1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* 29 * Implementation of sleep queues used to hold queue of threads blocked on 30 * a wait channel. Sleep queues are different from turnstiles in that wait 31 * channels are not owned by anyone, so there is no priority propagation. 32 * Sleep queues can also provide a timeout and can also be interrupted by 33 * signals. That said, there are several similarities between the turnstile 34 * and sleep queue implementations. (Note: turnstiles were implemented 35 * first.) For example, both use a hash table of the same size where each 36 * bucket is referred to as a "chain" that contains both a spin lock and 37 * a linked list of queues. An individual queue is located by using a hash 38 * to pick a chain, locking the chain, and then walking the chain searching 39 * for the queue. This means that a wait channel object does not need to 40 * embed its queue head just as locks do not embed their turnstile queue 41 * head. Threads also carry around a sleep queue that they lend to the 42 * wait channel when blocking. Just as in turnstiles, the queue includes 43 * a free list of the sleep queues of other threads blocked on the same 44 * wait channel in the case of multiple waiters. 45 * 46 * Some additional functionality provided by sleep queues include the 47 * ability to set a timeout. The timeout is managed using a per-thread 48 * callout that resumes a thread if it is asleep. A thread may also 49 * catch signals while it is asleep (aka an interruptible sleep). The 50 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 51 * sleep queues also provide some extra assertions. One is not allowed to 52 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 53 * must consistently use the same lock to synchronize with a wait channel, 54 * though this check is currently only a warning for sleep/wakeup due to 55 * pre-existing abuse of that API. The same lock must also be held when 56 * awakening threads, though that is currently only enforced for condition 57 * variables. 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_sleepqueue_profiling.h" 64 #include "opt_ddb.h" 65 #include "opt_sched.h" 66 #include "opt_stack.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/lock.h> 71 #include <sys/kernel.h> 72 #include <sys/ktr.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/sdt.h> 78 #include <sys/signalvar.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/stack.h> 81 #include <sys/sysctl.h> 82 #include <sys/time.h> 83 84 #include <machine/atomic.h> 85 86 #include <vm/uma.h> 87 88 #ifdef DDB 89 #include <ddb/ddb.h> 90 #endif 91 92 93 /* 94 * Constants for the hash table of sleep queue chains. 95 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 96 */ 97 #ifndef SC_TABLESIZE 98 #define SC_TABLESIZE 256 99 #endif 100 CTASSERT(powerof2(SC_TABLESIZE)); 101 #define SC_MASK (SC_TABLESIZE - 1) 102 #define SC_SHIFT 8 103 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 104 SC_MASK) 105 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 106 #define NR_SLEEPQS 2 107 /* 108 * There are two different lists of sleep queues. Both lists are connected 109 * via the sq_hash entries. The first list is the sleep queue chain list 110 * that a sleep queue is on when it is attached to a wait channel. The 111 * second list is the free list hung off of a sleep queue that is attached 112 * to a wait channel. 113 * 114 * Each sleep queue also contains the wait channel it is attached to, the 115 * list of threads blocked on that wait channel, flags specific to the 116 * wait channel, and the lock used to synchronize with a wait channel. 117 * The flags are used to catch mismatches between the various consumers 118 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 119 * The lock pointer is only used when invariants are enabled for various 120 * debugging checks. 121 * 122 * Locking key: 123 * c - sleep queue chain lock 124 */ 125 struct sleepqueue { 126 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 127 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 128 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 129 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 130 void *sq_wchan; /* (c) Wait channel. */ 131 int sq_type; /* (c) Queue type. */ 132 #ifdef INVARIANTS 133 struct lock_object *sq_lock; /* (c) Associated lock. */ 134 #endif 135 }; 136 137 struct sleepqueue_chain { 138 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 139 struct mtx sc_lock; /* Spin lock for this chain. */ 140 #ifdef SLEEPQUEUE_PROFILING 141 u_int sc_depth; /* Length of sc_queues. */ 142 u_int sc_max_depth; /* Max length of sc_queues. */ 143 #endif 144 } __aligned(CACHE_LINE_SIZE); 145 146 #ifdef SLEEPQUEUE_PROFILING 147 u_int sleepq_max_depth; 148 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 149 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 150 "sleepq chain stats"); 151 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 152 0, "maxmimum depth achieved of a single chain"); 153 154 static void sleepq_profile(const char *wmesg); 155 static int prof_enabled; 156 #endif 157 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 158 static uma_zone_t sleepq_zone; 159 160 /* 161 * Prototypes for non-exported routines. 162 */ 163 static int sleepq_catch_signals(void *wchan, int pri); 164 static int sleepq_check_signals(void); 165 static int sleepq_check_timeout(void); 166 #ifdef INVARIANTS 167 static void sleepq_dtor(void *mem, int size, void *arg); 168 #endif 169 static int sleepq_init(void *mem, int size, int flags); 170 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 171 int pri); 172 static void sleepq_switch(void *wchan, int pri); 173 static void sleepq_timeout(void *arg); 174 175 SDT_PROBE_DECLARE(sched, , , sleep); 176 SDT_PROBE_DECLARE(sched, , , wakeup); 177 178 /* 179 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 180 * Note that it must happen after sleepinit() has been fully executed, so 181 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 182 */ 183 #ifdef SLEEPQUEUE_PROFILING 184 static void 185 init_sleepqueue_profiling(void) 186 { 187 char chain_name[10]; 188 struct sysctl_oid *chain_oid; 189 u_int i; 190 191 for (i = 0; i < SC_TABLESIZE; i++) { 192 snprintf(chain_name, sizeof(chain_name), "%u", i); 193 chain_oid = SYSCTL_ADD_NODE(NULL, 194 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 195 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 196 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 197 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 198 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 199 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 200 NULL); 201 } 202 } 203 204 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 205 init_sleepqueue_profiling, NULL); 206 #endif 207 208 /* 209 * Early initialization of sleep queues that is called from the sleepinit() 210 * SYSINIT. 211 */ 212 void 213 init_sleepqueues(void) 214 { 215 int i; 216 217 for (i = 0; i < SC_TABLESIZE; i++) { 218 LIST_INIT(&sleepq_chains[i].sc_queues); 219 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 220 MTX_SPIN | MTX_RECURSE); 221 } 222 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 223 #ifdef INVARIANTS 224 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 225 #else 226 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 227 #endif 228 229 thread0.td_sleepqueue = sleepq_alloc(); 230 } 231 232 /* 233 * Get a sleep queue for a new thread. 234 */ 235 struct sleepqueue * 236 sleepq_alloc(void) 237 { 238 239 return (uma_zalloc(sleepq_zone, M_WAITOK)); 240 } 241 242 /* 243 * Free a sleep queue when a thread is destroyed. 244 */ 245 void 246 sleepq_free(struct sleepqueue *sq) 247 { 248 249 uma_zfree(sleepq_zone, sq); 250 } 251 252 /* 253 * Lock the sleep queue chain associated with the specified wait channel. 254 */ 255 void 256 sleepq_lock(void *wchan) 257 { 258 struct sleepqueue_chain *sc; 259 260 sc = SC_LOOKUP(wchan); 261 mtx_lock_spin(&sc->sc_lock); 262 } 263 264 /* 265 * Look up the sleep queue associated with a given wait channel in the hash 266 * table locking the associated sleep queue chain. If no queue is found in 267 * the table, NULL is returned. 268 */ 269 struct sleepqueue * 270 sleepq_lookup(void *wchan) 271 { 272 struct sleepqueue_chain *sc; 273 struct sleepqueue *sq; 274 275 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 276 sc = SC_LOOKUP(wchan); 277 mtx_assert(&sc->sc_lock, MA_OWNED); 278 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 279 if (sq->sq_wchan == wchan) 280 return (sq); 281 return (NULL); 282 } 283 284 /* 285 * Unlock the sleep queue chain associated with a given wait channel. 286 */ 287 void 288 sleepq_release(void *wchan) 289 { 290 struct sleepqueue_chain *sc; 291 292 sc = SC_LOOKUP(wchan); 293 mtx_unlock_spin(&sc->sc_lock); 294 } 295 296 /* 297 * Places the current thread on the sleep queue for the specified wait 298 * channel. If INVARIANTS is enabled, then it associates the passed in 299 * lock with the sleepq to make sure it is held when that sleep queue is 300 * woken up. 301 */ 302 void 303 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 304 int queue) 305 { 306 struct sleepqueue_chain *sc; 307 struct sleepqueue *sq; 308 struct thread *td; 309 310 td = curthread; 311 sc = SC_LOOKUP(wchan); 312 mtx_assert(&sc->sc_lock, MA_OWNED); 313 MPASS(td->td_sleepqueue != NULL); 314 MPASS(wchan != NULL); 315 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 316 317 /* If this thread is not allowed to sleep, die a horrible death. */ 318 KASSERT(td->td_no_sleeping == 0, 319 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 320 __func__, td, wchan)); 321 322 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 323 sq = sleepq_lookup(wchan); 324 325 /* 326 * If the wait channel does not already have a sleep queue, use 327 * this thread's sleep queue. Otherwise, insert the current thread 328 * into the sleep queue already in use by this wait channel. 329 */ 330 if (sq == NULL) { 331 #ifdef INVARIANTS 332 int i; 333 334 sq = td->td_sleepqueue; 335 for (i = 0; i < NR_SLEEPQS; i++) { 336 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 337 ("thread's sleep queue %d is not empty", i)); 338 KASSERT(sq->sq_blockedcnt[i] == 0, 339 ("thread's sleep queue %d count mismatches", i)); 340 } 341 KASSERT(LIST_EMPTY(&sq->sq_free), 342 ("thread's sleep queue has a non-empty free list")); 343 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 344 sq->sq_lock = lock; 345 #endif 346 #ifdef SLEEPQUEUE_PROFILING 347 sc->sc_depth++; 348 if (sc->sc_depth > sc->sc_max_depth) { 349 sc->sc_max_depth = sc->sc_depth; 350 if (sc->sc_max_depth > sleepq_max_depth) 351 sleepq_max_depth = sc->sc_max_depth; 352 } 353 #endif 354 sq = td->td_sleepqueue; 355 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 356 sq->sq_wchan = wchan; 357 sq->sq_type = flags & SLEEPQ_TYPE; 358 } else { 359 MPASS(wchan == sq->sq_wchan); 360 MPASS(lock == sq->sq_lock); 361 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 362 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 363 } 364 thread_lock(td); 365 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 366 sq->sq_blockedcnt[queue]++; 367 td->td_sleepqueue = NULL; 368 td->td_sqqueue = queue; 369 td->td_wchan = wchan; 370 td->td_wmesg = wmesg; 371 if (flags & SLEEPQ_INTERRUPTIBLE) { 372 td->td_flags |= TDF_SINTR; 373 td->td_flags &= ~TDF_SLEEPABORT; 374 } 375 thread_unlock(td); 376 } 377 378 /* 379 * Sets a timeout that will remove the current thread from the specified 380 * sleep queue after timo ticks if the thread has not already been awakened. 381 */ 382 void 383 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 384 int flags) 385 { 386 struct sleepqueue_chain *sc __unused; 387 struct thread *td; 388 sbintime_t pr1; 389 390 td = curthread; 391 sc = SC_LOOKUP(wchan); 392 mtx_assert(&sc->sc_lock, MA_OWNED); 393 MPASS(TD_ON_SLEEPQ(td)); 394 MPASS(td->td_sleepqueue == NULL); 395 MPASS(wchan != NULL); 396 if (cold && td == &thread0) 397 panic("timed sleep before timers are working"); 398 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 399 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 400 thread_lock(td); 401 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 402 thread_unlock(td); 403 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 404 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 405 C_DIRECT_EXEC); 406 } 407 408 /* 409 * Return the number of actual sleepers for the specified queue. 410 */ 411 u_int 412 sleepq_sleepcnt(void *wchan, int queue) 413 { 414 struct sleepqueue *sq; 415 416 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 417 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 418 sq = sleepq_lookup(wchan); 419 if (sq == NULL) 420 return (0); 421 return (sq->sq_blockedcnt[queue]); 422 } 423 424 /* 425 * Marks the pending sleep of the current thread as interruptible and 426 * makes an initial check for pending signals before putting a thread 427 * to sleep. Enters and exits with the thread lock held. Thread lock 428 * may have transitioned from the sleepq lock to a run lock. 429 */ 430 static int 431 sleepq_catch_signals(void *wchan, int pri) 432 { 433 struct sleepqueue_chain *sc; 434 struct sleepqueue *sq; 435 struct thread *td; 436 struct proc *p; 437 struct sigacts *ps; 438 int sig, ret; 439 440 ret = 0; 441 td = curthread; 442 p = curproc; 443 sc = SC_LOOKUP(wchan); 444 mtx_assert(&sc->sc_lock, MA_OWNED); 445 MPASS(wchan != NULL); 446 if ((td->td_pflags & TDP_WAKEUP) != 0) { 447 td->td_pflags &= ~TDP_WAKEUP; 448 ret = EINTR; 449 thread_lock(td); 450 goto out; 451 } 452 453 /* 454 * See if there are any pending signals or suspension requests for this 455 * thread. If not, we can switch immediately. 456 */ 457 thread_lock(td); 458 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) { 459 thread_unlock(td); 460 mtx_unlock_spin(&sc->sc_lock); 461 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 462 (void *)td, (long)p->p_pid, td->td_name); 463 PROC_LOCK(p); 464 /* 465 * Check for suspension first. Checking for signals and then 466 * suspending could result in a missed signal, since a signal 467 * can be delivered while this thread is suspended. 468 */ 469 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 470 ret = thread_suspend_check(1); 471 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 472 if (ret != 0) { 473 PROC_UNLOCK(p); 474 mtx_lock_spin(&sc->sc_lock); 475 thread_lock(td); 476 goto out; 477 } 478 } 479 if ((td->td_flags & TDF_NEEDSIGCHK) != 0) { 480 ps = p->p_sigacts; 481 mtx_lock(&ps->ps_mtx); 482 sig = cursig(td); 483 if (sig == -1) { 484 mtx_unlock(&ps->ps_mtx); 485 KASSERT((td->td_flags & TDF_SBDRY) != 0, 486 ("lost TDF_SBDRY")); 487 KASSERT(TD_SBDRY_INTR(td), 488 ("lost TDF_SERESTART of TDF_SEINTR")); 489 KASSERT((td->td_flags & 490 (TDF_SEINTR | TDF_SERESTART)) != 491 (TDF_SEINTR | TDF_SERESTART), 492 ("both TDF_SEINTR and TDF_SERESTART")); 493 ret = TD_SBDRY_ERRNO(td); 494 } else if (sig != 0) { 495 ret = SIGISMEMBER(ps->ps_sigintr, sig) ? 496 EINTR : ERESTART; 497 mtx_unlock(&ps->ps_mtx); 498 } else { 499 mtx_unlock(&ps->ps_mtx); 500 } 501 502 /* 503 * Do not go into sleep if this thread was the 504 * ptrace(2) attach leader. cursig() consumed 505 * SIGSTOP from PT_ATTACH, but we usually act 506 * on the signal by interrupting sleep, and 507 * should do that here as well. 508 */ 509 if ((td->td_dbgflags & TDB_FSTP) != 0) { 510 if (ret == 0) 511 ret = EINTR; 512 td->td_dbgflags &= ~TDB_FSTP; 513 } 514 } 515 /* 516 * Lock the per-process spinlock prior to dropping the PROC_LOCK 517 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 518 * thread_lock() are currently held in tdsendsignal(). 519 */ 520 PROC_SLOCK(p); 521 mtx_lock_spin(&sc->sc_lock); 522 PROC_UNLOCK(p); 523 thread_lock(td); 524 PROC_SUNLOCK(p); 525 } 526 if (ret == 0) { 527 sleepq_switch(wchan, pri); 528 return (0); 529 } 530 out: 531 /* 532 * There were pending signals and this thread is still 533 * on the sleep queue, remove it from the sleep queue. 534 */ 535 if (TD_ON_SLEEPQ(td)) { 536 sq = sleepq_lookup(wchan); 537 if (sleepq_resume_thread(sq, td, 0)) { 538 #ifdef INVARIANTS 539 /* 540 * This thread hasn't gone to sleep yet, so it 541 * should not be swapped out. 542 */ 543 panic("not waking up swapper"); 544 #endif 545 } 546 } 547 mtx_unlock_spin(&sc->sc_lock); 548 MPASS(td->td_lock != &sc->sc_lock); 549 return (ret); 550 } 551 552 /* 553 * Switches to another thread if we are still asleep on a sleep queue. 554 * Returns with thread lock. 555 */ 556 static void 557 sleepq_switch(void *wchan, int pri) 558 { 559 struct sleepqueue_chain *sc; 560 struct sleepqueue *sq; 561 struct thread *td; 562 bool rtc_changed; 563 564 td = curthread; 565 sc = SC_LOOKUP(wchan); 566 mtx_assert(&sc->sc_lock, MA_OWNED); 567 THREAD_LOCK_ASSERT(td, MA_OWNED); 568 569 /* 570 * If we have a sleep queue, then we've already been woken up, so 571 * just return. 572 */ 573 if (td->td_sleepqueue != NULL) { 574 mtx_unlock_spin(&sc->sc_lock); 575 return; 576 } 577 578 /* 579 * If TDF_TIMEOUT is set, then our sleep has been timed out 580 * already but we are still on the sleep queue, so dequeue the 581 * thread and return. 582 * 583 * Do the same if the real-time clock has been adjusted since this 584 * thread calculated its timeout based on that clock. This handles 585 * the following race: 586 * - The Ts thread needs to sleep until an absolute real-clock time. 587 * It copies the global rtc_generation into curthread->td_rtcgen, 588 * reads the RTC, and calculates a sleep duration based on that time. 589 * See umtxq_sleep() for an example. 590 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes 591 * threads that are sleeping until an absolute real-clock time. 592 * See tc_setclock() and the POSIX specification of clock_settime(). 593 * - Ts reaches the code below. It holds the sleepqueue chain lock, 594 * so Tc has finished waking, so this thread must test td_rtcgen. 595 * (The declaration of td_rtcgen refers to this comment.) 596 */ 597 rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation; 598 if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) { 599 if (rtc_changed) { 600 td->td_rtcgen = 0; 601 } 602 MPASS(TD_ON_SLEEPQ(td)); 603 sq = sleepq_lookup(wchan); 604 if (sleepq_resume_thread(sq, td, 0)) { 605 #ifdef INVARIANTS 606 /* 607 * This thread hasn't gone to sleep yet, so it 608 * should not be swapped out. 609 */ 610 panic("not waking up swapper"); 611 #endif 612 } 613 mtx_unlock_spin(&sc->sc_lock); 614 return; 615 } 616 #ifdef SLEEPQUEUE_PROFILING 617 if (prof_enabled) 618 sleepq_profile(td->td_wmesg); 619 #endif 620 MPASS(td->td_sleepqueue == NULL); 621 sched_sleep(td, pri); 622 thread_lock_set(td, &sc->sc_lock); 623 SDT_PROBE0(sched, , , sleep); 624 TD_SET_SLEEPING(td); 625 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 626 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 627 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 628 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 629 } 630 631 /* 632 * Check to see if we timed out. 633 */ 634 static int 635 sleepq_check_timeout(void) 636 { 637 struct thread *td; 638 int res; 639 640 td = curthread; 641 THREAD_LOCK_ASSERT(td, MA_OWNED); 642 643 /* 644 * If TDF_TIMEOUT is set, we timed out. But recheck 645 * td_sleeptimo anyway. 646 */ 647 res = 0; 648 if (td->td_sleeptimo != 0) { 649 if (td->td_sleeptimo <= sbinuptime()) 650 res = EWOULDBLOCK; 651 td->td_sleeptimo = 0; 652 } 653 if (td->td_flags & TDF_TIMEOUT) 654 td->td_flags &= ~TDF_TIMEOUT; 655 else 656 /* 657 * We ignore the situation where timeout subsystem was 658 * unable to stop our callout. The struct thread is 659 * type-stable, the callout will use the correct 660 * memory when running. The checks of the 661 * td_sleeptimo value in this function and in 662 * sleepq_timeout() ensure that the thread does not 663 * get spurious wakeups, even if the callout was reset 664 * or thread reused. 665 */ 666 callout_stop(&td->td_slpcallout); 667 return (res); 668 } 669 670 /* 671 * Check to see if we were awoken by a signal. 672 */ 673 static int 674 sleepq_check_signals(void) 675 { 676 struct thread *td; 677 678 td = curthread; 679 THREAD_LOCK_ASSERT(td, MA_OWNED); 680 681 /* We are no longer in an interruptible sleep. */ 682 if (td->td_flags & TDF_SINTR) 683 td->td_flags &= ~TDF_SINTR; 684 685 if (td->td_flags & TDF_SLEEPABORT) { 686 td->td_flags &= ~TDF_SLEEPABORT; 687 return (td->td_intrval); 688 } 689 690 return (0); 691 } 692 693 /* 694 * Block the current thread until it is awakened from its sleep queue. 695 */ 696 void 697 sleepq_wait(void *wchan, int pri) 698 { 699 struct thread *td; 700 701 td = curthread; 702 MPASS(!(td->td_flags & TDF_SINTR)); 703 thread_lock(td); 704 sleepq_switch(wchan, pri); 705 thread_unlock(td); 706 } 707 708 /* 709 * Block the current thread until it is awakened from its sleep queue 710 * or it is interrupted by a signal. 711 */ 712 int 713 sleepq_wait_sig(void *wchan, int pri) 714 { 715 int rcatch; 716 int rval; 717 718 rcatch = sleepq_catch_signals(wchan, pri); 719 rval = sleepq_check_signals(); 720 thread_unlock(curthread); 721 if (rcatch) 722 return (rcatch); 723 return (rval); 724 } 725 726 /* 727 * Block the current thread until it is awakened from its sleep queue 728 * or it times out while waiting. 729 */ 730 int 731 sleepq_timedwait(void *wchan, int pri) 732 { 733 struct thread *td; 734 int rval; 735 736 td = curthread; 737 MPASS(!(td->td_flags & TDF_SINTR)); 738 thread_lock(td); 739 sleepq_switch(wchan, pri); 740 rval = sleepq_check_timeout(); 741 thread_unlock(td); 742 743 return (rval); 744 } 745 746 /* 747 * Block the current thread until it is awakened from its sleep queue, 748 * it is interrupted by a signal, or it times out waiting to be awakened. 749 */ 750 int 751 sleepq_timedwait_sig(void *wchan, int pri) 752 { 753 int rcatch, rvalt, rvals; 754 755 rcatch = sleepq_catch_signals(wchan, pri); 756 rvalt = sleepq_check_timeout(); 757 rvals = sleepq_check_signals(); 758 thread_unlock(curthread); 759 if (rcatch) 760 return (rcatch); 761 if (rvals) 762 return (rvals); 763 return (rvalt); 764 } 765 766 /* 767 * Returns the type of sleepqueue given a waitchannel. 768 */ 769 int 770 sleepq_type(void *wchan) 771 { 772 struct sleepqueue *sq; 773 int type; 774 775 MPASS(wchan != NULL); 776 777 sleepq_lock(wchan); 778 sq = sleepq_lookup(wchan); 779 if (sq == NULL) { 780 sleepq_release(wchan); 781 return (-1); 782 } 783 type = sq->sq_type; 784 sleepq_release(wchan); 785 return (type); 786 } 787 788 /* 789 * Removes a thread from a sleep queue and makes it 790 * runnable. 791 */ 792 static int 793 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 794 { 795 struct sleepqueue_chain *sc __unused; 796 797 MPASS(td != NULL); 798 MPASS(sq->sq_wchan != NULL); 799 MPASS(td->td_wchan == sq->sq_wchan); 800 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 801 THREAD_LOCK_ASSERT(td, MA_OWNED); 802 sc = SC_LOOKUP(sq->sq_wchan); 803 mtx_assert(&sc->sc_lock, MA_OWNED); 804 805 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 806 807 /* Remove the thread from the queue. */ 808 sq->sq_blockedcnt[td->td_sqqueue]--; 809 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 810 811 /* 812 * Get a sleep queue for this thread. If this is the last waiter, 813 * use the queue itself and take it out of the chain, otherwise, 814 * remove a queue from the free list. 815 */ 816 if (LIST_EMPTY(&sq->sq_free)) { 817 td->td_sleepqueue = sq; 818 #ifdef INVARIANTS 819 sq->sq_wchan = NULL; 820 #endif 821 #ifdef SLEEPQUEUE_PROFILING 822 sc->sc_depth--; 823 #endif 824 } else 825 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 826 LIST_REMOVE(td->td_sleepqueue, sq_hash); 827 828 td->td_wmesg = NULL; 829 td->td_wchan = NULL; 830 td->td_flags &= ~TDF_SINTR; 831 832 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 833 (void *)td, (long)td->td_proc->p_pid, td->td_name); 834 835 /* Adjust priority if requested. */ 836 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 837 if (pri != 0 && td->td_priority > pri && 838 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 839 sched_prio(td, pri); 840 841 /* 842 * Note that thread td might not be sleeping if it is running 843 * sleepq_catch_signals() on another CPU or is blocked on its 844 * proc lock to check signals. There's no need to mark the 845 * thread runnable in that case. 846 */ 847 if (TD_IS_SLEEPING(td)) { 848 TD_CLR_SLEEPING(td); 849 return (setrunnable(td)); 850 } 851 return (0); 852 } 853 854 #ifdef INVARIANTS 855 /* 856 * UMA zone item deallocator. 857 */ 858 static void 859 sleepq_dtor(void *mem, int size, void *arg) 860 { 861 struct sleepqueue *sq; 862 int i; 863 864 sq = mem; 865 for (i = 0; i < NR_SLEEPQS; i++) { 866 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 867 MPASS(sq->sq_blockedcnt[i] == 0); 868 } 869 } 870 #endif 871 872 /* 873 * UMA zone item initializer. 874 */ 875 static int 876 sleepq_init(void *mem, int size, int flags) 877 { 878 struct sleepqueue *sq; 879 int i; 880 881 bzero(mem, size); 882 sq = mem; 883 for (i = 0; i < NR_SLEEPQS; i++) { 884 TAILQ_INIT(&sq->sq_blocked[i]); 885 sq->sq_blockedcnt[i] = 0; 886 } 887 LIST_INIT(&sq->sq_free); 888 return (0); 889 } 890 891 /* 892 * Find the highest priority thread sleeping on a wait channel and resume it. 893 */ 894 int 895 sleepq_signal(void *wchan, int flags, int pri, int queue) 896 { 897 struct sleepqueue *sq; 898 struct thread *td, *besttd; 899 int wakeup_swapper; 900 901 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 902 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 903 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 904 sq = sleepq_lookup(wchan); 905 if (sq == NULL) 906 return (0); 907 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 908 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 909 910 /* 911 * Find the highest priority thread on the queue. If there is a 912 * tie, use the thread that first appears in the queue as it has 913 * been sleeping the longest since threads are always added to 914 * the tail of sleep queues. 915 */ 916 besttd = TAILQ_FIRST(&sq->sq_blocked[queue]); 917 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 918 if (td->td_priority < besttd->td_priority) 919 besttd = td; 920 } 921 MPASS(besttd != NULL); 922 thread_lock(besttd); 923 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 924 thread_unlock(besttd); 925 return (wakeup_swapper); 926 } 927 928 static bool 929 match_any(struct thread *td __unused) 930 { 931 932 return (true); 933 } 934 935 /* 936 * Resume all threads sleeping on a specified wait channel. 937 */ 938 int 939 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 940 { 941 struct sleepqueue *sq; 942 943 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 944 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 945 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 946 sq = sleepq_lookup(wchan); 947 if (sq == NULL) 948 return (0); 949 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 950 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 951 952 return (sleepq_remove_matching(sq, queue, match_any, pri)); 953 } 954 955 /* 956 * Resume threads on the sleep queue that match the given predicate. 957 */ 958 int 959 sleepq_remove_matching(struct sleepqueue *sq, int queue, 960 bool (*matches)(struct thread *), int pri) 961 { 962 struct thread *td, *tdn; 963 int wakeup_swapper; 964 965 /* 966 * The last thread will be given ownership of sq and may 967 * re-enqueue itself before sleepq_resume_thread() returns, 968 * so we must cache the "next" queue item at the beginning 969 * of the final iteration. 970 */ 971 wakeup_swapper = 0; 972 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 973 thread_lock(td); 974 if (matches(td)) 975 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 976 thread_unlock(td); 977 } 978 979 return (wakeup_swapper); 980 } 981 982 /* 983 * Time sleeping threads out. When the timeout expires, the thread is 984 * removed from the sleep queue and made runnable if it is still asleep. 985 */ 986 static void 987 sleepq_timeout(void *arg) 988 { 989 struct sleepqueue_chain *sc __unused; 990 struct sleepqueue *sq; 991 struct thread *td; 992 void *wchan; 993 int wakeup_swapper; 994 995 td = arg; 996 wakeup_swapper = 0; 997 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 998 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 999 1000 thread_lock(td); 1001 1002 if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) { 1003 /* 1004 * The thread does not want a timeout (yet). 1005 */ 1006 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 1007 /* 1008 * See if the thread is asleep and get the wait 1009 * channel if it is. 1010 */ 1011 wchan = td->td_wchan; 1012 sc = SC_LOOKUP(wchan); 1013 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 1014 sq = sleepq_lookup(wchan); 1015 MPASS(sq != NULL); 1016 td->td_flags |= TDF_TIMEOUT; 1017 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1018 } else if (TD_ON_SLEEPQ(td)) { 1019 /* 1020 * If the thread is on the SLEEPQ but isn't sleeping 1021 * yet, it can either be on another CPU in between 1022 * sleepq_add() and one of the sleepq_*wait*() 1023 * routines or it can be in sleepq_catch_signals(). 1024 */ 1025 td->td_flags |= TDF_TIMEOUT; 1026 } 1027 1028 thread_unlock(td); 1029 if (wakeup_swapper) 1030 kick_proc0(); 1031 } 1032 1033 /* 1034 * Resumes a specific thread from the sleep queue associated with a specific 1035 * wait channel if it is on that queue. 1036 */ 1037 void 1038 sleepq_remove(struct thread *td, void *wchan) 1039 { 1040 struct sleepqueue *sq; 1041 int wakeup_swapper; 1042 1043 /* 1044 * Look up the sleep queue for this wait channel, then re-check 1045 * that the thread is asleep on that channel, if it is not, then 1046 * bail. 1047 */ 1048 MPASS(wchan != NULL); 1049 sleepq_lock(wchan); 1050 sq = sleepq_lookup(wchan); 1051 /* 1052 * We can not lock the thread here as it may be sleeping on a 1053 * different sleepq. However, holding the sleepq lock for this 1054 * wchan can guarantee that we do not miss a wakeup for this 1055 * channel. The asserts below will catch any false positives. 1056 */ 1057 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 1058 sleepq_release(wchan); 1059 return; 1060 } 1061 /* Thread is asleep on sleep queue sq, so wake it up. */ 1062 thread_lock(td); 1063 MPASS(sq != NULL); 1064 MPASS(td->td_wchan == wchan); 1065 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1066 thread_unlock(td); 1067 sleepq_release(wchan); 1068 if (wakeup_swapper) 1069 kick_proc0(); 1070 } 1071 1072 /* 1073 * Abort a thread as if an interrupt had occurred. Only abort 1074 * interruptible waits (unfortunately it isn't safe to abort others). 1075 */ 1076 int 1077 sleepq_abort(struct thread *td, int intrval) 1078 { 1079 struct sleepqueue *sq; 1080 void *wchan; 1081 1082 THREAD_LOCK_ASSERT(td, MA_OWNED); 1083 MPASS(TD_ON_SLEEPQ(td)); 1084 MPASS(td->td_flags & TDF_SINTR); 1085 MPASS(intrval == EINTR || intrval == ERESTART); 1086 1087 /* 1088 * If the TDF_TIMEOUT flag is set, just leave. A 1089 * timeout is scheduled anyhow. 1090 */ 1091 if (td->td_flags & TDF_TIMEOUT) 1092 return (0); 1093 1094 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1095 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1096 td->td_intrval = intrval; 1097 td->td_flags |= TDF_SLEEPABORT; 1098 /* 1099 * If the thread has not slept yet it will find the signal in 1100 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1101 * we have to do it here. 1102 */ 1103 if (!TD_IS_SLEEPING(td)) 1104 return (0); 1105 wchan = td->td_wchan; 1106 MPASS(wchan != NULL); 1107 sq = sleepq_lookup(wchan); 1108 MPASS(sq != NULL); 1109 1110 /* Thread is asleep on sleep queue sq, so wake it up. */ 1111 return (sleepq_resume_thread(sq, td, 0)); 1112 } 1113 1114 void 1115 sleepq_chains_remove_matching(bool (*matches)(struct thread *)) 1116 { 1117 struct sleepqueue_chain *sc; 1118 struct sleepqueue *sq, *sq1; 1119 int i, wakeup_swapper; 1120 1121 wakeup_swapper = 0; 1122 for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) { 1123 if (LIST_EMPTY(&sc->sc_queues)) { 1124 continue; 1125 } 1126 mtx_lock_spin(&sc->sc_lock); 1127 LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) { 1128 for (i = 0; i < NR_SLEEPQS; ++i) { 1129 wakeup_swapper |= sleepq_remove_matching(sq, i, 1130 matches, 0); 1131 } 1132 } 1133 mtx_unlock_spin(&sc->sc_lock); 1134 } 1135 if (wakeup_swapper) { 1136 kick_proc0(); 1137 } 1138 } 1139 1140 /* 1141 * Prints the stacks of all threads presently sleeping on wchan/queue to 1142 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1143 * printed. Typically, this will equal the number of threads sleeping on the 1144 * queue, but may be less if sb overflowed before all stacks were printed. 1145 */ 1146 #ifdef STACK 1147 int 1148 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1149 int *count_stacks_printed) 1150 { 1151 struct thread *td, *td_next; 1152 struct sleepqueue *sq; 1153 struct stack **st; 1154 struct sbuf **td_infos; 1155 int i, stack_idx, error, stacks_to_allocate; 1156 bool finished; 1157 1158 error = 0; 1159 finished = false; 1160 1161 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1162 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1163 1164 stacks_to_allocate = 10; 1165 for (i = 0; i < 3 && !finished ; i++) { 1166 /* We cannot malloc while holding the queue's spinlock, so 1167 * we do our mallocs now, and hope it is enough. If it 1168 * isn't, we will free these, drop the lock, malloc more, 1169 * and try again, up to a point. After that point we will 1170 * give up and report ENOMEM. We also cannot write to sb 1171 * during this time since the client may have set the 1172 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1173 * malloc as we print to it. So we defer actually printing 1174 * to sb until after we drop the spinlock. 1175 */ 1176 1177 /* Where we will store the stacks. */ 1178 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1179 M_TEMP, M_WAITOK); 1180 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1181 stack_idx++) 1182 st[stack_idx] = stack_create(M_WAITOK); 1183 1184 /* Where we will store the td name, tid, etc. */ 1185 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1186 M_TEMP, M_WAITOK); 1187 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1188 stack_idx++) 1189 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1190 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1191 SBUF_FIXEDLEN); 1192 1193 sleepq_lock(wchan); 1194 sq = sleepq_lookup(wchan); 1195 if (sq == NULL) { 1196 /* This sleepq does not exist; exit and return ENOENT. */ 1197 error = ENOENT; 1198 finished = true; 1199 sleepq_release(wchan); 1200 goto loop_end; 1201 } 1202 1203 stack_idx = 0; 1204 /* Save thread info */ 1205 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1206 td_next) { 1207 if (stack_idx >= stacks_to_allocate) 1208 goto loop_end; 1209 1210 /* Note the td_lock is equal to the sleepq_lock here. */ 1211 stack_save_td(st[stack_idx], td); 1212 1213 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1214 td->td_tid, td->td_name, td); 1215 1216 ++stack_idx; 1217 } 1218 1219 finished = true; 1220 sleepq_release(wchan); 1221 1222 /* Print the stacks */ 1223 for (i = 0; i < stack_idx; i++) { 1224 sbuf_finish(td_infos[i]); 1225 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1226 stack_sbuf_print(sb, st[i]); 1227 sbuf_printf(sb, "\n"); 1228 1229 error = sbuf_error(sb); 1230 if (error == 0) 1231 *count_stacks_printed = stack_idx; 1232 } 1233 1234 loop_end: 1235 if (!finished) 1236 sleepq_release(wchan); 1237 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1238 stack_idx++) 1239 stack_destroy(st[stack_idx]); 1240 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1241 stack_idx++) 1242 sbuf_delete(td_infos[stack_idx]); 1243 free(st, M_TEMP); 1244 free(td_infos, M_TEMP); 1245 stacks_to_allocate *= 10; 1246 } 1247 1248 if (!finished && error == 0) 1249 error = ENOMEM; 1250 1251 return (error); 1252 } 1253 #endif 1254 1255 #ifdef SLEEPQUEUE_PROFILING 1256 #define SLEEPQ_PROF_LOCATIONS 1024 1257 #define SLEEPQ_SBUFSIZE 512 1258 struct sleepq_prof { 1259 LIST_ENTRY(sleepq_prof) sp_link; 1260 const char *sp_wmesg; 1261 long sp_count; 1262 }; 1263 1264 LIST_HEAD(sqphead, sleepq_prof); 1265 1266 struct sqphead sleepq_prof_free; 1267 struct sqphead sleepq_hash[SC_TABLESIZE]; 1268 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1269 static struct mtx sleepq_prof_lock; 1270 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1271 1272 static void 1273 sleepq_profile(const char *wmesg) 1274 { 1275 struct sleepq_prof *sp; 1276 1277 mtx_lock_spin(&sleepq_prof_lock); 1278 if (prof_enabled == 0) 1279 goto unlock; 1280 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1281 if (sp->sp_wmesg == wmesg) 1282 goto done; 1283 sp = LIST_FIRST(&sleepq_prof_free); 1284 if (sp == NULL) 1285 goto unlock; 1286 sp->sp_wmesg = wmesg; 1287 LIST_REMOVE(sp, sp_link); 1288 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1289 done: 1290 sp->sp_count++; 1291 unlock: 1292 mtx_unlock_spin(&sleepq_prof_lock); 1293 return; 1294 } 1295 1296 static void 1297 sleepq_prof_reset(void) 1298 { 1299 struct sleepq_prof *sp; 1300 int enabled; 1301 int i; 1302 1303 mtx_lock_spin(&sleepq_prof_lock); 1304 enabled = prof_enabled; 1305 prof_enabled = 0; 1306 for (i = 0; i < SC_TABLESIZE; i++) 1307 LIST_INIT(&sleepq_hash[i]); 1308 LIST_INIT(&sleepq_prof_free); 1309 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1310 sp = &sleepq_profent[i]; 1311 sp->sp_wmesg = NULL; 1312 sp->sp_count = 0; 1313 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1314 } 1315 prof_enabled = enabled; 1316 mtx_unlock_spin(&sleepq_prof_lock); 1317 } 1318 1319 static int 1320 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1321 { 1322 int error, v; 1323 1324 v = prof_enabled; 1325 error = sysctl_handle_int(oidp, &v, v, req); 1326 if (error) 1327 return (error); 1328 if (req->newptr == NULL) 1329 return (error); 1330 if (v == prof_enabled) 1331 return (0); 1332 if (v == 1) 1333 sleepq_prof_reset(); 1334 mtx_lock_spin(&sleepq_prof_lock); 1335 prof_enabled = !!v; 1336 mtx_unlock_spin(&sleepq_prof_lock); 1337 1338 return (0); 1339 } 1340 1341 static int 1342 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1343 { 1344 int error, v; 1345 1346 v = 0; 1347 error = sysctl_handle_int(oidp, &v, 0, req); 1348 if (error) 1349 return (error); 1350 if (req->newptr == NULL) 1351 return (error); 1352 if (v == 0) 1353 return (0); 1354 sleepq_prof_reset(); 1355 1356 return (0); 1357 } 1358 1359 static int 1360 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1361 { 1362 struct sleepq_prof *sp; 1363 struct sbuf *sb; 1364 int enabled; 1365 int error; 1366 int i; 1367 1368 error = sysctl_wire_old_buffer(req, 0); 1369 if (error != 0) 1370 return (error); 1371 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1372 sbuf_printf(sb, "\nwmesg\tcount\n"); 1373 enabled = prof_enabled; 1374 mtx_lock_spin(&sleepq_prof_lock); 1375 prof_enabled = 0; 1376 mtx_unlock_spin(&sleepq_prof_lock); 1377 for (i = 0; i < SC_TABLESIZE; i++) { 1378 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1379 sbuf_printf(sb, "%s\t%ld\n", 1380 sp->sp_wmesg, sp->sp_count); 1381 } 1382 } 1383 mtx_lock_spin(&sleepq_prof_lock); 1384 prof_enabled = enabled; 1385 mtx_unlock_spin(&sleepq_prof_lock); 1386 1387 error = sbuf_finish(sb); 1388 sbuf_delete(sb); 1389 return (error); 1390 } 1391 1392 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1393 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1394 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1395 NULL, 0, reset_sleepq_prof_stats, "I", 1396 "Reset sleepqueue profiling statistics"); 1397 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1398 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1399 #endif 1400 1401 #ifdef DDB 1402 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1403 { 1404 struct sleepqueue_chain *sc; 1405 struct sleepqueue *sq; 1406 #ifdef INVARIANTS 1407 struct lock_object *lock; 1408 #endif 1409 struct thread *td; 1410 void *wchan; 1411 int i; 1412 1413 if (!have_addr) 1414 return; 1415 1416 /* 1417 * First, see if there is an active sleep queue for the wait channel 1418 * indicated by the address. 1419 */ 1420 wchan = (void *)addr; 1421 sc = SC_LOOKUP(wchan); 1422 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1423 if (sq->sq_wchan == wchan) 1424 goto found; 1425 1426 /* 1427 * Second, see if there is an active sleep queue at the address 1428 * indicated. 1429 */ 1430 for (i = 0; i < SC_TABLESIZE; i++) 1431 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1432 if (sq == (struct sleepqueue *)addr) 1433 goto found; 1434 } 1435 1436 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1437 return; 1438 found: 1439 db_printf("Wait channel: %p\n", sq->sq_wchan); 1440 db_printf("Queue type: %d\n", sq->sq_type); 1441 #ifdef INVARIANTS 1442 if (sq->sq_lock) { 1443 lock = sq->sq_lock; 1444 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1445 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1446 } 1447 #endif 1448 db_printf("Blocked threads:\n"); 1449 for (i = 0; i < NR_SLEEPQS; i++) { 1450 db_printf("\nQueue[%d]:\n", i); 1451 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1452 db_printf("\tempty\n"); 1453 else 1454 TAILQ_FOREACH(td, &sq->sq_blocked[i], 1455 td_slpq) { 1456 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1457 td->td_tid, td->td_proc->p_pid, 1458 td->td_name); 1459 } 1460 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1461 } 1462 } 1463 1464 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1465 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1466 #endif 1467