1481 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1482 	return;
1483 found:
1484 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1485 	db_printf("Queue type: %d\n", sq->sq_type);
1486 #ifdef INVARIANTS
1487 	if (sq->sq_lock) {
1488 		lock = sq->sq_lock;
1489 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1490 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1491 	}
1492 #endif
1493 	db_printf("Blocked threads:\n");
1494 	for (i = 0; i < NR_SLEEPQS; i++) {
1495 		db_printf("\nQueue[%d]:\n", i);
1496 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1497 			db_printf("\tempty\n");
1498 		else
1499 			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1500 				      td_slpq) {
1501 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1502 					  td->td_tid, td->td_proc->p_pid,
1503 					  td->td_name);
1504 			}
1505 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1506 	}
1507 }
1508 
1509 /* Alias 'show sleepqueue' to 'show sleepq'. */
1510 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1511 #endif
1512