xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 94942af266ac119ede0ca836f9aa5a5ac0582938)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sched.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/sysctl.h>
79 
80 #include <vm/uma.h>
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #endif
85 
86 /*
87  * Constants for the hash table of sleep queue chains.  These constants are
88  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
89  * Basically, we ignore the lower 8 bits of the address since most wait
90  * channel pointers are aligned and only look at the next 7 bits for the
91  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
92  */
93 #define	SC_TABLESIZE	128			/* Must be power of 2. */
94 #define	SC_MASK		(SC_TABLESIZE - 1)
95 #define	SC_SHIFT	8
96 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
97 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
98 #define NR_SLEEPQS      2
99 /*
100  * There two different lists of sleep queues.  Both lists are connected
101  * via the sq_hash entries.  The first list is the sleep queue chain list
102  * that a sleep queue is on when it is attached to a wait channel.  The
103  * second list is the free list hung off of a sleep queue that is attached
104  * to a wait channel.
105  *
106  * Each sleep queue also contains the wait channel it is attached to, the
107  * list of threads blocked on that wait channel, flags specific to the
108  * wait channel, and the lock used to synchronize with a wait channel.
109  * The flags are used to catch mismatches between the various consumers
110  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
111  * The lock pointer is only used when invariants are enabled for various
112  * debugging checks.
113  *
114  * Locking key:
115  *  c - sleep queue chain lock
116  */
117 struct sleepqueue {
118 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
119 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
120 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
121 	void	*sq_wchan;			/* (c) Wait channel. */
122 #ifdef INVARIANTS
123 	int	sq_type;			/* (c) Queue type. */
124 	struct lock_object *sq_lock;		/* (c) Associated lock. */
125 #endif
126 };
127 
128 struct sleepqueue_chain {
129 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
130 	struct mtx sc_lock;			/* Spin lock for this chain. */
131 #ifdef SLEEPQUEUE_PROFILING
132 	u_int	sc_depth;			/* Length of sc_queues. */
133 	u_int	sc_max_depth;			/* Max length of sc_queues. */
134 #endif
135 };
136 
137 #ifdef SLEEPQUEUE_PROFILING
138 u_int sleepq_max_depth;
139 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
140 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
141     "sleepq chain stats");
142 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
143     0, "maxmimum depth achieved of a single chain");
144 #endif
145 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
146 static uma_zone_t sleepq_zone;
147 
148 /*
149  * Prototypes for non-exported routines.
150  */
151 static int	sleepq_catch_signals(void *wchan);
152 static int	sleepq_check_signals(void);
153 static int	sleepq_check_timeout(void);
154 #ifdef INVARIANTS
155 static void	sleepq_dtor(void *mem, int size, void *arg);
156 #endif
157 static int	sleepq_init(void *mem, int size, int flags);
158 static void	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
159 		    int pri);
160 static void	sleepq_switch(void *wchan);
161 static void	sleepq_timeout(void *arg);
162 
163 /*
164  * Early initialization of sleep queues that is called from the sleepinit()
165  * SYSINIT.
166  */
167 void
168 init_sleepqueues(void)
169 {
170 #ifdef SLEEPQUEUE_PROFILING
171 	struct sysctl_oid *chain_oid;
172 	char chain_name[10];
173 #endif
174 	int i;
175 
176 	for (i = 0; i < SC_TABLESIZE; i++) {
177 		LIST_INIT(&sleepq_chains[i].sc_queues);
178 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
179 		    MTX_SPIN);
180 #ifdef SLEEPQUEUE_PROFILING
181 		snprintf(chain_name, sizeof(chain_name), "%d", i);
182 		chain_oid = SYSCTL_ADD_NODE(NULL,
183 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
184 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
185 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
186 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
187 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
188 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
189 		    NULL);
190 #endif
191 	}
192 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
193 #ifdef INVARIANTS
194 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
195 #else
196 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
197 #endif
198 
199 	thread0.td_sleepqueue = sleepq_alloc();
200 }
201 
202 /*
203  * Get a sleep queue for a new thread.
204  */
205 struct sleepqueue *
206 sleepq_alloc(void)
207 {
208 
209 	return (uma_zalloc(sleepq_zone, M_WAITOK));
210 }
211 
212 /*
213  * Free a sleep queue when a thread is destroyed.
214  */
215 void
216 sleepq_free(struct sleepqueue *sq)
217 {
218 
219 	uma_zfree(sleepq_zone, sq);
220 }
221 
222 /*
223  * Lock the sleep queue chain associated with the specified wait channel.
224  */
225 void
226 sleepq_lock(void *wchan)
227 {
228 	struct sleepqueue_chain *sc;
229 
230 	sc = SC_LOOKUP(wchan);
231 	mtx_lock_spin(&sc->sc_lock);
232 }
233 
234 /*
235  * Look up the sleep queue associated with a given wait channel in the hash
236  * table locking the associated sleep queue chain.  If no queue is found in
237  * the table, NULL is returned.
238  */
239 struct sleepqueue *
240 sleepq_lookup(void *wchan)
241 {
242 	struct sleepqueue_chain *sc;
243 	struct sleepqueue *sq;
244 
245 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
246 	sc = SC_LOOKUP(wchan);
247 	mtx_assert(&sc->sc_lock, MA_OWNED);
248 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
249 		if (sq->sq_wchan == wchan)
250 			return (sq);
251 	return (NULL);
252 }
253 
254 /*
255  * Unlock the sleep queue chain associated with a given wait channel.
256  */
257 void
258 sleepq_release(void *wchan)
259 {
260 	struct sleepqueue_chain *sc;
261 
262 	sc = SC_LOOKUP(wchan);
263 	mtx_unlock_spin(&sc->sc_lock);
264 }
265 
266 /*
267  * Places the current thread on the sleep queue for the specified wait
268  * channel.  If INVARIANTS is enabled, then it associates the passed in
269  * lock with the sleepq to make sure it is held when that sleep queue is
270  * woken up.
271  */
272 void
273 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
274     int queue)
275 {
276 	struct sleepqueue_chain *sc;
277 	struct sleepqueue *sq;
278 	struct thread *td;
279 
280 	td = curthread;
281 	sc = SC_LOOKUP(wchan);
282 	mtx_assert(&sc->sc_lock, MA_OWNED);
283 	MPASS(td->td_sleepqueue != NULL);
284 	MPASS(wchan != NULL);
285 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
286 
287 	/* If this thread is not allowed to sleep, die a horrible death. */
288 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
289 	    ("Trying sleep, but thread marked as sleeping prohibited"));
290 
291 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
292 	sq = sleepq_lookup(wchan);
293 
294 	/*
295 	 * If the wait channel does not already have a sleep queue, use
296 	 * this thread's sleep queue.  Otherwise, insert the current thread
297 	 * into the sleep queue already in use by this wait channel.
298 	 */
299 	if (sq == NULL) {
300 #ifdef INVARIANTS
301 		int i;
302 
303 		sq = td->td_sleepqueue;
304 		for (i = 0; i < NR_SLEEPQS; i++)
305 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
306 				("thread's sleep queue %d is not empty", i));
307 		KASSERT(LIST_EMPTY(&sq->sq_free),
308 		    ("thread's sleep queue has a non-empty free list"));
309 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
310 		sq->sq_lock = lock;
311 		sq->sq_type = flags & SLEEPQ_TYPE;
312 #endif
313 #ifdef SLEEPQUEUE_PROFILING
314 		sc->sc_depth++;
315 		if (sc->sc_depth > sc->sc_max_depth) {
316 			sc->sc_max_depth = sc->sc_depth;
317 			if (sc->sc_max_depth > sleepq_max_depth)
318 				sleepq_max_depth = sc->sc_max_depth;
319 		}
320 #endif
321 		sq = td->td_sleepqueue;
322 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
323 		sq->sq_wchan = wchan;
324 	} else {
325 		MPASS(wchan == sq->sq_wchan);
326 		MPASS(lock == sq->sq_lock);
327 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
328 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
329 	}
330 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
331 	td->td_sleepqueue = NULL;
332 	mtx_lock_spin(&sched_lock);
333 	td->td_sqqueue = queue;
334 	td->td_wchan = wchan;
335 	td->td_wmesg = wmesg;
336 	if (flags & SLEEPQ_INTERRUPTIBLE) {
337 		td->td_flags |= TDF_SINTR;
338 		td->td_flags &= ~TDF_SLEEPABORT;
339 	}
340 	mtx_unlock_spin(&sched_lock);
341 }
342 
343 /*
344  * Sets a timeout that will remove the current thread from the specified
345  * sleep queue after timo ticks if the thread has not already been awakened.
346  */
347 void
348 sleepq_set_timeout(void *wchan, int timo)
349 {
350 	struct sleepqueue_chain *sc;
351 	struct thread *td;
352 
353 	td = curthread;
354 	sc = SC_LOOKUP(wchan);
355 	mtx_assert(&sc->sc_lock, MA_OWNED);
356 	MPASS(TD_ON_SLEEPQ(td));
357 	MPASS(td->td_sleepqueue == NULL);
358 	MPASS(wchan != NULL);
359 	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
360 }
361 
362 /*
363  * Marks the pending sleep of the current thread as interruptible and
364  * makes an initial check for pending signals before putting a thread
365  * to sleep. Return with sleep queue and scheduler lock held.
366  */
367 static int
368 sleepq_catch_signals(void *wchan)
369 {
370 	struct sleepqueue_chain *sc;
371 	struct sleepqueue *sq;
372 	struct thread *td;
373 	struct proc *p;
374 	struct sigacts *ps;
375 	int sig, ret;
376 
377 	td = curthread;
378 	p = curproc;
379 	sc = SC_LOOKUP(wchan);
380 	mtx_assert(&sc->sc_lock, MA_OWNED);
381 	MPASS(wchan != NULL);
382 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
383 		(void *)td, (long)p->p_pid, p->p_comm);
384 
385 	MPASS(td->td_flags & TDF_SINTR);
386 	mtx_unlock_spin(&sc->sc_lock);
387 
388 	/* See if there are any pending signals for this thread. */
389 	PROC_LOCK(p);
390 	ps = p->p_sigacts;
391 	mtx_lock(&ps->ps_mtx);
392 	sig = cursig(td);
393 	if (sig == 0) {
394 		mtx_unlock(&ps->ps_mtx);
395 		ret = thread_suspend_check(1);
396 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
397 	} else {
398 		if (SIGISMEMBER(ps->ps_sigintr, sig))
399 			ret = EINTR;
400 		else
401 			ret = ERESTART;
402 		mtx_unlock(&ps->ps_mtx);
403 	}
404 
405 	if (ret == 0) {
406 		mtx_lock_spin(&sc->sc_lock);
407 		/*
408 		 * Lock sched_lock before unlocking proc lock,
409 		 * without this, we could lose a race.
410 		 */
411 		mtx_lock_spin(&sched_lock);
412 		PROC_UNLOCK(p);
413 		if (!(td->td_flags & TDF_INTERRUPT))
414 			return (0);
415 		/* KSE threads tried unblocking us. */
416 		ret = td->td_intrval;
417 		mtx_unlock_spin(&sched_lock);
418 		MPASS(ret == EINTR || ret == ERESTART);
419 	} else {
420 		PROC_UNLOCK(p);
421 		mtx_lock_spin(&sc->sc_lock);
422 	}
423 	/*
424 	 * There were pending signals and this thread is still
425 	 * on the sleep queue, remove it from the sleep queue.
426 	 */
427 	sq = sleepq_lookup(wchan);
428 	mtx_lock_spin(&sched_lock);
429 	if (TD_ON_SLEEPQ(td))
430 		sleepq_resume_thread(sq, td, -1);
431 	return (ret);
432 }
433 
434 /*
435  * Switches to another thread if we are still asleep on a sleep queue and
436  * drop the lock on the sleep queue chain.  Returns with sched_lock held.
437  */
438 static void
439 sleepq_switch(void *wchan)
440 {
441 	struct sleepqueue_chain *sc;
442 	struct thread *td;
443 
444 	td = curthread;
445 	sc = SC_LOOKUP(wchan);
446 	mtx_assert(&sc->sc_lock, MA_OWNED);
447 	mtx_assert(&sched_lock, MA_OWNED);
448 
449 	/*
450 	 * If we have a sleep queue, then we've already been woken up, so
451 	 * just return.
452 	 */
453 	if (td->td_sleepqueue != NULL) {
454 		MPASS(!TD_ON_SLEEPQ(td));
455 		mtx_unlock_spin(&sc->sc_lock);
456 		return;
457 	}
458 
459 	/*
460 	 * Otherwise, actually go to sleep.
461 	 */
462 	mtx_unlock_spin(&sc->sc_lock);
463 	sched_sleep(td);
464 	TD_SET_SLEEPING(td);
465 	mi_switch(SW_VOL, NULL);
466 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
467 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
468 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
469 }
470 
471 /*
472  * Check to see if we timed out.
473  */
474 static int
475 sleepq_check_timeout(void)
476 {
477 	struct thread *td;
478 
479 	mtx_assert(&sched_lock, MA_OWNED);
480 	td = curthread;
481 
482 	/*
483 	 * If TDF_TIMEOUT is set, we timed out.
484 	 */
485 	if (td->td_flags & TDF_TIMEOUT) {
486 		td->td_flags &= ~TDF_TIMEOUT;
487 		return (EWOULDBLOCK);
488 	}
489 
490 	/*
491 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
492 	 * already been woken up.
493 	 */
494 	if (td->td_flags & TDF_TIMOFAIL)
495 		td->td_flags &= ~TDF_TIMOFAIL;
496 
497 	/*
498 	 * If callout_stop() fails, then the timeout is running on
499 	 * another CPU, so synchronize with it to avoid having it
500 	 * accidentally wake up a subsequent sleep.
501 	 */
502 	else if (callout_stop(&td->td_slpcallout) == 0) {
503 		td->td_flags |= TDF_TIMEOUT;
504 		TD_SET_SLEEPING(td);
505 		mi_switch(SW_INVOL, NULL);
506 	}
507 	return (0);
508 }
509 
510 /*
511  * Check to see if we were awoken by a signal.
512  */
513 static int
514 sleepq_check_signals(void)
515 {
516 	struct thread *td;
517 
518 	mtx_assert(&sched_lock, MA_OWNED);
519 	td = curthread;
520 
521 	/* We are no longer in an interruptible sleep. */
522 	if (td->td_flags & TDF_SINTR)
523 		td->td_flags &= ~TDF_SINTR;
524 
525 	if (td->td_flags & TDF_SLEEPABORT) {
526 		td->td_flags &= ~TDF_SLEEPABORT;
527 		return (td->td_intrval);
528 	}
529 
530 	if (td->td_flags & TDF_INTERRUPT)
531 		return (td->td_intrval);
532 
533 	return (0);
534 }
535 
536 /*
537  * Block the current thread until it is awakened from its sleep queue.
538  */
539 void
540 sleepq_wait(void *wchan)
541 {
542 
543 	MPASS(!(curthread->td_flags & TDF_SINTR));
544 	mtx_lock_spin(&sched_lock);
545 	sleepq_switch(wchan);
546 	mtx_unlock_spin(&sched_lock);
547 }
548 
549 /*
550  * Block the current thread until it is awakened from its sleep queue
551  * or it is interrupted by a signal.
552  */
553 int
554 sleepq_wait_sig(void *wchan)
555 {
556 	int rcatch;
557 	int rval;
558 
559 	rcatch = sleepq_catch_signals(wchan);
560 	if (rcatch == 0)
561 		sleepq_switch(wchan);
562 	else
563 		sleepq_release(wchan);
564 	rval = sleepq_check_signals();
565 	mtx_unlock_spin(&sched_lock);
566 	if (rcatch)
567 		return (rcatch);
568 	return (rval);
569 }
570 
571 /*
572  * Block the current thread until it is awakened from its sleep queue
573  * or it times out while waiting.
574  */
575 int
576 sleepq_timedwait(void *wchan)
577 {
578 	int rval;
579 
580 	MPASS(!(curthread->td_flags & TDF_SINTR));
581 	mtx_lock_spin(&sched_lock);
582 	sleepq_switch(wchan);
583 	rval = sleepq_check_timeout();
584 	mtx_unlock_spin(&sched_lock);
585 	return (rval);
586 }
587 
588 /*
589  * Block the current thread until it is awakened from its sleep queue,
590  * it is interrupted by a signal, or it times out waiting to be awakened.
591  */
592 int
593 sleepq_timedwait_sig(void *wchan)
594 {
595 	int rcatch, rvalt, rvals;
596 
597 	rcatch = sleepq_catch_signals(wchan);
598 	if (rcatch == 0)
599 		sleepq_switch(wchan);
600 	else
601 		sleepq_release(wchan);
602 	rvalt = sleepq_check_timeout();
603 	rvals = sleepq_check_signals();
604 	mtx_unlock_spin(&sched_lock);
605 	if (rcatch)
606 		return (rcatch);
607 	if (rvals)
608 		return (rvals);
609 	return (rvalt);
610 }
611 
612 /*
613  * Removes a thread from a sleep queue and makes it
614  * runnable.
615  */
616 static void
617 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
618 {
619 	struct sleepqueue_chain *sc;
620 
621 	MPASS(td != NULL);
622 	MPASS(sq->sq_wchan != NULL);
623 	MPASS(td->td_wchan == sq->sq_wchan);
624 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
625 	sc = SC_LOOKUP(sq->sq_wchan);
626 	mtx_assert(&sc->sc_lock, MA_OWNED);
627 	mtx_assert(&sched_lock, MA_OWNED);
628 
629 	/* Remove the thread from the queue. */
630 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
631 
632 	/*
633 	 * Get a sleep queue for this thread.  If this is the last waiter,
634 	 * use the queue itself and take it out of the chain, otherwise,
635 	 * remove a queue from the free list.
636 	 */
637 	if (LIST_EMPTY(&sq->sq_free)) {
638 		td->td_sleepqueue = sq;
639 #ifdef INVARIANTS
640 		sq->sq_wchan = NULL;
641 #endif
642 #ifdef SLEEPQUEUE_PROFILING
643 		sc->sc_depth--;
644 #endif
645 	} else
646 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
647 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
648 
649 	td->td_wmesg = NULL;
650 	td->td_wchan = NULL;
651 	td->td_flags &= ~TDF_SINTR;
652 
653 	/*
654 	 * Note that thread td might not be sleeping if it is running
655 	 * sleepq_catch_signals() on another CPU or is blocked on
656 	 * its proc lock to check signals.  It doesn't hurt to clear
657 	 * the sleeping flag if it isn't set though, so we just always
658 	 * do it.  However, we can't assert that it is set.
659 	 */
660 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
661 	    (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm);
662 	TD_CLR_SLEEPING(td);
663 
664 	/* Adjust priority if requested. */
665 	MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
666 	if (pri != -1 && td->td_priority > pri)
667 		sched_prio(td, pri);
668 	setrunnable(td);
669 }
670 
671 #ifdef INVARIANTS
672 /*
673  * UMA zone item deallocator.
674  */
675 static void
676 sleepq_dtor(void *mem, int size, void *arg)
677 {
678 	struct sleepqueue *sq;
679 	int i;
680 
681 	sq = mem;
682 	for (i = 0; i < NR_SLEEPQS; i++)
683 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
684 }
685 #endif
686 
687 /*
688  * UMA zone item initializer.
689  */
690 static int
691 sleepq_init(void *mem, int size, int flags)
692 {
693 	struct sleepqueue *sq;
694 	int i;
695 
696 	bzero(mem, size);
697 	sq = mem;
698 	for (i = 0; i < NR_SLEEPQS; i++)
699 		TAILQ_INIT(&sq->sq_blocked[i]);
700 	LIST_INIT(&sq->sq_free);
701 	return (0);
702 }
703 
704 /*
705  * Find the highest priority thread sleeping on a wait channel and resume it.
706  */
707 void
708 sleepq_signal(void *wchan, int flags, int pri, int queue)
709 {
710 	struct sleepqueue *sq;
711 	struct thread *td, *besttd;
712 
713 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
714 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
715 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
716 	sq = sleepq_lookup(wchan);
717 	if (sq == NULL) {
718 		sleepq_release(wchan);
719 		return;
720 	}
721 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
722 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
723 
724 	/*
725 	 * Find the highest priority thread on the queue.  If there is a
726 	 * tie, use the thread that first appears in the queue as it has
727 	 * been sleeping the longest since threads are always added to
728 	 * the tail of sleep queues.
729 	 */
730 	besttd = NULL;
731 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
732 		if (besttd == NULL || td->td_priority < besttd->td_priority)
733 			besttd = td;
734 	}
735 	MPASS(besttd != NULL);
736 	mtx_lock_spin(&sched_lock);
737 	sleepq_resume_thread(sq, besttd, pri);
738 	mtx_unlock_spin(&sched_lock);
739 	sleepq_release(wchan);
740 }
741 
742 /*
743  * Resume all threads sleeping on a specified wait channel.
744  */
745 void
746 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
747 {
748 	struct sleepqueue *sq;
749 
750 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
751 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
752 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
753 	sq = sleepq_lookup(wchan);
754 	if (sq == NULL) {
755 		sleepq_release(wchan);
756 		return;
757 	}
758 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
759 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
760 
761 	/* Resume all blocked threads on the sleep queue. */
762 	mtx_lock_spin(&sched_lock);
763 	while (!TAILQ_EMPTY(&sq->sq_blocked[queue]))
764 		sleepq_resume_thread(sq, TAILQ_FIRST(&sq->sq_blocked[queue]),
765 		    pri);
766 	mtx_unlock_spin(&sched_lock);
767 	sleepq_release(wchan);
768 }
769 
770 /*
771  * Time sleeping threads out.  When the timeout expires, the thread is
772  * removed from the sleep queue and made runnable if it is still asleep.
773  */
774 static void
775 sleepq_timeout(void *arg)
776 {
777 	struct sleepqueue *sq;
778 	struct thread *td;
779 	void *wchan;
780 
781 	td = arg;
782 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
783 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
784 
785 	/*
786 	 * First, see if the thread is asleep and get the wait channel if
787 	 * it is.
788 	 */
789 	mtx_lock_spin(&sched_lock);
790 	if (TD_ON_SLEEPQ(td)) {
791 		wchan = td->td_wchan;
792 		mtx_unlock_spin(&sched_lock);
793 		sleepq_lock(wchan);
794 		sq = sleepq_lookup(wchan);
795 		mtx_lock_spin(&sched_lock);
796 	} else {
797 		wchan = NULL;
798 		sq = NULL;
799 	}
800 
801 	/*
802 	 * At this point, if the thread is still on the sleep queue,
803 	 * we have that sleep queue locked as it cannot migrate sleep
804 	 * queues while we dropped sched_lock.  If it had resumed and
805 	 * was on another CPU while the lock was dropped, it would have
806 	 * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
807 	 * call to callout_stop() to stop this routine would have failed
808 	 * meaning that it would have already set TDF_TIMEOUT to
809 	 * synchronize with this function.
810 	 */
811 	if (TD_ON_SLEEPQ(td)) {
812 		MPASS(td->td_wchan == wchan);
813 		MPASS(sq != NULL);
814 		td->td_flags |= TDF_TIMEOUT;
815 		sleepq_resume_thread(sq, td, -1);
816 		mtx_unlock_spin(&sched_lock);
817 		sleepq_release(wchan);
818 		return;
819 	} else if (wchan != NULL)
820 		sleepq_release(wchan);
821 
822 	/*
823 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
824 	 * then the other thread has already yielded to us, so clear
825 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
826 	 * we know that the other thread is not on a sleep queue, but it
827 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
828 	 * to let it know that the timeout has already run and doesn't
829 	 * need to be canceled.
830 	 */
831 	if (td->td_flags & TDF_TIMEOUT) {
832 		MPASS(TD_IS_SLEEPING(td));
833 		td->td_flags &= ~TDF_TIMEOUT;
834 		TD_CLR_SLEEPING(td);
835 		setrunnable(td);
836 	} else
837 		td->td_flags |= TDF_TIMOFAIL;
838 	mtx_unlock_spin(&sched_lock);
839 }
840 
841 /*
842  * Resumes a specific thread from the sleep queue associated with a specific
843  * wait channel if it is on that queue.
844  */
845 void
846 sleepq_remove(struct thread *td, void *wchan)
847 {
848 	struct sleepqueue *sq;
849 
850 	/*
851 	 * Look up the sleep queue for this wait channel, then re-check
852 	 * that the thread is asleep on that channel, if it is not, then
853 	 * bail.
854 	 */
855 	MPASS(wchan != NULL);
856 	sleepq_lock(wchan);
857 	sq = sleepq_lookup(wchan);
858 	mtx_lock_spin(&sched_lock);
859 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
860 		mtx_unlock_spin(&sched_lock);
861 		sleepq_release(wchan);
862 		return;
863 	}
864 	MPASS(sq != NULL);
865 
866 	/* Thread is asleep on sleep queue sq, so wake it up. */
867 	sleepq_resume_thread(sq, td, -1);
868 	sleepq_release(wchan);
869 	mtx_unlock_spin(&sched_lock);
870 }
871 
872 /*
873  * Abort a thread as if an interrupt had occurred.  Only abort
874  * interruptible waits (unfortunately it isn't safe to abort others).
875  *
876  * XXX: What in the world does the comment below mean?
877  * Also, whatever the signal code does...
878  */
879 void
880 sleepq_abort(struct thread *td, int intrval)
881 {
882 	void *wchan;
883 
884 	mtx_assert(&sched_lock, MA_OWNED);
885 	MPASS(TD_ON_SLEEPQ(td));
886 	MPASS(td->td_flags & TDF_SINTR);
887 	MPASS(intrval == EINTR || intrval == ERESTART);
888 
889 	/*
890 	 * If the TDF_TIMEOUT flag is set, just leave. A
891 	 * timeout is scheduled anyhow.
892 	 */
893 	if (td->td_flags & TDF_TIMEOUT)
894 		return;
895 
896 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
897 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
898 	wchan = td->td_wchan;
899 	if (wchan != NULL) {
900 		td->td_intrval = intrval;
901 		td->td_flags |= TDF_SLEEPABORT;
902 	}
903 	mtx_unlock_spin(&sched_lock);
904 	sleepq_remove(td, wchan);
905 	mtx_lock_spin(&sched_lock);
906 }
907 
908 #ifdef DDB
909 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
910 {
911 	struct sleepqueue_chain *sc;
912 	struct sleepqueue *sq;
913 #ifdef INVARIANTS
914 	struct lock_object *lock;
915 #endif
916 	struct thread *td;
917 	void *wchan;
918 	int i;
919 
920 	if (!have_addr)
921 		return;
922 
923 	/*
924 	 * First, see if there is an active sleep queue for the wait channel
925 	 * indicated by the address.
926 	 */
927 	wchan = (void *)addr;
928 	sc = SC_LOOKUP(wchan);
929 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
930 		if (sq->sq_wchan == wchan)
931 			goto found;
932 
933 	/*
934 	 * Second, see if there is an active sleep queue at the address
935 	 * indicated.
936 	 */
937 	for (i = 0; i < SC_TABLESIZE; i++)
938 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
939 			if (sq == (struct sleepqueue *)addr)
940 				goto found;
941 		}
942 
943 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
944 	return;
945 found:
946 	db_printf("Wait channel: %p\n", sq->sq_wchan);
947 #ifdef INVARIANTS
948 	db_printf("Queue type: %d\n", sq->sq_type);
949 	if (sq->sq_lock) {
950 		lock = sq->sq_lock;
951 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
952 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
953 	}
954 #endif
955 	db_printf("Blocked threads:\n");
956 	for (i = 0; i < NR_SLEEPQS; i++) {
957 		db_printf("\nQueue[%d]:\n", i);
958 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
959 			db_printf("\tempty\n");
960 		else
961 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
962 				      td_slpq) {
963 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
964 					  td->td_tid, td->td_proc->p_pid,
965 					  td->td_name[i] != '\0' ? td->td_name :
966 					  td->td_proc->p_comm);
967 			}
968 	}
969 }
970 
971 /* Alias 'show sleepqueue' to 'show sleepq'. */
972 DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL);
973 #endif
974