xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_sched.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/lock.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/uma.h>
83 
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #endif
87 
88 /*
89  * Constants for the hash table of sleep queue chains.  These constants are
90  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
91  * Basically, we ignore the lower 8 bits of the address since most wait
92  * channel pointers are aligned and only look at the next 7 bits for the
93  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
94  */
95 #define	SC_TABLESIZE	128			/* Must be power of 2. */
96 #define	SC_MASK		(SC_TABLESIZE - 1)
97 #define	SC_SHIFT	8
98 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
99 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
100 #define NR_SLEEPQS      2
101 /*
102  * There two different lists of sleep queues.  Both lists are connected
103  * via the sq_hash entries.  The first list is the sleep queue chain list
104  * that a sleep queue is on when it is attached to a wait channel.  The
105  * second list is the free list hung off of a sleep queue that is attached
106  * to a wait channel.
107  *
108  * Each sleep queue also contains the wait channel it is attached to, the
109  * list of threads blocked on that wait channel, flags specific to the
110  * wait channel, and the lock used to synchronize with a wait channel.
111  * The flags are used to catch mismatches between the various consumers
112  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
113  * The lock pointer is only used when invariants are enabled for various
114  * debugging checks.
115  *
116  * Locking key:
117  *  c - sleep queue chain lock
118  */
119 struct sleepqueue {
120 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
121 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
122 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
123 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
124 	void	*sq_wchan;			/* (c) Wait channel. */
125 	int	sq_type;			/* (c) Queue type. */
126 #ifdef INVARIANTS
127 	struct lock_object *sq_lock;		/* (c) Associated lock. */
128 #endif
129 };
130 
131 struct sleepqueue_chain {
132 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
133 	struct mtx sc_lock;			/* Spin lock for this chain. */
134 #ifdef SLEEPQUEUE_PROFILING
135 	u_int	sc_depth;			/* Length of sc_queues. */
136 	u_int	sc_max_depth;			/* Max length of sc_queues. */
137 #endif
138 };
139 
140 #ifdef SLEEPQUEUE_PROFILING
141 u_int sleepq_max_depth;
142 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
143 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
144     "sleepq chain stats");
145 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
146     0, "maxmimum depth achieved of a single chain");
147 
148 static void	sleepq_profile(const char *wmesg);
149 static int	prof_enabled;
150 #endif
151 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
152 static uma_zone_t sleepq_zone;
153 
154 /*
155  * Prototypes for non-exported routines.
156  */
157 static int	sleepq_catch_signals(void *wchan, int pri);
158 static int	sleepq_check_signals(void);
159 static int	sleepq_check_timeout(void);
160 #ifdef INVARIANTS
161 static void	sleepq_dtor(void *mem, int size, void *arg);
162 #endif
163 static int	sleepq_init(void *mem, int size, int flags);
164 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
165 		    int pri);
166 static void	sleepq_switch(void *wchan, int pri);
167 static void	sleepq_timeout(void *arg);
168 
169 /*
170  * Early initialization of sleep queues that is called from the sleepinit()
171  * SYSINIT.
172  */
173 void
174 init_sleepqueues(void)
175 {
176 #ifdef SLEEPQUEUE_PROFILING
177 	struct sysctl_oid *chain_oid;
178 	char chain_name[10];
179 #endif
180 	int i;
181 
182 	for (i = 0; i < SC_TABLESIZE; i++) {
183 		LIST_INIT(&sleepq_chains[i].sc_queues);
184 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
185 		    MTX_SPIN | MTX_RECURSE);
186 #ifdef SLEEPQUEUE_PROFILING
187 		snprintf(chain_name, sizeof(chain_name), "%d", i);
188 		chain_oid = SYSCTL_ADD_NODE(NULL,
189 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
190 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
191 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
192 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
193 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
194 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
195 		    NULL);
196 #endif
197 	}
198 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
199 #ifdef INVARIANTS
200 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
201 #else
202 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
203 #endif
204 
205 	thread0.td_sleepqueue = sleepq_alloc();
206 }
207 
208 /*
209  * Get a sleep queue for a new thread.
210  */
211 struct sleepqueue *
212 sleepq_alloc(void)
213 {
214 
215 	return (uma_zalloc(sleepq_zone, M_WAITOK));
216 }
217 
218 /*
219  * Free a sleep queue when a thread is destroyed.
220  */
221 void
222 sleepq_free(struct sleepqueue *sq)
223 {
224 
225 	uma_zfree(sleepq_zone, sq);
226 }
227 
228 /*
229  * Lock the sleep queue chain associated with the specified wait channel.
230  */
231 void
232 sleepq_lock(void *wchan)
233 {
234 	struct sleepqueue_chain *sc;
235 
236 	sc = SC_LOOKUP(wchan);
237 	mtx_lock_spin(&sc->sc_lock);
238 }
239 
240 /*
241  * Look up the sleep queue associated with a given wait channel in the hash
242  * table locking the associated sleep queue chain.  If no queue is found in
243  * the table, NULL is returned.
244  */
245 struct sleepqueue *
246 sleepq_lookup(void *wchan)
247 {
248 	struct sleepqueue_chain *sc;
249 	struct sleepqueue *sq;
250 
251 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
252 	sc = SC_LOOKUP(wchan);
253 	mtx_assert(&sc->sc_lock, MA_OWNED);
254 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
255 		if (sq->sq_wchan == wchan)
256 			return (sq);
257 	return (NULL);
258 }
259 
260 /*
261  * Unlock the sleep queue chain associated with a given wait channel.
262  */
263 void
264 sleepq_release(void *wchan)
265 {
266 	struct sleepqueue_chain *sc;
267 
268 	sc = SC_LOOKUP(wchan);
269 	mtx_unlock_spin(&sc->sc_lock);
270 }
271 
272 /*
273  * Places the current thread on the sleep queue for the specified wait
274  * channel.  If INVARIANTS is enabled, then it associates the passed in
275  * lock with the sleepq to make sure it is held when that sleep queue is
276  * woken up.
277  */
278 void
279 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
280     int queue)
281 {
282 	struct sleepqueue_chain *sc;
283 	struct sleepqueue *sq;
284 	struct thread *td;
285 
286 	td = curthread;
287 	sc = SC_LOOKUP(wchan);
288 	mtx_assert(&sc->sc_lock, MA_OWNED);
289 	MPASS(td->td_sleepqueue != NULL);
290 	MPASS(wchan != NULL);
291 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
292 
293 	/* If this thread is not allowed to sleep, die a horrible death. */
294 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
295 	    ("Trying sleep, but thread marked as sleeping prohibited"));
296 
297 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
298 	sq = sleepq_lookup(wchan);
299 
300 	/*
301 	 * If the wait channel does not already have a sleep queue, use
302 	 * this thread's sleep queue.  Otherwise, insert the current thread
303 	 * into the sleep queue already in use by this wait channel.
304 	 */
305 	if (sq == NULL) {
306 #ifdef INVARIANTS
307 		int i;
308 
309 		sq = td->td_sleepqueue;
310 		for (i = 0; i < NR_SLEEPQS; i++) {
311 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
312 			    ("thread's sleep queue %d is not empty", i));
313 			KASSERT(sq->sq_blockedcnt[i] == 0,
314 			    ("thread's sleep queue %d count mismatches", i));
315 		}
316 		KASSERT(LIST_EMPTY(&sq->sq_free),
317 		    ("thread's sleep queue has a non-empty free list"));
318 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
319 		sq->sq_lock = lock;
320 #endif
321 #ifdef SLEEPQUEUE_PROFILING
322 		sc->sc_depth++;
323 		if (sc->sc_depth > sc->sc_max_depth) {
324 			sc->sc_max_depth = sc->sc_depth;
325 			if (sc->sc_max_depth > sleepq_max_depth)
326 				sleepq_max_depth = sc->sc_max_depth;
327 		}
328 #endif
329 		sq = td->td_sleepqueue;
330 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
331 		sq->sq_wchan = wchan;
332 		sq->sq_type = flags & SLEEPQ_TYPE;
333 	} else {
334 		MPASS(wchan == sq->sq_wchan);
335 		MPASS(lock == sq->sq_lock);
336 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
337 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
338 	}
339 	thread_lock(td);
340 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
341 	sq->sq_blockedcnt[queue]++;
342 	td->td_sleepqueue = NULL;
343 	td->td_sqqueue = queue;
344 	td->td_wchan = wchan;
345 	td->td_wmesg = wmesg;
346 	if (flags & SLEEPQ_INTERRUPTIBLE) {
347 		td->td_flags |= TDF_SINTR;
348 		td->td_flags &= ~TDF_SLEEPABORT;
349 		if (flags & SLEEPQ_STOP_ON_BDRY)
350 			td->td_flags |= TDF_SBDRY;
351 	}
352 	thread_unlock(td);
353 }
354 
355 /*
356  * Sets a timeout that will remove the current thread from the specified
357  * sleep queue after timo ticks if the thread has not already been awakened.
358  */
359 void
360 sleepq_set_timeout(void *wchan, int timo)
361 {
362 	struct sleepqueue_chain *sc;
363 	struct thread *td;
364 
365 	td = curthread;
366 	sc = SC_LOOKUP(wchan);
367 	mtx_assert(&sc->sc_lock, MA_OWNED);
368 	MPASS(TD_ON_SLEEPQ(td));
369 	MPASS(td->td_sleepqueue == NULL);
370 	MPASS(wchan != NULL);
371 	callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
372 }
373 
374 /*
375  * Return the number of actual sleepers for the specified queue.
376  */
377 u_int
378 sleepq_sleepcnt(void *wchan, int queue)
379 {
380 	struct sleepqueue *sq;
381 
382 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
383 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
384 	sq = sleepq_lookup(wchan);
385 	if (sq == NULL)
386 		return (0);
387 	return (sq->sq_blockedcnt[queue]);
388 }
389 
390 /*
391  * Marks the pending sleep of the current thread as interruptible and
392  * makes an initial check for pending signals before putting a thread
393  * to sleep. Enters and exits with the thread lock held.  Thread lock
394  * may have transitioned from the sleepq lock to a run lock.
395  */
396 static int
397 sleepq_catch_signals(void *wchan, int pri)
398 {
399 	struct sleepqueue_chain *sc;
400 	struct sleepqueue *sq;
401 	struct thread *td;
402 	struct proc *p;
403 	struct sigacts *ps;
404 	int sig, ret, stop_allowed;
405 
406 	td = curthread;
407 	p = curproc;
408 	sc = SC_LOOKUP(wchan);
409 	mtx_assert(&sc->sc_lock, MA_OWNED);
410 	MPASS(wchan != NULL);
411 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
412 		td->td_pflags &= ~TDP_WAKEUP;
413 		ret = EINTR;
414 		thread_lock(td);
415 		goto out;
416 	}
417 
418 	/*
419 	 * See if there are any pending signals for this thread.  If not
420 	 * we can switch immediately.  Otherwise do the signal processing
421 	 * directly.
422 	 */
423 	thread_lock(td);
424 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
425 		sleepq_switch(wchan, pri);
426 		return (0);
427 	}
428 	stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
429 	    SIG_STOP_ALLOWED;
430 	thread_unlock(td);
431 	mtx_unlock_spin(&sc->sc_lock);
432 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
433 		(void *)td, (long)p->p_pid, td->td_name);
434 	PROC_LOCK(p);
435 	ps = p->p_sigacts;
436 	mtx_lock(&ps->ps_mtx);
437 	sig = cursig(td, stop_allowed);
438 	if (sig == 0) {
439 		mtx_unlock(&ps->ps_mtx);
440 		ret = thread_suspend_check(1);
441 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
442 	} else {
443 		if (SIGISMEMBER(ps->ps_sigintr, sig))
444 			ret = EINTR;
445 		else
446 			ret = ERESTART;
447 		mtx_unlock(&ps->ps_mtx);
448 	}
449 	/*
450 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
451 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
452 	 * thread_lock() are currently held in tdsendsignal().
453 	 */
454 	PROC_SLOCK(p);
455 	mtx_lock_spin(&sc->sc_lock);
456 	PROC_UNLOCK(p);
457 	thread_lock(td);
458 	PROC_SUNLOCK(p);
459 	if (ret == 0) {
460 		sleepq_switch(wchan, pri);
461 		return (0);
462 	}
463 out:
464 	/*
465 	 * There were pending signals and this thread is still
466 	 * on the sleep queue, remove it from the sleep queue.
467 	 */
468 	if (TD_ON_SLEEPQ(td)) {
469 		sq = sleepq_lookup(wchan);
470 		if (sleepq_resume_thread(sq, td, 0)) {
471 #ifdef INVARIANTS
472 			/*
473 			 * This thread hasn't gone to sleep yet, so it
474 			 * should not be swapped out.
475 			 */
476 			panic("not waking up swapper");
477 #endif
478 		}
479 	}
480 	mtx_unlock_spin(&sc->sc_lock);
481 	MPASS(td->td_lock != &sc->sc_lock);
482 	return (ret);
483 }
484 
485 /*
486  * Switches to another thread if we are still asleep on a sleep queue.
487  * Returns with thread lock.
488  */
489 static void
490 sleepq_switch(void *wchan, int pri)
491 {
492 	struct sleepqueue_chain *sc;
493 	struct sleepqueue *sq;
494 	struct thread *td;
495 
496 	td = curthread;
497 	sc = SC_LOOKUP(wchan);
498 	mtx_assert(&sc->sc_lock, MA_OWNED);
499 	THREAD_LOCK_ASSERT(td, MA_OWNED);
500 
501 	/*
502 	 * If we have a sleep queue, then we've already been woken up, so
503 	 * just return.
504 	 */
505 	if (td->td_sleepqueue != NULL) {
506 		mtx_unlock_spin(&sc->sc_lock);
507 		return;
508 	}
509 
510 	/*
511 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
512 	 * already but we are still on the sleep queue, so dequeue the
513 	 * thread and return.
514 	 */
515 	if (td->td_flags & TDF_TIMEOUT) {
516 		MPASS(TD_ON_SLEEPQ(td));
517 		sq = sleepq_lookup(wchan);
518 		if (sleepq_resume_thread(sq, td, 0)) {
519 #ifdef INVARIANTS
520 			/*
521 			 * This thread hasn't gone to sleep yet, so it
522 			 * should not be swapped out.
523 			 */
524 			panic("not waking up swapper");
525 #endif
526 		}
527 		mtx_unlock_spin(&sc->sc_lock);
528 		return;
529 	}
530 #ifdef SLEEPQUEUE_PROFILING
531 	if (prof_enabled)
532 		sleepq_profile(td->td_wmesg);
533 #endif
534 	MPASS(td->td_sleepqueue == NULL);
535 	sched_sleep(td, pri);
536 	thread_lock_set(td, &sc->sc_lock);
537 	TD_SET_SLEEPING(td);
538 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
539 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
540 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
541 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
542 }
543 
544 /*
545  * Check to see if we timed out.
546  */
547 static int
548 sleepq_check_timeout(void)
549 {
550 	struct thread *td;
551 
552 	td = curthread;
553 	THREAD_LOCK_ASSERT(td, MA_OWNED);
554 
555 	/*
556 	 * If TDF_TIMEOUT is set, we timed out.
557 	 */
558 	if (td->td_flags & TDF_TIMEOUT) {
559 		td->td_flags &= ~TDF_TIMEOUT;
560 		return (EWOULDBLOCK);
561 	}
562 
563 	/*
564 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
565 	 * already been woken up.
566 	 */
567 	if (td->td_flags & TDF_TIMOFAIL)
568 		td->td_flags &= ~TDF_TIMOFAIL;
569 
570 	/*
571 	 * If callout_stop() fails, then the timeout is running on
572 	 * another CPU, so synchronize with it to avoid having it
573 	 * accidentally wake up a subsequent sleep.
574 	 */
575 	else if (callout_stop(&td->td_slpcallout) == 0) {
576 		td->td_flags |= TDF_TIMEOUT;
577 		TD_SET_SLEEPING(td);
578 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
579 	}
580 	return (0);
581 }
582 
583 /*
584  * Check to see if we were awoken by a signal.
585  */
586 static int
587 sleepq_check_signals(void)
588 {
589 	struct thread *td;
590 
591 	td = curthread;
592 	THREAD_LOCK_ASSERT(td, MA_OWNED);
593 
594 	/* We are no longer in an interruptible sleep. */
595 	if (td->td_flags & TDF_SINTR)
596 		td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
597 
598 	if (td->td_flags & TDF_SLEEPABORT) {
599 		td->td_flags &= ~TDF_SLEEPABORT;
600 		return (td->td_intrval);
601 	}
602 
603 	return (0);
604 }
605 
606 /*
607  * Block the current thread until it is awakened from its sleep queue.
608  */
609 void
610 sleepq_wait(void *wchan, int pri)
611 {
612 	struct thread *td;
613 
614 	td = curthread;
615 	MPASS(!(td->td_flags & TDF_SINTR));
616 	thread_lock(td);
617 	sleepq_switch(wchan, pri);
618 	thread_unlock(td);
619 }
620 
621 /*
622  * Block the current thread until it is awakened from its sleep queue
623  * or it is interrupted by a signal.
624  */
625 int
626 sleepq_wait_sig(void *wchan, int pri)
627 {
628 	int rcatch;
629 	int rval;
630 
631 	rcatch = sleepq_catch_signals(wchan, pri);
632 	rval = sleepq_check_signals();
633 	thread_unlock(curthread);
634 	if (rcatch)
635 		return (rcatch);
636 	return (rval);
637 }
638 
639 /*
640  * Block the current thread until it is awakened from its sleep queue
641  * or it times out while waiting.
642  */
643 int
644 sleepq_timedwait(void *wchan, int pri)
645 {
646 	struct thread *td;
647 	int rval;
648 
649 	td = curthread;
650 	MPASS(!(td->td_flags & TDF_SINTR));
651 	thread_lock(td);
652 	sleepq_switch(wchan, pri);
653 	rval = sleepq_check_timeout();
654 	thread_unlock(td);
655 
656 	return (rval);
657 }
658 
659 /*
660  * Block the current thread until it is awakened from its sleep queue,
661  * it is interrupted by a signal, or it times out waiting to be awakened.
662  */
663 int
664 sleepq_timedwait_sig(void *wchan, int pri)
665 {
666 	int rcatch, rvalt, rvals;
667 
668 	rcatch = sleepq_catch_signals(wchan, pri);
669 	rvalt = sleepq_check_timeout();
670 	rvals = sleepq_check_signals();
671 	thread_unlock(curthread);
672 	if (rcatch)
673 		return (rcatch);
674 	if (rvals)
675 		return (rvals);
676 	return (rvalt);
677 }
678 
679 /*
680  * Returns the type of sleepqueue given a waitchannel.
681  */
682 int
683 sleepq_type(void *wchan)
684 {
685 	struct sleepqueue *sq;
686 	int type;
687 
688 	MPASS(wchan != NULL);
689 
690 	sleepq_lock(wchan);
691 	sq = sleepq_lookup(wchan);
692 	if (sq == NULL) {
693 		sleepq_release(wchan);
694 		return (-1);
695 	}
696 	type = sq->sq_type;
697 	sleepq_release(wchan);
698 	return (type);
699 }
700 
701 /*
702  * Removes a thread from a sleep queue and makes it
703  * runnable.
704  */
705 static int
706 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
707 {
708 	struct sleepqueue_chain *sc;
709 
710 	MPASS(td != NULL);
711 	MPASS(sq->sq_wchan != NULL);
712 	MPASS(td->td_wchan == sq->sq_wchan);
713 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
714 	THREAD_LOCK_ASSERT(td, MA_OWNED);
715 	sc = SC_LOOKUP(sq->sq_wchan);
716 	mtx_assert(&sc->sc_lock, MA_OWNED);
717 
718 	/* Remove the thread from the queue. */
719 	sq->sq_blockedcnt[td->td_sqqueue]--;
720 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
721 
722 	/*
723 	 * Get a sleep queue for this thread.  If this is the last waiter,
724 	 * use the queue itself and take it out of the chain, otherwise,
725 	 * remove a queue from the free list.
726 	 */
727 	if (LIST_EMPTY(&sq->sq_free)) {
728 		td->td_sleepqueue = sq;
729 #ifdef INVARIANTS
730 		sq->sq_wchan = NULL;
731 #endif
732 #ifdef SLEEPQUEUE_PROFILING
733 		sc->sc_depth--;
734 #endif
735 	} else
736 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
737 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
738 
739 	td->td_wmesg = NULL;
740 	td->td_wchan = NULL;
741 	td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
742 
743 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
744 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
745 
746 	/* Adjust priority if requested. */
747 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
748 	if (pri != 0 && td->td_priority > pri &&
749 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
750 		sched_prio(td, pri);
751 
752 	/*
753 	 * Note that thread td might not be sleeping if it is running
754 	 * sleepq_catch_signals() on another CPU or is blocked on its
755 	 * proc lock to check signals.  There's no need to mark the
756 	 * thread runnable in that case.
757 	 */
758 	if (TD_IS_SLEEPING(td)) {
759 		TD_CLR_SLEEPING(td);
760 		return (setrunnable(td));
761 	}
762 	return (0);
763 }
764 
765 #ifdef INVARIANTS
766 /*
767  * UMA zone item deallocator.
768  */
769 static void
770 sleepq_dtor(void *mem, int size, void *arg)
771 {
772 	struct sleepqueue *sq;
773 	int i;
774 
775 	sq = mem;
776 	for (i = 0; i < NR_SLEEPQS; i++) {
777 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
778 		MPASS(sq->sq_blockedcnt[i] == 0);
779 	}
780 }
781 #endif
782 
783 /*
784  * UMA zone item initializer.
785  */
786 static int
787 sleepq_init(void *mem, int size, int flags)
788 {
789 	struct sleepqueue *sq;
790 	int i;
791 
792 	bzero(mem, size);
793 	sq = mem;
794 	for (i = 0; i < NR_SLEEPQS; i++) {
795 		TAILQ_INIT(&sq->sq_blocked[i]);
796 		sq->sq_blockedcnt[i] = 0;
797 	}
798 	LIST_INIT(&sq->sq_free);
799 	return (0);
800 }
801 
802 /*
803  * Find the highest priority thread sleeping on a wait channel and resume it.
804  */
805 int
806 sleepq_signal(void *wchan, int flags, int pri, int queue)
807 {
808 	struct sleepqueue *sq;
809 	struct thread *td, *besttd;
810 	int wakeup_swapper;
811 
812 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
813 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
814 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
815 	sq = sleepq_lookup(wchan);
816 	if (sq == NULL)
817 		return (0);
818 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
819 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
820 
821 	/*
822 	 * Find the highest priority thread on the queue.  If there is a
823 	 * tie, use the thread that first appears in the queue as it has
824 	 * been sleeping the longest since threads are always added to
825 	 * the tail of sleep queues.
826 	 */
827 	besttd = NULL;
828 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
829 		if (besttd == NULL || td->td_priority < besttd->td_priority)
830 			besttd = td;
831 	}
832 	MPASS(besttd != NULL);
833 	thread_lock(besttd);
834 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
835 	thread_unlock(besttd);
836 	return (wakeup_swapper);
837 }
838 
839 /*
840  * Resume all threads sleeping on a specified wait channel.
841  */
842 int
843 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
844 {
845 	struct sleepqueue *sq;
846 	struct thread *td, *tdn;
847 	int wakeup_swapper;
848 
849 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
850 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
851 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
852 	sq = sleepq_lookup(wchan);
853 	if (sq == NULL)
854 		return (0);
855 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
856 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
857 
858 	/* Resume all blocked threads on the sleep queue. */
859 	wakeup_swapper = 0;
860 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
861 		thread_lock(td);
862 		if (sleepq_resume_thread(sq, td, pri))
863 			wakeup_swapper = 1;
864 		thread_unlock(td);
865 	}
866 	return (wakeup_swapper);
867 }
868 
869 /*
870  * Time sleeping threads out.  When the timeout expires, the thread is
871  * removed from the sleep queue and made runnable if it is still asleep.
872  */
873 static void
874 sleepq_timeout(void *arg)
875 {
876 	struct sleepqueue_chain *sc;
877 	struct sleepqueue *sq;
878 	struct thread *td;
879 	void *wchan;
880 	int wakeup_swapper;
881 
882 	td = arg;
883 	wakeup_swapper = 0;
884 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
885 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
886 
887 	/*
888 	 * First, see if the thread is asleep and get the wait channel if
889 	 * it is.
890 	 */
891 	thread_lock(td);
892 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
893 		wchan = td->td_wchan;
894 		sc = SC_LOOKUP(wchan);
895 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
896 		sq = sleepq_lookup(wchan);
897 		MPASS(sq != NULL);
898 		td->td_flags |= TDF_TIMEOUT;
899 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
900 		thread_unlock(td);
901 		if (wakeup_swapper)
902 			kick_proc0();
903 		return;
904 	}
905 
906 	/*
907 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
908 	 * can either be on another CPU in between sleepq_add() and
909 	 * one of the sleepq_*wait*() routines or it can be in
910 	 * sleepq_catch_signals().
911 	 */
912 	if (TD_ON_SLEEPQ(td)) {
913 		td->td_flags |= TDF_TIMEOUT;
914 		thread_unlock(td);
915 		return;
916 	}
917 
918 	/*
919 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
920 	 * then the other thread has already yielded to us, so clear
921 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
922 	 * we know that the other thread is not on a sleep queue, but it
923 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
924 	 * to let it know that the timeout has already run and doesn't
925 	 * need to be canceled.
926 	 */
927 	if (td->td_flags & TDF_TIMEOUT) {
928 		MPASS(TD_IS_SLEEPING(td));
929 		td->td_flags &= ~TDF_TIMEOUT;
930 		TD_CLR_SLEEPING(td);
931 		wakeup_swapper = setrunnable(td);
932 	} else
933 		td->td_flags |= TDF_TIMOFAIL;
934 	thread_unlock(td);
935 	if (wakeup_swapper)
936 		kick_proc0();
937 }
938 
939 /*
940  * Resumes a specific thread from the sleep queue associated with a specific
941  * wait channel if it is on that queue.
942  */
943 void
944 sleepq_remove(struct thread *td, void *wchan)
945 {
946 	struct sleepqueue *sq;
947 	int wakeup_swapper;
948 
949 	/*
950 	 * Look up the sleep queue for this wait channel, then re-check
951 	 * that the thread is asleep on that channel, if it is not, then
952 	 * bail.
953 	 */
954 	MPASS(wchan != NULL);
955 	sleepq_lock(wchan);
956 	sq = sleepq_lookup(wchan);
957 	/*
958 	 * We can not lock the thread here as it may be sleeping on a
959 	 * different sleepq.  However, holding the sleepq lock for this
960 	 * wchan can guarantee that we do not miss a wakeup for this
961 	 * channel.  The asserts below will catch any false positives.
962 	 */
963 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
964 		sleepq_release(wchan);
965 		return;
966 	}
967 	/* Thread is asleep on sleep queue sq, so wake it up. */
968 	thread_lock(td);
969 	MPASS(sq != NULL);
970 	MPASS(td->td_wchan == wchan);
971 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
972 	thread_unlock(td);
973 	sleepq_release(wchan);
974 	if (wakeup_swapper)
975 		kick_proc0();
976 }
977 
978 /*
979  * Abort a thread as if an interrupt had occurred.  Only abort
980  * interruptible waits (unfortunately it isn't safe to abort others).
981  */
982 int
983 sleepq_abort(struct thread *td, int intrval)
984 {
985 	struct sleepqueue *sq;
986 	void *wchan;
987 
988 	THREAD_LOCK_ASSERT(td, MA_OWNED);
989 	MPASS(TD_ON_SLEEPQ(td));
990 	MPASS(td->td_flags & TDF_SINTR);
991 	MPASS(intrval == EINTR || intrval == ERESTART);
992 
993 	/*
994 	 * If the TDF_TIMEOUT flag is set, just leave. A
995 	 * timeout is scheduled anyhow.
996 	 */
997 	if (td->td_flags & TDF_TIMEOUT)
998 		return (0);
999 
1000 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1001 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1002 	td->td_intrval = intrval;
1003 	td->td_flags |= TDF_SLEEPABORT;
1004 	/*
1005 	 * If the thread has not slept yet it will find the signal in
1006 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1007 	 * we have to do it here.
1008 	 */
1009 	if (!TD_IS_SLEEPING(td))
1010 		return (0);
1011 	wchan = td->td_wchan;
1012 	MPASS(wchan != NULL);
1013 	sq = sleepq_lookup(wchan);
1014 	MPASS(sq != NULL);
1015 
1016 	/* Thread is asleep on sleep queue sq, so wake it up. */
1017 	return (sleepq_resume_thread(sq, td, 0));
1018 }
1019 
1020 #ifdef SLEEPQUEUE_PROFILING
1021 #define	SLEEPQ_PROF_LOCATIONS	1024
1022 #define	SLEEPQ_SBUFSIZE		512
1023 struct sleepq_prof {
1024 	LIST_ENTRY(sleepq_prof) sp_link;
1025 	const char	*sp_wmesg;
1026 	long		sp_count;
1027 };
1028 
1029 LIST_HEAD(sqphead, sleepq_prof);
1030 
1031 struct sqphead sleepq_prof_free;
1032 struct sqphead sleepq_hash[SC_TABLESIZE];
1033 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1034 static struct mtx sleepq_prof_lock;
1035 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1036 
1037 static void
1038 sleepq_profile(const char *wmesg)
1039 {
1040 	struct sleepq_prof *sp;
1041 
1042 	mtx_lock_spin(&sleepq_prof_lock);
1043 	if (prof_enabled == 0)
1044 		goto unlock;
1045 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1046 		if (sp->sp_wmesg == wmesg)
1047 			goto done;
1048 	sp = LIST_FIRST(&sleepq_prof_free);
1049 	if (sp == NULL)
1050 		goto unlock;
1051 	sp->sp_wmesg = wmesg;
1052 	LIST_REMOVE(sp, sp_link);
1053 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1054 done:
1055 	sp->sp_count++;
1056 unlock:
1057 	mtx_unlock_spin(&sleepq_prof_lock);
1058 	return;
1059 }
1060 
1061 static void
1062 sleepq_prof_reset(void)
1063 {
1064 	struct sleepq_prof *sp;
1065 	int enabled;
1066 	int i;
1067 
1068 	mtx_lock_spin(&sleepq_prof_lock);
1069 	enabled = prof_enabled;
1070 	prof_enabled = 0;
1071 	for (i = 0; i < SC_TABLESIZE; i++)
1072 		LIST_INIT(&sleepq_hash[i]);
1073 	LIST_INIT(&sleepq_prof_free);
1074 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1075 		sp = &sleepq_profent[i];
1076 		sp->sp_wmesg = NULL;
1077 		sp->sp_count = 0;
1078 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1079 	}
1080 	prof_enabled = enabled;
1081 	mtx_unlock_spin(&sleepq_prof_lock);
1082 }
1083 
1084 static int
1085 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1086 {
1087 	int error, v;
1088 
1089 	v = prof_enabled;
1090 	error = sysctl_handle_int(oidp, &v, v, req);
1091 	if (error)
1092 		return (error);
1093 	if (req->newptr == NULL)
1094 		return (error);
1095 	if (v == prof_enabled)
1096 		return (0);
1097 	if (v == 1)
1098 		sleepq_prof_reset();
1099 	mtx_lock_spin(&sleepq_prof_lock);
1100 	prof_enabled = !!v;
1101 	mtx_unlock_spin(&sleepq_prof_lock);
1102 
1103 	return (0);
1104 }
1105 
1106 static int
1107 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1108 {
1109 	int error, v;
1110 
1111 	v = 0;
1112 	error = sysctl_handle_int(oidp, &v, 0, req);
1113 	if (error)
1114 		return (error);
1115 	if (req->newptr == NULL)
1116 		return (error);
1117 	if (v == 0)
1118 		return (0);
1119 	sleepq_prof_reset();
1120 
1121 	return (0);
1122 }
1123 
1124 static int
1125 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1126 {
1127 	struct sleepq_prof *sp;
1128 	struct sbuf *sb;
1129 	int enabled;
1130 	int error;
1131 	int i;
1132 
1133 	error = sysctl_wire_old_buffer(req, 0);
1134 	if (error != 0)
1135 		return (error);
1136 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1137 	sbuf_printf(sb, "\nwmesg\tcount\n");
1138 	enabled = prof_enabled;
1139 	mtx_lock_spin(&sleepq_prof_lock);
1140 	prof_enabled = 0;
1141 	mtx_unlock_spin(&sleepq_prof_lock);
1142 	for (i = 0; i < SC_TABLESIZE; i++) {
1143 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1144 			sbuf_printf(sb, "%s\t%ld\n",
1145 			    sp->sp_wmesg, sp->sp_count);
1146 		}
1147 	}
1148 	mtx_lock_spin(&sleepq_prof_lock);
1149 	prof_enabled = enabled;
1150 	mtx_unlock_spin(&sleepq_prof_lock);
1151 
1152 	error = sbuf_finish(sb);
1153 	sbuf_delete(sb);
1154 	return (error);
1155 }
1156 
1157 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1158     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1159 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1160     NULL, 0, reset_sleepq_prof_stats, "I",
1161     "Reset sleepqueue profiling statistics");
1162 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1163     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1164 #endif
1165 
1166 #ifdef DDB
1167 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1168 {
1169 	struct sleepqueue_chain *sc;
1170 	struct sleepqueue *sq;
1171 #ifdef INVARIANTS
1172 	struct lock_object *lock;
1173 #endif
1174 	struct thread *td;
1175 	void *wchan;
1176 	int i;
1177 
1178 	if (!have_addr)
1179 		return;
1180 
1181 	/*
1182 	 * First, see if there is an active sleep queue for the wait channel
1183 	 * indicated by the address.
1184 	 */
1185 	wchan = (void *)addr;
1186 	sc = SC_LOOKUP(wchan);
1187 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1188 		if (sq->sq_wchan == wchan)
1189 			goto found;
1190 
1191 	/*
1192 	 * Second, see if there is an active sleep queue at the address
1193 	 * indicated.
1194 	 */
1195 	for (i = 0; i < SC_TABLESIZE; i++)
1196 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1197 			if (sq == (struct sleepqueue *)addr)
1198 				goto found;
1199 		}
1200 
1201 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1202 	return;
1203 found:
1204 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1205 	db_printf("Queue type: %d\n", sq->sq_type);
1206 #ifdef INVARIANTS
1207 	if (sq->sq_lock) {
1208 		lock = sq->sq_lock;
1209 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1210 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1211 	}
1212 #endif
1213 	db_printf("Blocked threads:\n");
1214 	for (i = 0; i < NR_SLEEPQS; i++) {
1215 		db_printf("\nQueue[%d]:\n", i);
1216 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1217 			db_printf("\tempty\n");
1218 		else
1219 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1220 				      td_slpq) {
1221 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1222 					  td->td_tid, td->td_proc->p_pid,
1223 					  td->td_name);
1224 			}
1225 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1226 	}
1227 }
1228 
1229 /* Alias 'show sleepqueue' to 'show sleepq'. */
1230 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1231 #endif
1232