1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * Implementation of sleep queues used to hold queue of threads blocked on 32 * a wait channel. Sleep queues different from turnstiles in that wait 33 * channels are not owned by anyone, so there is no priority propagation. 34 * Sleep queues can also provide a timeout and can also be interrupted by 35 * signals. That said, there are several similarities between the turnstile 36 * and sleep queue implementations. (Note: turnstiles were implemented 37 * first.) For example, both use a hash table of the same size where each 38 * bucket is referred to as a "chain" that contains both a spin lock and 39 * a linked list of queues. An individual queue is located by using a hash 40 * to pick a chain, locking the chain, and then walking the chain searching 41 * for the queue. This means that a wait channel object does not need to 42 * embed it's queue head just as locks do not embed their turnstile queue 43 * head. Threads also carry around a sleep queue that they lend to the 44 * wait channel when blocking. Just as in turnstiles, the queue includes 45 * a free list of the sleep queues of other threads blocked on the same 46 * wait channel in the case of multiple waiters. 47 * 48 * Some additional functionality provided by sleep queues include the 49 * ability to set a timeout. The timeout is managed using a per-thread 50 * callout that resumes a thread if it is asleep. A thread may also 51 * catch signals while it is asleep (aka an interruptible sleep). The 52 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 53 * sleep queues also provide some extra assertions. One is not allowed to 54 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 55 * must consistently use the same lock to synchronize with a wait channel, 56 * though this check is currently only a warning for sleep/wakeup due to 57 * pre-existing abuse of that API. The same lock must also be held when 58 * awakening threads, though that is currently only enforced for condition 59 * variables. 60 */ 61 62 #include "opt_sleepqueue_profiling.h" 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/malloc.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sched.h> 76 #include <sys/signalvar.h> 77 #include <sys/sleepqueue.h> 78 #include <sys/sysctl.h> 79 80 /* 81 * Constants for the hash table of sleep queue chains. These constants are 82 * the same ones that 4BSD (and possibly earlier versions of BSD) used. 83 * Basically, we ignore the lower 8 bits of the address since most wait 84 * channel pointers are aligned and only look at the next 7 bits for the 85 * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly. 86 */ 87 #define SC_TABLESIZE 128 /* Must be power of 2. */ 88 #define SC_MASK (SC_TABLESIZE - 1) 89 #define SC_SHIFT 8 90 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK) 91 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 92 93 /* 94 * There two different lists of sleep queues. Both lists are connected 95 * via the sq_hash entries. The first list is the sleep queue chain list 96 * that a sleep queue is on when it is attached to a wait channel. The 97 * second list is the free list hung off of a sleep queue that is attached 98 * to a wait channel. 99 * 100 * Each sleep queue also contains the wait channel it is attached to, the 101 * list of threads blocked on that wait channel, flags specific to the 102 * wait channel, and the lock used to synchronize with a wait channel. 103 * The flags are used to catch mismatches between the various consumers 104 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 105 * The lock pointer is only used when invariants are enabled for various 106 * debugging checks. 107 * 108 * Locking key: 109 * c - sleep queue chain lock 110 */ 111 struct sleepqueue { 112 TAILQ_HEAD(, thread) sq_blocked; /* (c) Blocked threads. */ 113 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 114 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 115 void *sq_wchan; /* (c) Wait channel. */ 116 #ifdef INVARIANTS 117 int sq_type; /* (c) Queue type. */ 118 struct mtx *sq_lock; /* (c) Associated lock. */ 119 #endif 120 }; 121 122 struct sleepqueue_chain { 123 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 124 struct mtx sc_lock; /* Spin lock for this chain. */ 125 #ifdef SLEEPQUEUE_PROFILING 126 u_int sc_depth; /* Length of sc_queues. */ 127 u_int sc_max_depth; /* Max length of sc_queues. */ 128 #endif 129 }; 130 131 #ifdef SLEEPQUEUE_PROFILING 132 u_int sleepq_max_depth; 133 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 134 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 135 "sleepq chain stats"); 136 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 137 0, "maxmimum depth achieved of a single chain"); 138 #endif 139 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 140 141 static MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues"); 142 143 /* 144 * Prototypes for non-exported routines. 145 */ 146 static int sleepq_check_timeout(void); 147 static void sleepq_switch(void *wchan); 148 static void sleepq_timeout(void *arg); 149 static void sleepq_remove_thread(struct sleepqueue *sq, struct thread *td); 150 static void sleepq_resume_thread(struct thread *td, int pri); 151 152 /* 153 * Early initialization of sleep queues that is called from the sleepinit() 154 * SYSINIT. 155 */ 156 void 157 init_sleepqueues(void) 158 { 159 #ifdef SLEEPQUEUE_PROFILING 160 struct sysctl_oid *chain_oid; 161 char chain_name[10]; 162 #endif 163 int i; 164 165 for (i = 0; i < SC_TABLESIZE; i++) { 166 LIST_INIT(&sleepq_chains[i].sc_queues); 167 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 168 MTX_SPIN); 169 #ifdef SLEEPQUEUE_PROFILING 170 snprintf(chain_name, sizeof(chain_name), "%d", i); 171 chain_oid = SYSCTL_ADD_NODE(NULL, 172 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 173 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 174 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 175 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 176 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 177 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 178 NULL); 179 #endif 180 } 181 thread0.td_sleepqueue = sleepq_alloc(); 182 } 183 184 /* 185 * Malloc and initialize a new sleep queue for a new thread. 186 */ 187 struct sleepqueue * 188 sleepq_alloc(void) 189 { 190 struct sleepqueue *sq; 191 192 sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO); 193 TAILQ_INIT(&sq->sq_blocked); 194 LIST_INIT(&sq->sq_free); 195 return (sq); 196 } 197 198 /* 199 * Free a sleep queue when a thread is destroyed. 200 */ 201 void 202 sleepq_free(struct sleepqueue *sq) 203 { 204 205 MPASS(sq != NULL); 206 MPASS(TAILQ_EMPTY(&sq->sq_blocked)); 207 free(sq, M_SLEEPQUEUE); 208 } 209 210 /* 211 * Lock the sleep queue chain associated with the specified wait channel. 212 */ 213 void 214 sleepq_lock(void *wchan) 215 { 216 struct sleepqueue_chain *sc; 217 218 sc = SC_LOOKUP(wchan); 219 mtx_lock_spin(&sc->sc_lock); 220 } 221 222 /* 223 * Look up the sleep queue associated with a given wait channel in the hash 224 * table locking the associated sleep queue chain. If no queue is found in 225 * the table, NULL is returned. 226 */ 227 struct sleepqueue * 228 sleepq_lookup(void *wchan) 229 { 230 struct sleepqueue_chain *sc; 231 struct sleepqueue *sq; 232 233 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 234 sc = SC_LOOKUP(wchan); 235 mtx_assert(&sc->sc_lock, MA_OWNED); 236 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 237 if (sq->sq_wchan == wchan) 238 return (sq); 239 return (NULL); 240 } 241 242 /* 243 * Unlock the sleep queue chain associated with a given wait channel. 244 */ 245 void 246 sleepq_release(void *wchan) 247 { 248 struct sleepqueue_chain *sc; 249 250 sc = SC_LOOKUP(wchan); 251 mtx_unlock_spin(&sc->sc_lock); 252 } 253 254 /* 255 * Places the current thread on the sleep queue for the specified wait 256 * channel. If INVARIANTS is enabled, then it associates the passed in 257 * lock with the sleepq to make sure it is held when that sleep queue is 258 * woken up. 259 */ 260 void 261 sleepq_add(void *wchan, struct mtx *lock, const char *wmesg, int flags) 262 { 263 struct sleepqueue_chain *sc; 264 struct sleepqueue *sq; 265 struct thread *td; 266 267 td = curthread; 268 sc = SC_LOOKUP(wchan); 269 mtx_assert(&sc->sc_lock, MA_OWNED); 270 MPASS(td->td_sleepqueue != NULL); 271 MPASS(wchan != NULL); 272 273 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 274 sq = sleepq_lookup(wchan); 275 276 /* 277 * If the wait channel does not already have a sleep queue, use 278 * this thread's sleep queue. Otherwise, insert the current thread 279 * into the sleep queue already in use by this wait channel. 280 */ 281 if (sq == NULL) { 282 #ifdef SLEEPQUEUE_PROFILING 283 sc->sc_depth++; 284 if (sc->sc_depth > sc->sc_max_depth) { 285 sc->sc_max_depth = sc->sc_depth; 286 if (sc->sc_max_depth > sleepq_max_depth) 287 sleepq_max_depth = sc->sc_max_depth; 288 } 289 #endif 290 sq = td->td_sleepqueue; 291 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 292 KASSERT(TAILQ_EMPTY(&sq->sq_blocked), 293 ("thread's sleep queue has a non-empty queue")); 294 KASSERT(LIST_EMPTY(&sq->sq_free), 295 ("thread's sleep queue has a non-empty free list")); 296 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 297 sq->sq_wchan = wchan; 298 #ifdef INVARIANTS 299 sq->sq_lock = lock; 300 sq->sq_type = flags & SLEEPQ_TYPE; 301 #endif 302 } else { 303 MPASS(wchan == sq->sq_wchan); 304 MPASS(lock == sq->sq_lock); 305 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 306 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 307 } 308 TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq); 309 td->td_sleepqueue = NULL; 310 mtx_lock_spin(&sched_lock); 311 td->td_wchan = wchan; 312 td->td_wmesg = wmesg; 313 if (flags & SLEEPQ_INTERRUPTIBLE) 314 td->td_flags |= TDF_SINTR; 315 mtx_unlock_spin(&sched_lock); 316 } 317 318 /* 319 * Sets a timeout that will remove the current thread from the specified 320 * sleep queue after timo ticks if the thread has not already been awakened. 321 */ 322 void 323 sleepq_set_timeout(void *wchan, int timo) 324 { 325 struct sleepqueue_chain *sc; 326 struct thread *td; 327 328 td = curthread; 329 sc = SC_LOOKUP(wchan); 330 mtx_assert(&sc->sc_lock, MA_OWNED); 331 MPASS(TD_ON_SLEEPQ(td)); 332 MPASS(td->td_sleepqueue == NULL); 333 MPASS(wchan != NULL); 334 callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td); 335 } 336 337 /* 338 * Marks the pending sleep of the current thread as interruptible and 339 * makes an initial check for pending signals before putting a thread 340 * to sleep. 341 */ 342 int 343 sleepq_catch_signals(void *wchan) 344 { 345 struct sleepqueue_chain *sc; 346 struct sleepqueue *sq; 347 struct thread *td; 348 struct proc *p; 349 int do_upcall; 350 int sig; 351 352 do_upcall = 0; 353 td = curthread; 354 p = td->td_proc; 355 sc = SC_LOOKUP(wchan); 356 mtx_assert(&sc->sc_lock, MA_OWNED); 357 MPASS(td->td_sleepqueue == NULL); 358 MPASS(wchan != NULL); 359 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 360 (void *)td, (long)p->p_pid, p->p_comm); 361 362 /* Mark thread as being in an interruptible sleep. */ 363 MPASS(td->td_flags & TDF_SINTR); 364 MPASS(TD_ON_SLEEPQ(td)); 365 sleepq_release(wchan); 366 367 /* See if there are any pending signals for this thread. */ 368 PROC_LOCK(p); 369 mtx_lock(&p->p_sigacts->ps_mtx); 370 sig = cursig(td); 371 mtx_unlock(&p->p_sigacts->ps_mtx); 372 if (sig == 0 && thread_suspend_check(1)) 373 sig = SIGSTOP; 374 else 375 do_upcall = thread_upcall_check(td); 376 PROC_UNLOCK(p); 377 378 /* 379 * If there were pending signals and this thread is still on 380 * the sleep queue, remove it from the sleep queue. If the 381 * thread was removed from the sleep queue while we were blocked 382 * above, then clear TDF_SINTR before returning. 383 */ 384 sleepq_lock(wchan); 385 sq = sleepq_lookup(wchan); 386 mtx_lock_spin(&sched_lock); 387 if (TD_ON_SLEEPQ(td) && (sig != 0 || do_upcall != 0)) { 388 mtx_unlock_spin(&sched_lock); 389 sleepq_remove_thread(sq, td); 390 } else { 391 if (!TD_ON_SLEEPQ(td) && sig == 0) 392 td->td_flags &= ~TDF_SINTR; 393 mtx_unlock_spin(&sched_lock); 394 } 395 return (sig); 396 } 397 398 /* 399 * Switches to another thread if we are still asleep on a sleep queue and 400 * drop the lock on the sleep queue chain. Returns with sched_lock held. 401 */ 402 static void 403 sleepq_switch(void *wchan) 404 { 405 struct sleepqueue_chain *sc; 406 struct thread *td; 407 408 td = curthread; 409 sc = SC_LOOKUP(wchan); 410 mtx_assert(&sc->sc_lock, MA_OWNED); 411 412 /* 413 * If we have a sleep queue, then we've already been woken up, so 414 * just return. 415 */ 416 if (td->td_sleepqueue != NULL) { 417 MPASS(!TD_ON_SLEEPQ(td)); 418 mtx_unlock_spin(&sc->sc_lock); 419 mtx_lock_spin(&sched_lock); 420 return; 421 } 422 423 /* 424 * Otherwise, actually go to sleep. 425 */ 426 mtx_lock_spin(&sched_lock); 427 mtx_unlock_spin(&sc->sc_lock); 428 429 sched_sleep(td); 430 TD_SET_SLEEPING(td); 431 mi_switch(SW_VOL, NULL); 432 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 433 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 434 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 435 } 436 437 /* 438 * Check to see if we timed out. 439 */ 440 static int 441 sleepq_check_timeout(void) 442 { 443 struct thread *td; 444 445 mtx_assert(&sched_lock, MA_OWNED); 446 td = curthread; 447 448 /* 449 * If TDF_TIMEOUT is set, we timed out. 450 */ 451 if (td->td_flags & TDF_TIMEOUT) { 452 td->td_flags &= ~TDF_TIMEOUT; 453 return (EWOULDBLOCK); 454 } 455 456 /* 457 * If TDF_TIMOFAIL is set, the timeout ran after we had 458 * already been woken up. 459 */ 460 if (td->td_flags & TDF_TIMOFAIL) 461 td->td_flags &= ~TDF_TIMOFAIL; 462 463 /* 464 * If callout_stop() fails, then the timeout is running on 465 * another CPU, so synchronize with it to avoid having it 466 * accidentally wake up a subsequent sleep. 467 */ 468 else if (callout_stop(&td->td_slpcallout) == 0) { 469 td->td_flags |= TDF_TIMEOUT; 470 TD_SET_SLEEPING(td); 471 mi_switch(SW_INVOL, NULL); 472 } 473 return (0); 474 } 475 476 /* 477 * Check to see if we were awoken by a signal. 478 */ 479 static int 480 sleepq_check_signals(void) 481 { 482 struct thread *td; 483 484 mtx_assert(&sched_lock, MA_OWNED); 485 td = curthread; 486 487 /* 488 * If TDF_SINTR is clear, then we were awakened while executing 489 * sleepq_catch_signals(). 490 */ 491 if (!(td->td_flags & TDF_SINTR)) 492 return (0); 493 494 /* We are no longer in an interruptible sleep. */ 495 td->td_flags &= ~TDF_SINTR; 496 497 if (td->td_flags & TDF_INTERRUPT) 498 return (td->td_intrval); 499 return (0); 500 } 501 502 /* 503 * If we were in an interruptible sleep and we weren't interrupted and 504 * didn't timeout, check to see if there are any pending signals and 505 * which return value we should use if so. The return value from an 506 * earlier call to sleepq_catch_signals() should be passed in as the 507 * argument. 508 */ 509 int 510 sleepq_calc_signal_retval(int sig) 511 { 512 struct thread *td; 513 struct proc *p; 514 int rval; 515 516 td = curthread; 517 p = td->td_proc; 518 PROC_LOCK(p); 519 mtx_lock(&p->p_sigacts->ps_mtx); 520 /* XXX: Should we always be calling cursig()? */ 521 if (sig == 0) 522 sig = cursig(td); 523 if (sig != 0) { 524 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 525 rval = EINTR; 526 else 527 rval = ERESTART; 528 } else 529 rval = 0; 530 mtx_unlock(&p->p_sigacts->ps_mtx); 531 PROC_UNLOCK(p); 532 return (rval); 533 } 534 535 /* 536 * Block the current thread until it is awakened from its sleep queue. 537 */ 538 void 539 sleepq_wait(void *wchan) 540 { 541 542 MPASS(!(curthread->td_flags & TDF_SINTR)); 543 sleepq_switch(wchan); 544 mtx_unlock_spin(&sched_lock); 545 } 546 547 /* 548 * Block the current thread until it is awakened from its sleep queue 549 * or it is interrupted by a signal. 550 */ 551 int 552 sleepq_wait_sig(void *wchan) 553 { 554 int rval; 555 556 sleepq_switch(wchan); 557 rval = sleepq_check_signals(); 558 mtx_unlock_spin(&sched_lock); 559 return (rval); 560 } 561 562 /* 563 * Block the current thread until it is awakened from its sleep queue 564 * or it times out while waiting. 565 */ 566 int 567 sleepq_timedwait(void *wchan) 568 { 569 int rval; 570 571 MPASS(!(curthread->td_flags & TDF_SINTR)); 572 sleepq_switch(wchan); 573 rval = sleepq_check_timeout(); 574 mtx_unlock_spin(&sched_lock); 575 return (rval); 576 } 577 578 /* 579 * Block the current thread until it is awakened from its sleep queue, 580 * it is interrupted by a signal, or it times out waiting to be awakened. 581 */ 582 int 583 sleepq_timedwait_sig(void *wchan, int signal_caught) 584 { 585 int rvalt, rvals; 586 587 sleepq_switch(wchan); 588 rvalt = sleepq_check_timeout(); 589 rvals = sleepq_check_signals(); 590 mtx_unlock_spin(&sched_lock); 591 if (signal_caught || rvalt == 0) 592 return (rvals); 593 else 594 return (rvalt); 595 } 596 597 /* 598 * Removes a thread from a sleep queue. 599 */ 600 static void 601 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td) 602 { 603 struct sleepqueue_chain *sc; 604 605 MPASS(td != NULL); 606 MPASS(sq->sq_wchan != NULL); 607 MPASS(td->td_wchan == sq->sq_wchan); 608 sc = SC_LOOKUP(sq->sq_wchan); 609 mtx_assert(&sc->sc_lock, MA_OWNED); 610 611 /* Remove the thread from the queue. */ 612 TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq); 613 614 /* 615 * Get a sleep queue for this thread. If this is the last waiter, 616 * use the queue itself and take it out of the chain, otherwise, 617 * remove a queue from the free list. 618 */ 619 if (LIST_EMPTY(&sq->sq_free)) { 620 td->td_sleepqueue = sq; 621 #ifdef INVARIANTS 622 sq->sq_wchan = NULL; 623 #endif 624 #ifdef SLEEPQUEUE_PROFILING 625 sc->sc_depth--; 626 #endif 627 } else 628 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 629 LIST_REMOVE(td->td_sleepqueue, sq_hash); 630 631 mtx_lock_spin(&sched_lock); 632 td->td_wmesg = NULL; 633 td->td_wchan = NULL; 634 mtx_unlock_spin(&sched_lock); 635 } 636 637 /* 638 * Resumes a thread that was asleep on a queue. 639 */ 640 static void 641 sleepq_resume_thread(struct thread *td, int pri) 642 { 643 644 /* 645 * Note that thread td might not be sleeping if it is running 646 * sleepq_catch_signals() on another CPU or is blocked on 647 * its proc lock to check signals. It doesn't hurt to clear 648 * the sleeping flag if it isn't set though, so we just always 649 * do it. However, we can't assert that it is set. 650 */ 651 mtx_lock_spin(&sched_lock); 652 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 653 (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm); 654 TD_CLR_SLEEPING(td); 655 656 /* Adjust priority if requested. */ 657 MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX)); 658 if (pri != -1 && td->td_priority > pri) 659 sched_prio(td, pri); 660 setrunnable(td); 661 mtx_unlock_spin(&sched_lock); 662 } 663 664 /* 665 * Find the highest priority thread sleeping on a wait channel and resume it. 666 */ 667 void 668 sleepq_signal(void *wchan, int flags, int pri) 669 { 670 struct sleepqueue *sq; 671 struct thread *td, *besttd; 672 673 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 674 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 675 sq = sleepq_lookup(wchan); 676 if (sq == NULL) { 677 sleepq_release(wchan); 678 return; 679 } 680 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 681 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 682 683 /* 684 * Find the highest priority thread on the queue. If there is a 685 * tie, use the thread that first appears in the queue as it has 686 * been sleeping the longest since threads are always added to 687 * the tail of sleep queues. 688 */ 689 besttd = NULL; 690 TAILQ_FOREACH(td, &sq->sq_blocked, td_slpq) { 691 if (besttd == NULL || td->td_priority < besttd->td_priority) 692 besttd = td; 693 } 694 MPASS(besttd != NULL); 695 sleepq_remove_thread(sq, besttd); 696 sleepq_release(wchan); 697 sleepq_resume_thread(besttd, pri); 698 } 699 700 /* 701 * Resume all threads sleeping on a specified wait channel. 702 */ 703 void 704 sleepq_broadcast(void *wchan, int flags, int pri) 705 { 706 TAILQ_HEAD(, thread) list; 707 struct sleepqueue *sq; 708 struct thread *td; 709 710 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 711 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 712 sq = sleepq_lookup(wchan); 713 if (sq == NULL) { 714 sleepq_release(wchan); 715 return; 716 } 717 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 718 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 719 720 /* Move blocked threads from the sleep queue to a temporary list. */ 721 TAILQ_INIT(&list); 722 while (!TAILQ_EMPTY(&sq->sq_blocked)) { 723 td = TAILQ_FIRST(&sq->sq_blocked); 724 sleepq_remove_thread(sq, td); 725 TAILQ_INSERT_TAIL(&list, td, td_slpq); 726 } 727 sleepq_release(wchan); 728 729 /* Resume all the threads on the temporary list. */ 730 while (!TAILQ_EMPTY(&list)) { 731 td = TAILQ_FIRST(&list); 732 TAILQ_REMOVE(&list, td, td_slpq); 733 sleepq_resume_thread(td, pri); 734 } 735 } 736 737 /* 738 * Time sleeping threads out. When the timeout expires, the thread is 739 * removed from the sleep queue and made runnable if it is still asleep. 740 */ 741 static void 742 sleepq_timeout(void *arg) 743 { 744 struct sleepqueue *sq; 745 struct thread *td; 746 void *wchan; 747 748 td = arg; 749 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 750 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 751 752 /* 753 * First, see if the thread is asleep and get the wait channel if 754 * it is. 755 */ 756 mtx_lock_spin(&sched_lock); 757 if (TD_ON_SLEEPQ(td)) { 758 wchan = td->td_wchan; 759 mtx_unlock_spin(&sched_lock); 760 sleepq_lock(wchan); 761 sq = sleepq_lookup(wchan); 762 mtx_lock_spin(&sched_lock); 763 } else { 764 wchan = NULL; 765 sq = NULL; 766 } 767 768 /* 769 * At this point, if the thread is still on the sleep queue, 770 * we have that sleep queue locked as it cannot migrate sleep 771 * queues while we dropped sched_lock. If it had resumed and 772 * was on another CPU while the lock was dropped, it would have 773 * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the 774 * call to callout_stop() to stop this routine would have failed 775 * meaning that it would have already set TDF_TIMEOUT to 776 * synchronize with this function. 777 */ 778 if (TD_ON_SLEEPQ(td)) { 779 MPASS(td->td_wchan == wchan); 780 MPASS(sq != NULL); 781 td->td_flags |= TDF_TIMEOUT; 782 mtx_unlock_spin(&sched_lock); 783 sleepq_remove_thread(sq, td); 784 sleepq_release(wchan); 785 sleepq_resume_thread(td, -1); 786 return; 787 } else if (wchan != NULL) 788 sleepq_release(wchan); 789 790 /* 791 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 792 * then the other thread has already yielded to us, so clear 793 * the flag and resume it. If TDF_TIMEOUT is not set, then the 794 * we know that the other thread is not on a sleep queue, but it 795 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 796 * to let it know that the timeout has already run and doesn't 797 * need to be canceled. 798 */ 799 if (td->td_flags & TDF_TIMEOUT) { 800 MPASS(TD_IS_SLEEPING(td)); 801 td->td_flags &= ~TDF_TIMEOUT; 802 TD_CLR_SLEEPING(td); 803 setrunnable(td); 804 } else 805 td->td_flags |= TDF_TIMOFAIL; 806 mtx_unlock_spin(&sched_lock); 807 } 808 809 /* 810 * Resumes a specific thread from the sleep queue associated with a specific 811 * wait channel if it is on that queue. 812 */ 813 void 814 sleepq_remove(struct thread *td, void *wchan) 815 { 816 struct sleepqueue *sq; 817 818 /* 819 * Look up the sleep queue for this wait channel, then re-check 820 * that the thread is asleep on that channel, if it is not, then 821 * bail. 822 */ 823 MPASS(wchan != NULL); 824 sleepq_lock(wchan); 825 sq = sleepq_lookup(wchan); 826 mtx_lock_spin(&sched_lock); 827 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 828 mtx_unlock_spin(&sched_lock); 829 sleepq_release(wchan); 830 return; 831 } 832 mtx_unlock_spin(&sched_lock); 833 MPASS(sq != NULL); 834 835 /* Thread is asleep on sleep queue sq, so wake it up. */ 836 sleepq_remove_thread(sq, td); 837 sleepq_release(wchan); 838 sleepq_resume_thread(td, -1); 839 } 840 841 /* 842 * Abort a thread as if an interrupt had occurred. Only abort 843 * interruptible waits (unfortunately it isn't safe to abort others). 844 * 845 * XXX: What in the world does the comment below mean? 846 * Also, whatever the signal code does... 847 */ 848 void 849 sleepq_abort(struct thread *td) 850 { 851 void *wchan; 852 853 mtx_assert(&sched_lock, MA_OWNED); 854 MPASS(TD_ON_SLEEPQ(td)); 855 MPASS(td->td_flags & TDF_SINTR); 856 857 /* 858 * If the TDF_TIMEOUT flag is set, just leave. A 859 * timeout is scheduled anyhow. 860 */ 861 if (td->td_flags & TDF_TIMEOUT) 862 return; 863 864 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 865 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 866 wchan = td->td_wchan; 867 mtx_unlock_spin(&sched_lock); 868 sleepq_remove(td, wchan); 869 mtx_lock_spin(&sched_lock); 870 } 871