1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* 29 * Implementation of sleep queues used to hold queue of threads blocked on 30 * a wait channel. Sleep queues are different from turnstiles in that wait 31 * channels are not owned by anyone, so there is no priority propagation. 32 * Sleep queues can also provide a timeout and can also be interrupted by 33 * signals. That said, there are several similarities between the turnstile 34 * and sleep queue implementations. (Note: turnstiles were implemented 35 * first.) For example, both use a hash table of the same size where each 36 * bucket is referred to as a "chain" that contains both a spin lock and 37 * a linked list of queues. An individual queue is located by using a hash 38 * to pick a chain, locking the chain, and then walking the chain searching 39 * for the queue. This means that a wait channel object does not need to 40 * embed its queue head just as locks do not embed their turnstile queue 41 * head. Threads also carry around a sleep queue that they lend to the 42 * wait channel when blocking. Just as in turnstiles, the queue includes 43 * a free list of the sleep queues of other threads blocked on the same 44 * wait channel in the case of multiple waiters. 45 * 46 * Some additional functionality provided by sleep queues include the 47 * ability to set a timeout. The timeout is managed using a per-thread 48 * callout that resumes a thread if it is asleep. A thread may also 49 * catch signals while it is asleep (aka an interruptible sleep). The 50 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 51 * sleep queues also provide some extra assertions. One is not allowed to 52 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 53 * must consistently use the same lock to synchronize with a wait channel, 54 * though this check is currently only a warning for sleep/wakeup due to 55 * pre-existing abuse of that API. The same lock must also be held when 56 * awakening threads, though that is currently only enforced for condition 57 * variables. 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_sleepqueue_profiling.h" 64 #include "opt_ddb.h" 65 #include "opt_sched.h" 66 #include "opt_stack.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/lock.h> 71 #include <sys/kernel.h> 72 #include <sys/ktr.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/sdt.h> 78 #include <sys/signalvar.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/stack.h> 81 #include <sys/sysctl.h> 82 #include <sys/time.h> 83 #ifdef EPOCH_TRACE 84 #include <sys/epoch.h> 85 #endif 86 87 #include <machine/atomic.h> 88 89 #include <vm/uma.h> 90 91 #ifdef DDB 92 #include <ddb/ddb.h> 93 #endif 94 95 96 /* 97 * Constants for the hash table of sleep queue chains. 98 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 99 */ 100 #ifndef SC_TABLESIZE 101 #define SC_TABLESIZE 256 102 #endif 103 CTASSERT(powerof2(SC_TABLESIZE)); 104 #define SC_MASK (SC_TABLESIZE - 1) 105 #define SC_SHIFT 8 106 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 107 SC_MASK) 108 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 109 #define NR_SLEEPQS 2 110 /* 111 * There are two different lists of sleep queues. Both lists are connected 112 * via the sq_hash entries. The first list is the sleep queue chain list 113 * that a sleep queue is on when it is attached to a wait channel. The 114 * second list is the free list hung off of a sleep queue that is attached 115 * to a wait channel. 116 * 117 * Each sleep queue also contains the wait channel it is attached to, the 118 * list of threads blocked on that wait channel, flags specific to the 119 * wait channel, and the lock used to synchronize with a wait channel. 120 * The flags are used to catch mismatches between the various consumers 121 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 122 * The lock pointer is only used when invariants are enabled for various 123 * debugging checks. 124 * 125 * Locking key: 126 * c - sleep queue chain lock 127 */ 128 struct sleepqueue { 129 struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 130 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 131 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 132 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 133 void *sq_wchan; /* (c) Wait channel. */ 134 int sq_type; /* (c) Queue type. */ 135 #ifdef INVARIANTS 136 struct lock_object *sq_lock; /* (c) Associated lock. */ 137 #endif 138 }; 139 140 struct sleepqueue_chain { 141 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 142 struct mtx sc_lock; /* Spin lock for this chain. */ 143 #ifdef SLEEPQUEUE_PROFILING 144 u_int sc_depth; /* Length of sc_queues. */ 145 u_int sc_max_depth; /* Max length of sc_queues. */ 146 #endif 147 } __aligned(CACHE_LINE_SIZE); 148 149 #ifdef SLEEPQUEUE_PROFILING 150 u_int sleepq_max_depth; 151 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 152 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 153 "sleepq chain stats"); 154 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 155 0, "maxmimum depth achieved of a single chain"); 156 157 static void sleepq_profile(const char *wmesg); 158 static int prof_enabled; 159 #endif 160 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 161 static uma_zone_t sleepq_zone; 162 163 /* 164 * Prototypes for non-exported routines. 165 */ 166 static int sleepq_catch_signals(void *wchan, int pri); 167 static int sleepq_check_signals(void); 168 static int sleepq_check_timeout(void); 169 #ifdef INVARIANTS 170 static void sleepq_dtor(void *mem, int size, void *arg); 171 #endif 172 static int sleepq_init(void *mem, int size, int flags); 173 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 174 int pri); 175 static void sleepq_switch(void *wchan, int pri); 176 static void sleepq_timeout(void *arg); 177 178 SDT_PROBE_DECLARE(sched, , , sleep); 179 SDT_PROBE_DECLARE(sched, , , wakeup); 180 181 /* 182 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 183 * Note that it must happen after sleepinit() has been fully executed, so 184 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 185 */ 186 #ifdef SLEEPQUEUE_PROFILING 187 static void 188 init_sleepqueue_profiling(void) 189 { 190 char chain_name[10]; 191 struct sysctl_oid *chain_oid; 192 u_int i; 193 194 for (i = 0; i < SC_TABLESIZE; i++) { 195 snprintf(chain_name, sizeof(chain_name), "%u", i); 196 chain_oid = SYSCTL_ADD_NODE(NULL, 197 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 198 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 199 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 200 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 201 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 202 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 203 NULL); 204 } 205 } 206 207 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 208 init_sleepqueue_profiling, NULL); 209 #endif 210 211 /* 212 * Early initialization of sleep queues that is called from the sleepinit() 213 * SYSINIT. 214 */ 215 void 216 init_sleepqueues(void) 217 { 218 int i; 219 220 for (i = 0; i < SC_TABLESIZE; i++) { 221 LIST_INIT(&sleepq_chains[i].sc_queues); 222 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 223 MTX_SPIN | MTX_RECURSE); 224 } 225 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 226 #ifdef INVARIANTS 227 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 228 #else 229 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 230 #endif 231 232 thread0.td_sleepqueue = sleepq_alloc(); 233 } 234 235 /* 236 * Get a sleep queue for a new thread. 237 */ 238 struct sleepqueue * 239 sleepq_alloc(void) 240 { 241 242 return (uma_zalloc(sleepq_zone, M_WAITOK)); 243 } 244 245 /* 246 * Free a sleep queue when a thread is destroyed. 247 */ 248 void 249 sleepq_free(struct sleepqueue *sq) 250 { 251 252 uma_zfree(sleepq_zone, sq); 253 } 254 255 /* 256 * Lock the sleep queue chain associated with the specified wait channel. 257 */ 258 void 259 sleepq_lock(void *wchan) 260 { 261 struct sleepqueue_chain *sc; 262 263 sc = SC_LOOKUP(wchan); 264 mtx_lock_spin(&sc->sc_lock); 265 } 266 267 /* 268 * Look up the sleep queue associated with a given wait channel in the hash 269 * table locking the associated sleep queue chain. If no queue is found in 270 * the table, NULL is returned. 271 */ 272 struct sleepqueue * 273 sleepq_lookup(void *wchan) 274 { 275 struct sleepqueue_chain *sc; 276 struct sleepqueue *sq; 277 278 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 279 sc = SC_LOOKUP(wchan); 280 mtx_assert(&sc->sc_lock, MA_OWNED); 281 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 282 if (sq->sq_wchan == wchan) 283 return (sq); 284 return (NULL); 285 } 286 287 /* 288 * Unlock the sleep queue chain associated with a given wait channel. 289 */ 290 void 291 sleepq_release(void *wchan) 292 { 293 struct sleepqueue_chain *sc; 294 295 sc = SC_LOOKUP(wchan); 296 mtx_unlock_spin(&sc->sc_lock); 297 } 298 299 /* 300 * Places the current thread on the sleep queue for the specified wait 301 * channel. If INVARIANTS is enabled, then it associates the passed in 302 * lock with the sleepq to make sure it is held when that sleep queue is 303 * woken up. 304 */ 305 void 306 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 307 int queue) 308 { 309 struct sleepqueue_chain *sc; 310 struct sleepqueue *sq; 311 struct thread *td; 312 313 td = curthread; 314 sc = SC_LOOKUP(wchan); 315 mtx_assert(&sc->sc_lock, MA_OWNED); 316 MPASS(td->td_sleepqueue != NULL); 317 MPASS(wchan != NULL); 318 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 319 320 /* If this thread is not allowed to sleep, die a horrible death. */ 321 if (__predict_false(!THREAD_CAN_SLEEP())) { 322 #ifdef EPOCH_TRACE 323 epoch_trace_list(curthread); 324 #endif 325 KASSERT(1, 326 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 327 __func__, td, wchan)); 328 } 329 330 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 331 sq = sleepq_lookup(wchan); 332 333 /* 334 * If the wait channel does not already have a sleep queue, use 335 * this thread's sleep queue. Otherwise, insert the current thread 336 * into the sleep queue already in use by this wait channel. 337 */ 338 if (sq == NULL) { 339 #ifdef INVARIANTS 340 int i; 341 342 sq = td->td_sleepqueue; 343 for (i = 0; i < NR_SLEEPQS; i++) { 344 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 345 ("thread's sleep queue %d is not empty", i)); 346 KASSERT(sq->sq_blockedcnt[i] == 0, 347 ("thread's sleep queue %d count mismatches", i)); 348 } 349 KASSERT(LIST_EMPTY(&sq->sq_free), 350 ("thread's sleep queue has a non-empty free list")); 351 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 352 sq->sq_lock = lock; 353 #endif 354 #ifdef SLEEPQUEUE_PROFILING 355 sc->sc_depth++; 356 if (sc->sc_depth > sc->sc_max_depth) { 357 sc->sc_max_depth = sc->sc_depth; 358 if (sc->sc_max_depth > sleepq_max_depth) 359 sleepq_max_depth = sc->sc_max_depth; 360 } 361 #endif 362 sq = td->td_sleepqueue; 363 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 364 sq->sq_wchan = wchan; 365 sq->sq_type = flags & SLEEPQ_TYPE; 366 } else { 367 MPASS(wchan == sq->sq_wchan); 368 MPASS(lock == sq->sq_lock); 369 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 370 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 371 } 372 thread_lock(td); 373 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 374 sq->sq_blockedcnt[queue]++; 375 td->td_sleepqueue = NULL; 376 td->td_sqqueue = queue; 377 td->td_wchan = wchan; 378 td->td_wmesg = wmesg; 379 if (flags & SLEEPQ_INTERRUPTIBLE) { 380 td->td_flags |= TDF_SINTR; 381 td->td_flags &= ~TDF_SLEEPABORT; 382 } 383 thread_unlock(td); 384 } 385 386 /* 387 * Sets a timeout that will remove the current thread from the specified 388 * sleep queue after timo ticks if the thread has not already been awakened. 389 */ 390 void 391 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 392 int flags) 393 { 394 struct sleepqueue_chain *sc __unused; 395 struct thread *td; 396 sbintime_t pr1; 397 398 td = curthread; 399 sc = SC_LOOKUP(wchan); 400 mtx_assert(&sc->sc_lock, MA_OWNED); 401 MPASS(TD_ON_SLEEPQ(td)); 402 MPASS(td->td_sleepqueue == NULL); 403 MPASS(wchan != NULL); 404 if (cold && td == &thread0) 405 panic("timed sleep before timers are working"); 406 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 407 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 408 thread_lock(td); 409 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 410 thread_unlock(td); 411 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 412 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 413 C_DIRECT_EXEC); 414 } 415 416 /* 417 * Return the number of actual sleepers for the specified queue. 418 */ 419 u_int 420 sleepq_sleepcnt(void *wchan, int queue) 421 { 422 struct sleepqueue *sq; 423 424 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 425 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 426 sq = sleepq_lookup(wchan); 427 if (sq == NULL) 428 return (0); 429 return (sq->sq_blockedcnt[queue]); 430 } 431 432 /* 433 * Marks the pending sleep of the current thread as interruptible and 434 * makes an initial check for pending signals before putting a thread 435 * to sleep. Enters and exits with the thread lock held. Thread lock 436 * may have transitioned from the sleepq lock to a run lock. 437 */ 438 static int 439 sleepq_catch_signals(void *wchan, int pri) 440 { 441 struct sleepqueue_chain *sc; 442 struct sleepqueue *sq; 443 struct thread *td; 444 struct proc *p; 445 struct sigacts *ps; 446 int sig, ret; 447 448 ret = 0; 449 td = curthread; 450 p = curproc; 451 sc = SC_LOOKUP(wchan); 452 mtx_assert(&sc->sc_lock, MA_OWNED); 453 MPASS(wchan != NULL); 454 if ((td->td_pflags & TDP_WAKEUP) != 0) { 455 td->td_pflags &= ~TDP_WAKEUP; 456 ret = EINTR; 457 thread_lock(td); 458 goto out; 459 } 460 461 /* 462 * See if there are any pending signals or suspension requests for this 463 * thread. If not, we can switch immediately. 464 */ 465 thread_lock(td); 466 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) { 467 thread_unlock(td); 468 mtx_unlock_spin(&sc->sc_lock); 469 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 470 (void *)td, (long)p->p_pid, td->td_name); 471 PROC_LOCK(p); 472 /* 473 * Check for suspension first. Checking for signals and then 474 * suspending could result in a missed signal, since a signal 475 * can be delivered while this thread is suspended. 476 */ 477 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 478 ret = thread_suspend_check(1); 479 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 480 if (ret != 0) { 481 PROC_UNLOCK(p); 482 mtx_lock_spin(&sc->sc_lock); 483 thread_lock(td); 484 goto out; 485 } 486 } 487 if ((td->td_flags & TDF_NEEDSIGCHK) != 0) { 488 ps = p->p_sigacts; 489 mtx_lock(&ps->ps_mtx); 490 sig = cursig(td); 491 if (sig == -1) { 492 mtx_unlock(&ps->ps_mtx); 493 KASSERT((td->td_flags & TDF_SBDRY) != 0, 494 ("lost TDF_SBDRY")); 495 KASSERT(TD_SBDRY_INTR(td), 496 ("lost TDF_SERESTART of TDF_SEINTR")); 497 KASSERT((td->td_flags & 498 (TDF_SEINTR | TDF_SERESTART)) != 499 (TDF_SEINTR | TDF_SERESTART), 500 ("both TDF_SEINTR and TDF_SERESTART")); 501 ret = TD_SBDRY_ERRNO(td); 502 } else if (sig != 0) { 503 ret = SIGISMEMBER(ps->ps_sigintr, sig) ? 504 EINTR : ERESTART; 505 mtx_unlock(&ps->ps_mtx); 506 } else { 507 mtx_unlock(&ps->ps_mtx); 508 } 509 510 /* 511 * Do not go into sleep if this thread was the 512 * ptrace(2) attach leader. cursig() consumed 513 * SIGSTOP from PT_ATTACH, but we usually act 514 * on the signal by interrupting sleep, and 515 * should do that here as well. 516 */ 517 if ((td->td_dbgflags & TDB_FSTP) != 0) { 518 if (ret == 0) 519 ret = EINTR; 520 td->td_dbgflags &= ~TDB_FSTP; 521 } 522 } 523 /* 524 * Lock the per-process spinlock prior to dropping the PROC_LOCK 525 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 526 * thread_lock() are currently held in tdsendsignal(). 527 */ 528 PROC_SLOCK(p); 529 mtx_lock_spin(&sc->sc_lock); 530 PROC_UNLOCK(p); 531 thread_lock(td); 532 PROC_SUNLOCK(p); 533 } 534 if (ret == 0) { 535 sleepq_switch(wchan, pri); 536 return (0); 537 } 538 out: 539 /* 540 * There were pending signals and this thread is still 541 * on the sleep queue, remove it from the sleep queue. 542 */ 543 if (TD_ON_SLEEPQ(td)) { 544 sq = sleepq_lookup(wchan); 545 if (sleepq_resume_thread(sq, td, 0)) { 546 #ifdef INVARIANTS 547 /* 548 * This thread hasn't gone to sleep yet, so it 549 * should not be swapped out. 550 */ 551 panic("not waking up swapper"); 552 #endif 553 } 554 } 555 mtx_unlock_spin(&sc->sc_lock); 556 MPASS(td->td_lock != &sc->sc_lock); 557 return (ret); 558 } 559 560 /* 561 * Switches to another thread if we are still asleep on a sleep queue. 562 * Returns with thread lock. 563 */ 564 static void 565 sleepq_switch(void *wchan, int pri) 566 { 567 struct sleepqueue_chain *sc; 568 struct sleepqueue *sq; 569 struct thread *td; 570 bool rtc_changed; 571 572 td = curthread; 573 sc = SC_LOOKUP(wchan); 574 mtx_assert(&sc->sc_lock, MA_OWNED); 575 THREAD_LOCK_ASSERT(td, MA_OWNED); 576 577 /* 578 * If we have a sleep queue, then we've already been woken up, so 579 * just return. 580 */ 581 if (td->td_sleepqueue != NULL) { 582 mtx_unlock_spin(&sc->sc_lock); 583 return; 584 } 585 586 /* 587 * If TDF_TIMEOUT is set, then our sleep has been timed out 588 * already but we are still on the sleep queue, so dequeue the 589 * thread and return. 590 * 591 * Do the same if the real-time clock has been adjusted since this 592 * thread calculated its timeout based on that clock. This handles 593 * the following race: 594 * - The Ts thread needs to sleep until an absolute real-clock time. 595 * It copies the global rtc_generation into curthread->td_rtcgen, 596 * reads the RTC, and calculates a sleep duration based on that time. 597 * See umtxq_sleep() for an example. 598 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes 599 * threads that are sleeping until an absolute real-clock time. 600 * See tc_setclock() and the POSIX specification of clock_settime(). 601 * - Ts reaches the code below. It holds the sleepqueue chain lock, 602 * so Tc has finished waking, so this thread must test td_rtcgen. 603 * (The declaration of td_rtcgen refers to this comment.) 604 */ 605 rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation; 606 if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) { 607 if (rtc_changed) { 608 td->td_rtcgen = 0; 609 } 610 MPASS(TD_ON_SLEEPQ(td)); 611 sq = sleepq_lookup(wchan); 612 if (sleepq_resume_thread(sq, td, 0)) { 613 #ifdef INVARIANTS 614 /* 615 * This thread hasn't gone to sleep yet, so it 616 * should not be swapped out. 617 */ 618 panic("not waking up swapper"); 619 #endif 620 } 621 mtx_unlock_spin(&sc->sc_lock); 622 return; 623 } 624 #ifdef SLEEPQUEUE_PROFILING 625 if (prof_enabled) 626 sleepq_profile(td->td_wmesg); 627 #endif 628 MPASS(td->td_sleepqueue == NULL); 629 sched_sleep(td, pri); 630 thread_lock_set(td, &sc->sc_lock); 631 SDT_PROBE0(sched, , , sleep); 632 TD_SET_SLEEPING(td); 633 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 634 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 635 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 636 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 637 } 638 639 /* 640 * Check to see if we timed out. 641 */ 642 static int 643 sleepq_check_timeout(void) 644 { 645 struct thread *td; 646 int res; 647 648 td = curthread; 649 THREAD_LOCK_ASSERT(td, MA_OWNED); 650 651 /* 652 * If TDF_TIMEOUT is set, we timed out. But recheck 653 * td_sleeptimo anyway. 654 */ 655 res = 0; 656 if (td->td_sleeptimo != 0) { 657 if (td->td_sleeptimo <= sbinuptime()) 658 res = EWOULDBLOCK; 659 td->td_sleeptimo = 0; 660 } 661 if (td->td_flags & TDF_TIMEOUT) 662 td->td_flags &= ~TDF_TIMEOUT; 663 else 664 /* 665 * We ignore the situation where timeout subsystem was 666 * unable to stop our callout. The struct thread is 667 * type-stable, the callout will use the correct 668 * memory when running. The checks of the 669 * td_sleeptimo value in this function and in 670 * sleepq_timeout() ensure that the thread does not 671 * get spurious wakeups, even if the callout was reset 672 * or thread reused. 673 */ 674 callout_stop(&td->td_slpcallout); 675 return (res); 676 } 677 678 /* 679 * Check to see if we were awoken by a signal. 680 */ 681 static int 682 sleepq_check_signals(void) 683 { 684 struct thread *td; 685 686 td = curthread; 687 THREAD_LOCK_ASSERT(td, MA_OWNED); 688 689 /* We are no longer in an interruptible sleep. */ 690 if (td->td_flags & TDF_SINTR) 691 td->td_flags &= ~TDF_SINTR; 692 693 if (td->td_flags & TDF_SLEEPABORT) { 694 td->td_flags &= ~TDF_SLEEPABORT; 695 return (td->td_intrval); 696 } 697 698 return (0); 699 } 700 701 /* 702 * Block the current thread until it is awakened from its sleep queue. 703 */ 704 void 705 sleepq_wait(void *wchan, int pri) 706 { 707 struct thread *td; 708 709 td = curthread; 710 MPASS(!(td->td_flags & TDF_SINTR)); 711 thread_lock(td); 712 sleepq_switch(wchan, pri); 713 thread_unlock(td); 714 } 715 716 /* 717 * Block the current thread until it is awakened from its sleep queue 718 * or it is interrupted by a signal. 719 */ 720 int 721 sleepq_wait_sig(void *wchan, int pri) 722 { 723 int rcatch; 724 int rval; 725 726 rcatch = sleepq_catch_signals(wchan, pri); 727 rval = sleepq_check_signals(); 728 thread_unlock(curthread); 729 if (rcatch) 730 return (rcatch); 731 return (rval); 732 } 733 734 /* 735 * Block the current thread until it is awakened from its sleep queue 736 * or it times out while waiting. 737 */ 738 int 739 sleepq_timedwait(void *wchan, int pri) 740 { 741 struct thread *td; 742 int rval; 743 744 td = curthread; 745 MPASS(!(td->td_flags & TDF_SINTR)); 746 thread_lock(td); 747 sleepq_switch(wchan, pri); 748 rval = sleepq_check_timeout(); 749 thread_unlock(td); 750 751 return (rval); 752 } 753 754 /* 755 * Block the current thread until it is awakened from its sleep queue, 756 * it is interrupted by a signal, or it times out waiting to be awakened. 757 */ 758 int 759 sleepq_timedwait_sig(void *wchan, int pri) 760 { 761 int rcatch, rvalt, rvals; 762 763 rcatch = sleepq_catch_signals(wchan, pri); 764 rvalt = sleepq_check_timeout(); 765 rvals = sleepq_check_signals(); 766 thread_unlock(curthread); 767 if (rcatch) 768 return (rcatch); 769 if (rvals) 770 return (rvals); 771 return (rvalt); 772 } 773 774 /* 775 * Returns the type of sleepqueue given a waitchannel. 776 */ 777 int 778 sleepq_type(void *wchan) 779 { 780 struct sleepqueue *sq; 781 int type; 782 783 MPASS(wchan != NULL); 784 785 sleepq_lock(wchan); 786 sq = sleepq_lookup(wchan); 787 if (sq == NULL) { 788 sleepq_release(wchan); 789 return (-1); 790 } 791 type = sq->sq_type; 792 sleepq_release(wchan); 793 return (type); 794 } 795 796 /* 797 * Removes a thread from a sleep queue and makes it 798 * runnable. 799 */ 800 static int 801 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 802 { 803 struct sleepqueue_chain *sc __unused; 804 805 MPASS(td != NULL); 806 MPASS(sq->sq_wchan != NULL); 807 MPASS(td->td_wchan == sq->sq_wchan); 808 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 809 THREAD_LOCK_ASSERT(td, MA_OWNED); 810 sc = SC_LOOKUP(sq->sq_wchan); 811 mtx_assert(&sc->sc_lock, MA_OWNED); 812 813 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 814 815 /* Remove the thread from the queue. */ 816 sq->sq_blockedcnt[td->td_sqqueue]--; 817 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 818 819 /* 820 * Get a sleep queue for this thread. If this is the last waiter, 821 * use the queue itself and take it out of the chain, otherwise, 822 * remove a queue from the free list. 823 */ 824 if (LIST_EMPTY(&sq->sq_free)) { 825 td->td_sleepqueue = sq; 826 #ifdef INVARIANTS 827 sq->sq_wchan = NULL; 828 #endif 829 #ifdef SLEEPQUEUE_PROFILING 830 sc->sc_depth--; 831 #endif 832 } else 833 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 834 LIST_REMOVE(td->td_sleepqueue, sq_hash); 835 836 td->td_wmesg = NULL; 837 td->td_wchan = NULL; 838 td->td_flags &= ~TDF_SINTR; 839 840 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 841 (void *)td, (long)td->td_proc->p_pid, td->td_name); 842 843 /* Adjust priority if requested. */ 844 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 845 if (pri != 0 && td->td_priority > pri && 846 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 847 sched_prio(td, pri); 848 849 /* 850 * Note that thread td might not be sleeping if it is running 851 * sleepq_catch_signals() on another CPU or is blocked on its 852 * proc lock to check signals. There's no need to mark the 853 * thread runnable in that case. 854 */ 855 if (TD_IS_SLEEPING(td)) { 856 TD_CLR_SLEEPING(td); 857 return (setrunnable(td)); 858 } 859 return (0); 860 } 861 862 #ifdef INVARIANTS 863 /* 864 * UMA zone item deallocator. 865 */ 866 static void 867 sleepq_dtor(void *mem, int size, void *arg) 868 { 869 struct sleepqueue *sq; 870 int i; 871 872 sq = mem; 873 for (i = 0; i < NR_SLEEPQS; i++) { 874 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 875 MPASS(sq->sq_blockedcnt[i] == 0); 876 } 877 } 878 #endif 879 880 /* 881 * UMA zone item initializer. 882 */ 883 static int 884 sleepq_init(void *mem, int size, int flags) 885 { 886 struct sleepqueue *sq; 887 int i; 888 889 bzero(mem, size); 890 sq = mem; 891 for (i = 0; i < NR_SLEEPQS; i++) { 892 TAILQ_INIT(&sq->sq_blocked[i]); 893 sq->sq_blockedcnt[i] = 0; 894 } 895 LIST_INIT(&sq->sq_free); 896 return (0); 897 } 898 899 /* 900 * Find thread sleeping on a wait channel and resume it. 901 */ 902 int 903 sleepq_signal(void *wchan, int flags, int pri, int queue) 904 { 905 struct sleepqueue_chain *sc; 906 struct sleepqueue *sq; 907 struct threadqueue *head; 908 struct thread *td, *besttd; 909 int wakeup_swapper; 910 911 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 912 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 913 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 914 sq = sleepq_lookup(wchan); 915 if (sq == NULL) 916 return (0); 917 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 918 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 919 920 head = &sq->sq_blocked[queue]; 921 if (flags & SLEEPQ_UNFAIR) { 922 /* 923 * Find the most recently sleeping thread, but try to 924 * skip threads still in process of context switch to 925 * avoid spinning on the thread lock. 926 */ 927 sc = SC_LOOKUP(wchan); 928 besttd = TAILQ_LAST_FAST(head, thread, td_slpq); 929 while (besttd->td_lock != &sc->sc_lock) { 930 td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq); 931 if (td == NULL) 932 break; 933 besttd = td; 934 } 935 } else { 936 /* 937 * Find the highest priority thread on the queue. If there 938 * is a tie, use the thread that first appears in the queue 939 * as it has been sleeping the longest since threads are 940 * always added to the tail of sleep queues. 941 */ 942 besttd = td = TAILQ_FIRST(head); 943 while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) { 944 if (td->td_priority < besttd->td_priority) 945 besttd = td; 946 } 947 } 948 MPASS(besttd != NULL); 949 thread_lock(besttd); 950 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 951 thread_unlock(besttd); 952 return (wakeup_swapper); 953 } 954 955 static bool 956 match_any(struct thread *td __unused) 957 { 958 959 return (true); 960 } 961 962 /* 963 * Resume all threads sleeping on a specified wait channel. 964 */ 965 int 966 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 967 { 968 struct sleepqueue *sq; 969 970 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 971 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 972 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 973 sq = sleepq_lookup(wchan); 974 if (sq == NULL) 975 return (0); 976 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 977 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 978 979 return (sleepq_remove_matching(sq, queue, match_any, pri)); 980 } 981 982 /* 983 * Resume threads on the sleep queue that match the given predicate. 984 */ 985 int 986 sleepq_remove_matching(struct sleepqueue *sq, int queue, 987 bool (*matches)(struct thread *), int pri) 988 { 989 struct thread *td, *tdn; 990 int wakeup_swapper; 991 992 /* 993 * The last thread will be given ownership of sq and may 994 * re-enqueue itself before sleepq_resume_thread() returns, 995 * so we must cache the "next" queue item at the beginning 996 * of the final iteration. 997 */ 998 wakeup_swapper = 0; 999 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 1000 thread_lock(td); 1001 if (matches(td)) 1002 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 1003 thread_unlock(td); 1004 } 1005 1006 return (wakeup_swapper); 1007 } 1008 1009 /* 1010 * Time sleeping threads out. When the timeout expires, the thread is 1011 * removed from the sleep queue and made runnable if it is still asleep. 1012 */ 1013 static void 1014 sleepq_timeout(void *arg) 1015 { 1016 struct sleepqueue_chain *sc __unused; 1017 struct sleepqueue *sq; 1018 struct thread *td; 1019 void *wchan; 1020 int wakeup_swapper; 1021 1022 td = arg; 1023 wakeup_swapper = 0; 1024 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 1025 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1026 1027 thread_lock(td); 1028 1029 if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) { 1030 /* 1031 * The thread does not want a timeout (yet). 1032 */ 1033 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 1034 /* 1035 * See if the thread is asleep and get the wait 1036 * channel if it is. 1037 */ 1038 wchan = td->td_wchan; 1039 sc = SC_LOOKUP(wchan); 1040 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 1041 sq = sleepq_lookup(wchan); 1042 MPASS(sq != NULL); 1043 td->td_flags |= TDF_TIMEOUT; 1044 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1045 } else if (TD_ON_SLEEPQ(td)) { 1046 /* 1047 * If the thread is on the SLEEPQ but isn't sleeping 1048 * yet, it can either be on another CPU in between 1049 * sleepq_add() and one of the sleepq_*wait*() 1050 * routines or it can be in sleepq_catch_signals(). 1051 */ 1052 td->td_flags |= TDF_TIMEOUT; 1053 } 1054 1055 thread_unlock(td); 1056 if (wakeup_swapper) 1057 kick_proc0(); 1058 } 1059 1060 /* 1061 * Resumes a specific thread from the sleep queue associated with a specific 1062 * wait channel if it is on that queue. 1063 */ 1064 void 1065 sleepq_remove(struct thread *td, void *wchan) 1066 { 1067 struct sleepqueue *sq; 1068 int wakeup_swapper; 1069 1070 /* 1071 * Look up the sleep queue for this wait channel, then re-check 1072 * that the thread is asleep on that channel, if it is not, then 1073 * bail. 1074 */ 1075 MPASS(wchan != NULL); 1076 sleepq_lock(wchan); 1077 sq = sleepq_lookup(wchan); 1078 /* 1079 * We can not lock the thread here as it may be sleeping on a 1080 * different sleepq. However, holding the sleepq lock for this 1081 * wchan can guarantee that we do not miss a wakeup for this 1082 * channel. The asserts below will catch any false positives. 1083 */ 1084 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 1085 sleepq_release(wchan); 1086 return; 1087 } 1088 /* Thread is asleep on sleep queue sq, so wake it up. */ 1089 thread_lock(td); 1090 MPASS(sq != NULL); 1091 MPASS(td->td_wchan == wchan); 1092 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1093 thread_unlock(td); 1094 sleepq_release(wchan); 1095 if (wakeup_swapper) 1096 kick_proc0(); 1097 } 1098 1099 /* 1100 * Abort a thread as if an interrupt had occurred. Only abort 1101 * interruptible waits (unfortunately it isn't safe to abort others). 1102 */ 1103 int 1104 sleepq_abort(struct thread *td, int intrval) 1105 { 1106 struct sleepqueue *sq; 1107 void *wchan; 1108 1109 THREAD_LOCK_ASSERT(td, MA_OWNED); 1110 MPASS(TD_ON_SLEEPQ(td)); 1111 MPASS(td->td_flags & TDF_SINTR); 1112 MPASS(intrval == EINTR || intrval == ERESTART); 1113 1114 /* 1115 * If the TDF_TIMEOUT flag is set, just leave. A 1116 * timeout is scheduled anyhow. 1117 */ 1118 if (td->td_flags & TDF_TIMEOUT) 1119 return (0); 1120 1121 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1122 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1123 td->td_intrval = intrval; 1124 td->td_flags |= TDF_SLEEPABORT; 1125 /* 1126 * If the thread has not slept yet it will find the signal in 1127 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1128 * we have to do it here. 1129 */ 1130 if (!TD_IS_SLEEPING(td)) 1131 return (0); 1132 wchan = td->td_wchan; 1133 MPASS(wchan != NULL); 1134 sq = sleepq_lookup(wchan); 1135 MPASS(sq != NULL); 1136 1137 /* Thread is asleep on sleep queue sq, so wake it up. */ 1138 return (sleepq_resume_thread(sq, td, 0)); 1139 } 1140 1141 void 1142 sleepq_chains_remove_matching(bool (*matches)(struct thread *)) 1143 { 1144 struct sleepqueue_chain *sc; 1145 struct sleepqueue *sq, *sq1; 1146 int i, wakeup_swapper; 1147 1148 wakeup_swapper = 0; 1149 for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) { 1150 if (LIST_EMPTY(&sc->sc_queues)) { 1151 continue; 1152 } 1153 mtx_lock_spin(&sc->sc_lock); 1154 LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) { 1155 for (i = 0; i < NR_SLEEPQS; ++i) { 1156 wakeup_swapper |= sleepq_remove_matching(sq, i, 1157 matches, 0); 1158 } 1159 } 1160 mtx_unlock_spin(&sc->sc_lock); 1161 } 1162 if (wakeup_swapper) { 1163 kick_proc0(); 1164 } 1165 } 1166 1167 /* 1168 * Prints the stacks of all threads presently sleeping on wchan/queue to 1169 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1170 * printed. Typically, this will equal the number of threads sleeping on the 1171 * queue, but may be less if sb overflowed before all stacks were printed. 1172 */ 1173 #ifdef STACK 1174 int 1175 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1176 int *count_stacks_printed) 1177 { 1178 struct thread *td, *td_next; 1179 struct sleepqueue *sq; 1180 struct stack **st; 1181 struct sbuf **td_infos; 1182 int i, stack_idx, error, stacks_to_allocate; 1183 bool finished; 1184 1185 error = 0; 1186 finished = false; 1187 1188 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1189 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1190 1191 stacks_to_allocate = 10; 1192 for (i = 0; i < 3 && !finished ; i++) { 1193 /* We cannot malloc while holding the queue's spinlock, so 1194 * we do our mallocs now, and hope it is enough. If it 1195 * isn't, we will free these, drop the lock, malloc more, 1196 * and try again, up to a point. After that point we will 1197 * give up and report ENOMEM. We also cannot write to sb 1198 * during this time since the client may have set the 1199 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1200 * malloc as we print to it. So we defer actually printing 1201 * to sb until after we drop the spinlock. 1202 */ 1203 1204 /* Where we will store the stacks. */ 1205 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1206 M_TEMP, M_WAITOK); 1207 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1208 stack_idx++) 1209 st[stack_idx] = stack_create(M_WAITOK); 1210 1211 /* Where we will store the td name, tid, etc. */ 1212 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1213 M_TEMP, M_WAITOK); 1214 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1215 stack_idx++) 1216 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1217 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1218 SBUF_FIXEDLEN); 1219 1220 sleepq_lock(wchan); 1221 sq = sleepq_lookup(wchan); 1222 if (sq == NULL) { 1223 /* This sleepq does not exist; exit and return ENOENT. */ 1224 error = ENOENT; 1225 finished = true; 1226 sleepq_release(wchan); 1227 goto loop_end; 1228 } 1229 1230 stack_idx = 0; 1231 /* Save thread info */ 1232 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1233 td_next) { 1234 if (stack_idx >= stacks_to_allocate) 1235 goto loop_end; 1236 1237 /* Note the td_lock is equal to the sleepq_lock here. */ 1238 stack_save_td(st[stack_idx], td); 1239 1240 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1241 td->td_tid, td->td_name, td); 1242 1243 ++stack_idx; 1244 } 1245 1246 finished = true; 1247 sleepq_release(wchan); 1248 1249 /* Print the stacks */ 1250 for (i = 0; i < stack_idx; i++) { 1251 sbuf_finish(td_infos[i]); 1252 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1253 stack_sbuf_print(sb, st[i]); 1254 sbuf_printf(sb, "\n"); 1255 1256 error = sbuf_error(sb); 1257 if (error == 0) 1258 *count_stacks_printed = stack_idx; 1259 } 1260 1261 loop_end: 1262 if (!finished) 1263 sleepq_release(wchan); 1264 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1265 stack_idx++) 1266 stack_destroy(st[stack_idx]); 1267 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1268 stack_idx++) 1269 sbuf_delete(td_infos[stack_idx]); 1270 free(st, M_TEMP); 1271 free(td_infos, M_TEMP); 1272 stacks_to_allocate *= 10; 1273 } 1274 1275 if (!finished && error == 0) 1276 error = ENOMEM; 1277 1278 return (error); 1279 } 1280 #endif 1281 1282 #ifdef SLEEPQUEUE_PROFILING 1283 #define SLEEPQ_PROF_LOCATIONS 1024 1284 #define SLEEPQ_SBUFSIZE 512 1285 struct sleepq_prof { 1286 LIST_ENTRY(sleepq_prof) sp_link; 1287 const char *sp_wmesg; 1288 long sp_count; 1289 }; 1290 1291 LIST_HEAD(sqphead, sleepq_prof); 1292 1293 struct sqphead sleepq_prof_free; 1294 struct sqphead sleepq_hash[SC_TABLESIZE]; 1295 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1296 static struct mtx sleepq_prof_lock; 1297 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1298 1299 static void 1300 sleepq_profile(const char *wmesg) 1301 { 1302 struct sleepq_prof *sp; 1303 1304 mtx_lock_spin(&sleepq_prof_lock); 1305 if (prof_enabled == 0) 1306 goto unlock; 1307 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1308 if (sp->sp_wmesg == wmesg) 1309 goto done; 1310 sp = LIST_FIRST(&sleepq_prof_free); 1311 if (sp == NULL) 1312 goto unlock; 1313 sp->sp_wmesg = wmesg; 1314 LIST_REMOVE(sp, sp_link); 1315 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1316 done: 1317 sp->sp_count++; 1318 unlock: 1319 mtx_unlock_spin(&sleepq_prof_lock); 1320 return; 1321 } 1322 1323 static void 1324 sleepq_prof_reset(void) 1325 { 1326 struct sleepq_prof *sp; 1327 int enabled; 1328 int i; 1329 1330 mtx_lock_spin(&sleepq_prof_lock); 1331 enabled = prof_enabled; 1332 prof_enabled = 0; 1333 for (i = 0; i < SC_TABLESIZE; i++) 1334 LIST_INIT(&sleepq_hash[i]); 1335 LIST_INIT(&sleepq_prof_free); 1336 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1337 sp = &sleepq_profent[i]; 1338 sp->sp_wmesg = NULL; 1339 sp->sp_count = 0; 1340 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1341 } 1342 prof_enabled = enabled; 1343 mtx_unlock_spin(&sleepq_prof_lock); 1344 } 1345 1346 static int 1347 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1348 { 1349 int error, v; 1350 1351 v = prof_enabled; 1352 error = sysctl_handle_int(oidp, &v, v, req); 1353 if (error) 1354 return (error); 1355 if (req->newptr == NULL) 1356 return (error); 1357 if (v == prof_enabled) 1358 return (0); 1359 if (v == 1) 1360 sleepq_prof_reset(); 1361 mtx_lock_spin(&sleepq_prof_lock); 1362 prof_enabled = !!v; 1363 mtx_unlock_spin(&sleepq_prof_lock); 1364 1365 return (0); 1366 } 1367 1368 static int 1369 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1370 { 1371 int error, v; 1372 1373 v = 0; 1374 error = sysctl_handle_int(oidp, &v, 0, req); 1375 if (error) 1376 return (error); 1377 if (req->newptr == NULL) 1378 return (error); 1379 if (v == 0) 1380 return (0); 1381 sleepq_prof_reset(); 1382 1383 return (0); 1384 } 1385 1386 static int 1387 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1388 { 1389 struct sleepq_prof *sp; 1390 struct sbuf *sb; 1391 int enabled; 1392 int error; 1393 int i; 1394 1395 error = sysctl_wire_old_buffer(req, 0); 1396 if (error != 0) 1397 return (error); 1398 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1399 sbuf_printf(sb, "\nwmesg\tcount\n"); 1400 enabled = prof_enabled; 1401 mtx_lock_spin(&sleepq_prof_lock); 1402 prof_enabled = 0; 1403 mtx_unlock_spin(&sleepq_prof_lock); 1404 for (i = 0; i < SC_TABLESIZE; i++) { 1405 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1406 sbuf_printf(sb, "%s\t%ld\n", 1407 sp->sp_wmesg, sp->sp_count); 1408 } 1409 } 1410 mtx_lock_spin(&sleepq_prof_lock); 1411 prof_enabled = enabled; 1412 mtx_unlock_spin(&sleepq_prof_lock); 1413 1414 error = sbuf_finish(sb); 1415 sbuf_delete(sb); 1416 return (error); 1417 } 1418 1419 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1420 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1421 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1422 NULL, 0, reset_sleepq_prof_stats, "I", 1423 "Reset sleepqueue profiling statistics"); 1424 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1425 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1426 #endif 1427 1428 #ifdef DDB 1429 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1430 { 1431 struct sleepqueue_chain *sc; 1432 struct sleepqueue *sq; 1433 #ifdef INVARIANTS 1434 struct lock_object *lock; 1435 #endif 1436 struct thread *td; 1437 void *wchan; 1438 int i; 1439 1440 if (!have_addr) 1441 return; 1442 1443 /* 1444 * First, see if there is an active sleep queue for the wait channel 1445 * indicated by the address. 1446 */ 1447 wchan = (void *)addr; 1448 sc = SC_LOOKUP(wchan); 1449 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1450 if (sq->sq_wchan == wchan) 1451 goto found; 1452 1453 /* 1454 * Second, see if there is an active sleep queue at the address 1455 * indicated. 1456 */ 1457 for (i = 0; i < SC_TABLESIZE; i++) 1458 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1459 if (sq == (struct sleepqueue *)addr) 1460 goto found; 1461 } 1462 1463 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1464 return; 1465 found: 1466 db_printf("Wait channel: %p\n", sq->sq_wchan); 1467 db_printf("Queue type: %d\n", sq->sq_type); 1468 #ifdef INVARIANTS 1469 if (sq->sq_lock) { 1470 lock = sq->sq_lock; 1471 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1472 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1473 } 1474 #endif 1475 db_printf("Blocked threads:\n"); 1476 for (i = 0; i < NR_SLEEPQS; i++) { 1477 db_printf("\nQueue[%d]:\n", i); 1478 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1479 db_printf("\tempty\n"); 1480 else 1481 TAILQ_FOREACH(td, &sq->sq_blocked[i], 1482 td_slpq) { 1483 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1484 td->td_tid, td->td_proc->p_pid, 1485 td->td_name); 1486 } 1487 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1488 } 1489 } 1490 1491 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1492 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1493 #endif 1494