xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * Implementation of sleep queues used to hold queue of threads blocked on
30  * a wait channel.  Sleep queues are different from turnstiles in that wait
31  * channels are not owned by anyone, so there is no priority propagation.
32  * Sleep queues can also provide a timeout and can also be interrupted by
33  * signals.  That said, there are several similarities between the turnstile
34  * and sleep queue implementations.  (Note: turnstiles were implemented
35  * first.)  For example, both use a hash table of the same size where each
36  * bucket is referred to as a "chain" that contains both a spin lock and
37  * a linked list of queues.  An individual queue is located by using a hash
38  * to pick a chain, locking the chain, and then walking the chain searching
39  * for the queue.  This means that a wait channel object does not need to
40  * embed its queue head just as locks do not embed their turnstile queue
41  * head.  Threads also carry around a sleep queue that they lend to the
42  * wait channel when blocking.  Just as in turnstiles, the queue includes
43  * a free list of the sleep queues of other threads blocked on the same
44  * wait channel in the case of multiple waiters.
45  *
46  * Some additional functionality provided by sleep queues include the
47  * ability to set a timeout.  The timeout is managed using a per-thread
48  * callout that resumes a thread if it is asleep.  A thread may also
49  * catch signals while it is asleep (aka an interruptible sleep).  The
50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51  * sleep queues also provide some extra assertions.  One is not allowed to
52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53  * must consistently use the same lock to synchronize with a wait channel,
54  * though this check is currently only a warning for sleep/wakeup due to
55  * pre-existing abuse of that API.  The same lock must also be held when
56  * awakening threads, though that is currently only enforced for condition
57  * variables.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_sleepqueue_profiling.h"
64 #include "opt_ddb.h"
65 #include "opt_sched.h"
66 #include "opt_stack.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sdt.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/stack.h>
81 #include <sys/sysctl.h>
82 #include <sys/time.h>
83 
84 #include <machine/atomic.h>
85 
86 #include <vm/uma.h>
87 
88 #ifdef DDB
89 #include <ddb/ddb.h>
90 #endif
91 
92 
93 /*
94  * Constants for the hash table of sleep queue chains.
95  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96  */
97 #ifndef SC_TABLESIZE
98 #define	SC_TABLESIZE	256
99 #endif
100 CTASSERT(powerof2(SC_TABLESIZE));
101 #define	SC_MASK		(SC_TABLESIZE - 1)
102 #define	SC_SHIFT	8
103 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
104 			    SC_MASK)
105 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
106 #define NR_SLEEPQS      2
107 /*
108  * There are two different lists of sleep queues.  Both lists are connected
109  * via the sq_hash entries.  The first list is the sleep queue chain list
110  * that a sleep queue is on when it is attached to a wait channel.  The
111  * second list is the free list hung off of a sleep queue that is attached
112  * to a wait channel.
113  *
114  * Each sleep queue also contains the wait channel it is attached to, the
115  * list of threads blocked on that wait channel, flags specific to the
116  * wait channel, and the lock used to synchronize with a wait channel.
117  * The flags are used to catch mismatches between the various consumers
118  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
119  * The lock pointer is only used when invariants are enabled for various
120  * debugging checks.
121  *
122  * Locking key:
123  *  c - sleep queue chain lock
124  */
125 struct sleepqueue {
126 	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
127 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
128 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
129 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
130 	void	*sq_wchan;			/* (c) Wait channel. */
131 	int	sq_type;			/* (c) Queue type. */
132 #ifdef INVARIANTS
133 	struct lock_object *sq_lock;		/* (c) Associated lock. */
134 #endif
135 };
136 
137 struct sleepqueue_chain {
138 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
139 	struct mtx sc_lock;			/* Spin lock for this chain. */
140 #ifdef SLEEPQUEUE_PROFILING
141 	u_int	sc_depth;			/* Length of sc_queues. */
142 	u_int	sc_max_depth;			/* Max length of sc_queues. */
143 #endif
144 } __aligned(CACHE_LINE_SIZE);
145 
146 #ifdef SLEEPQUEUE_PROFILING
147 u_int sleepq_max_depth;
148 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
149 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
150     "sleepq chain stats");
151 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
152     0, "maxmimum depth achieved of a single chain");
153 
154 static void	sleepq_profile(const char *wmesg);
155 static int	prof_enabled;
156 #endif
157 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
158 static uma_zone_t sleepq_zone;
159 
160 /*
161  * Prototypes for non-exported routines.
162  */
163 static int	sleepq_catch_signals(void *wchan, int pri);
164 static int	sleepq_check_signals(void);
165 static int	sleepq_check_timeout(void);
166 #ifdef INVARIANTS
167 static void	sleepq_dtor(void *mem, int size, void *arg);
168 #endif
169 static int	sleepq_init(void *mem, int size, int flags);
170 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
171 		    int pri);
172 static void	sleepq_switch(void *wchan, int pri);
173 static void	sleepq_timeout(void *arg);
174 
175 SDT_PROBE_DECLARE(sched, , , sleep);
176 SDT_PROBE_DECLARE(sched, , , wakeup);
177 
178 /*
179  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
180  * Note that it must happen after sleepinit() has been fully executed, so
181  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
182  */
183 #ifdef SLEEPQUEUE_PROFILING
184 static void
185 init_sleepqueue_profiling(void)
186 {
187 	char chain_name[10];
188 	struct sysctl_oid *chain_oid;
189 	u_int i;
190 
191 	for (i = 0; i < SC_TABLESIZE; i++) {
192 		snprintf(chain_name, sizeof(chain_name), "%u", i);
193 		chain_oid = SYSCTL_ADD_NODE(NULL,
194 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
195 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
196 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
197 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
198 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
199 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
200 		    NULL);
201 	}
202 }
203 
204 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
205     init_sleepqueue_profiling, NULL);
206 #endif
207 
208 /*
209  * Early initialization of sleep queues that is called from the sleepinit()
210  * SYSINIT.
211  */
212 void
213 init_sleepqueues(void)
214 {
215 	int i;
216 
217 	for (i = 0; i < SC_TABLESIZE; i++) {
218 		LIST_INIT(&sleepq_chains[i].sc_queues);
219 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
220 		    MTX_SPIN | MTX_RECURSE);
221 	}
222 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
223 #ifdef INVARIANTS
224 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
225 #else
226 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
227 #endif
228 
229 	thread0.td_sleepqueue = sleepq_alloc();
230 }
231 
232 /*
233  * Get a sleep queue for a new thread.
234  */
235 struct sleepqueue *
236 sleepq_alloc(void)
237 {
238 
239 	return (uma_zalloc(sleepq_zone, M_WAITOK));
240 }
241 
242 /*
243  * Free a sleep queue when a thread is destroyed.
244  */
245 void
246 sleepq_free(struct sleepqueue *sq)
247 {
248 
249 	uma_zfree(sleepq_zone, sq);
250 }
251 
252 /*
253  * Lock the sleep queue chain associated with the specified wait channel.
254  */
255 void
256 sleepq_lock(void *wchan)
257 {
258 	struct sleepqueue_chain *sc;
259 
260 	sc = SC_LOOKUP(wchan);
261 	mtx_lock_spin(&sc->sc_lock);
262 }
263 
264 /*
265  * Look up the sleep queue associated with a given wait channel in the hash
266  * table locking the associated sleep queue chain.  If no queue is found in
267  * the table, NULL is returned.
268  */
269 struct sleepqueue *
270 sleepq_lookup(void *wchan)
271 {
272 	struct sleepqueue_chain *sc;
273 	struct sleepqueue *sq;
274 
275 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
276 	sc = SC_LOOKUP(wchan);
277 	mtx_assert(&sc->sc_lock, MA_OWNED);
278 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
279 		if (sq->sq_wchan == wchan)
280 			return (sq);
281 	return (NULL);
282 }
283 
284 /*
285  * Unlock the sleep queue chain associated with a given wait channel.
286  */
287 void
288 sleepq_release(void *wchan)
289 {
290 	struct sleepqueue_chain *sc;
291 
292 	sc = SC_LOOKUP(wchan);
293 	mtx_unlock_spin(&sc->sc_lock);
294 }
295 
296 /*
297  * Places the current thread on the sleep queue for the specified wait
298  * channel.  If INVARIANTS is enabled, then it associates the passed in
299  * lock with the sleepq to make sure it is held when that sleep queue is
300  * woken up.
301  */
302 void
303 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
304     int queue)
305 {
306 	struct sleepqueue_chain *sc;
307 	struct sleepqueue *sq;
308 	struct thread *td;
309 
310 	td = curthread;
311 	sc = SC_LOOKUP(wchan);
312 	mtx_assert(&sc->sc_lock, MA_OWNED);
313 	MPASS(td->td_sleepqueue != NULL);
314 	MPASS(wchan != NULL);
315 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
316 
317 	/* If this thread is not allowed to sleep, die a horrible death. */
318 	KASSERT(td->td_no_sleeping == 0,
319 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
320 	    __func__, td, wchan));
321 
322 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
323 	sq = sleepq_lookup(wchan);
324 
325 	/*
326 	 * If the wait channel does not already have a sleep queue, use
327 	 * this thread's sleep queue.  Otherwise, insert the current thread
328 	 * into the sleep queue already in use by this wait channel.
329 	 */
330 	if (sq == NULL) {
331 #ifdef INVARIANTS
332 		int i;
333 
334 		sq = td->td_sleepqueue;
335 		for (i = 0; i < NR_SLEEPQS; i++) {
336 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
337 			    ("thread's sleep queue %d is not empty", i));
338 			KASSERT(sq->sq_blockedcnt[i] == 0,
339 			    ("thread's sleep queue %d count mismatches", i));
340 		}
341 		KASSERT(LIST_EMPTY(&sq->sq_free),
342 		    ("thread's sleep queue has a non-empty free list"));
343 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
344 		sq->sq_lock = lock;
345 #endif
346 #ifdef SLEEPQUEUE_PROFILING
347 		sc->sc_depth++;
348 		if (sc->sc_depth > sc->sc_max_depth) {
349 			sc->sc_max_depth = sc->sc_depth;
350 			if (sc->sc_max_depth > sleepq_max_depth)
351 				sleepq_max_depth = sc->sc_max_depth;
352 		}
353 #endif
354 		sq = td->td_sleepqueue;
355 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
356 		sq->sq_wchan = wchan;
357 		sq->sq_type = flags & SLEEPQ_TYPE;
358 	} else {
359 		MPASS(wchan == sq->sq_wchan);
360 		MPASS(lock == sq->sq_lock);
361 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
362 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
363 	}
364 	thread_lock(td);
365 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
366 	sq->sq_blockedcnt[queue]++;
367 	td->td_sleepqueue = NULL;
368 	td->td_sqqueue = queue;
369 	td->td_wchan = wchan;
370 	td->td_wmesg = wmesg;
371 	if (flags & SLEEPQ_INTERRUPTIBLE) {
372 		td->td_flags |= TDF_SINTR;
373 		td->td_flags &= ~TDF_SLEEPABORT;
374 	}
375 	thread_unlock(td);
376 }
377 
378 /*
379  * Sets a timeout that will remove the current thread from the specified
380  * sleep queue after timo ticks if the thread has not already been awakened.
381  */
382 void
383 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
384     int flags)
385 {
386 	struct sleepqueue_chain *sc __unused;
387 	struct thread *td;
388 	sbintime_t pr1;
389 
390 	td = curthread;
391 	sc = SC_LOOKUP(wchan);
392 	mtx_assert(&sc->sc_lock, MA_OWNED);
393 	MPASS(TD_ON_SLEEPQ(td));
394 	MPASS(td->td_sleepqueue == NULL);
395 	MPASS(wchan != NULL);
396 	if (cold && td == &thread0)
397 		panic("timed sleep before timers are working");
398 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
399 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
400 	thread_lock(td);
401 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
402 	thread_unlock(td);
403 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
404 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
405 	    C_DIRECT_EXEC);
406 }
407 
408 /*
409  * Return the number of actual sleepers for the specified queue.
410  */
411 u_int
412 sleepq_sleepcnt(void *wchan, int queue)
413 {
414 	struct sleepqueue *sq;
415 
416 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
417 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
418 	sq = sleepq_lookup(wchan);
419 	if (sq == NULL)
420 		return (0);
421 	return (sq->sq_blockedcnt[queue]);
422 }
423 
424 /*
425  * Marks the pending sleep of the current thread as interruptible and
426  * makes an initial check for pending signals before putting a thread
427  * to sleep. Enters and exits with the thread lock held.  Thread lock
428  * may have transitioned from the sleepq lock to a run lock.
429  */
430 static int
431 sleepq_catch_signals(void *wchan, int pri)
432 {
433 	struct sleepqueue_chain *sc;
434 	struct sleepqueue *sq;
435 	struct thread *td;
436 	struct proc *p;
437 	struct sigacts *ps;
438 	int sig, ret;
439 
440 	ret = 0;
441 	td = curthread;
442 	p = curproc;
443 	sc = SC_LOOKUP(wchan);
444 	mtx_assert(&sc->sc_lock, MA_OWNED);
445 	MPASS(wchan != NULL);
446 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
447 		td->td_pflags &= ~TDP_WAKEUP;
448 		ret = EINTR;
449 		thread_lock(td);
450 		goto out;
451 	}
452 
453 	/*
454 	 * See if there are any pending signals or suspension requests for this
455 	 * thread.  If not, we can switch immediately.
456 	 */
457 	thread_lock(td);
458 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) {
459 		thread_unlock(td);
460 		mtx_unlock_spin(&sc->sc_lock);
461 		CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
462 			(void *)td, (long)p->p_pid, td->td_name);
463 		PROC_LOCK(p);
464 		/*
465 		 * Check for suspension first. Checking for signals and then
466 		 * suspending could result in a missed signal, since a signal
467 		 * can be delivered while this thread is suspended.
468 		 */
469 		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
470 			ret = thread_suspend_check(1);
471 			MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
472 			if (ret != 0) {
473 				PROC_UNLOCK(p);
474 				mtx_lock_spin(&sc->sc_lock);
475 				thread_lock(td);
476 				goto out;
477 			}
478 		}
479 		if ((td->td_flags & TDF_NEEDSIGCHK) != 0) {
480 			ps = p->p_sigacts;
481 			mtx_lock(&ps->ps_mtx);
482 			sig = cursig(td);
483 			if (sig == -1) {
484 				mtx_unlock(&ps->ps_mtx);
485 				KASSERT((td->td_flags & TDF_SBDRY) != 0,
486 				    ("lost TDF_SBDRY"));
487 				KASSERT(TD_SBDRY_INTR(td),
488 				    ("lost TDF_SERESTART of TDF_SEINTR"));
489 				KASSERT((td->td_flags &
490 				    (TDF_SEINTR | TDF_SERESTART)) !=
491 				    (TDF_SEINTR | TDF_SERESTART),
492 				    ("both TDF_SEINTR and TDF_SERESTART"));
493 				ret = TD_SBDRY_ERRNO(td);
494 			} else if (sig != 0) {
495 				ret = SIGISMEMBER(ps->ps_sigintr, sig) ?
496 				    EINTR : ERESTART;
497 				mtx_unlock(&ps->ps_mtx);
498 			} else {
499 				mtx_unlock(&ps->ps_mtx);
500 			}
501 
502 			/*
503 			 * Do not go into sleep if this thread was the
504 			 * ptrace(2) attach leader.  cursig() consumed
505 			 * SIGSTOP from PT_ATTACH, but we usually act
506 			 * on the signal by interrupting sleep, and
507 			 * should do that here as well.
508 			 */
509 			if ((td->td_dbgflags & TDB_FSTP) != 0) {
510 				if (ret == 0)
511 					ret = EINTR;
512 				td->td_dbgflags &= ~TDB_FSTP;
513 			}
514 		}
515 		/*
516 		 * Lock the per-process spinlock prior to dropping the PROC_LOCK
517 		 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
518 		 * thread_lock() are currently held in tdsendsignal().
519 		 */
520 		PROC_SLOCK(p);
521 		mtx_lock_spin(&sc->sc_lock);
522 		PROC_UNLOCK(p);
523 		thread_lock(td);
524 		PROC_SUNLOCK(p);
525 	}
526 	if (ret == 0) {
527 		sleepq_switch(wchan, pri);
528 		return (0);
529 	}
530 out:
531 	/*
532 	 * There were pending signals and this thread is still
533 	 * on the sleep queue, remove it from the sleep queue.
534 	 */
535 	if (TD_ON_SLEEPQ(td)) {
536 		sq = sleepq_lookup(wchan);
537 		if (sleepq_resume_thread(sq, td, 0)) {
538 #ifdef INVARIANTS
539 			/*
540 			 * This thread hasn't gone to sleep yet, so it
541 			 * should not be swapped out.
542 			 */
543 			panic("not waking up swapper");
544 #endif
545 		}
546 	}
547 	mtx_unlock_spin(&sc->sc_lock);
548 	MPASS(td->td_lock != &sc->sc_lock);
549 	return (ret);
550 }
551 
552 /*
553  * Switches to another thread if we are still asleep on a sleep queue.
554  * Returns with thread lock.
555  */
556 static void
557 sleepq_switch(void *wchan, int pri)
558 {
559 	struct sleepqueue_chain *sc;
560 	struct sleepqueue *sq;
561 	struct thread *td;
562 	bool rtc_changed;
563 
564 	td = curthread;
565 	sc = SC_LOOKUP(wchan);
566 	mtx_assert(&sc->sc_lock, MA_OWNED);
567 	THREAD_LOCK_ASSERT(td, MA_OWNED);
568 
569 	/*
570 	 * If we have a sleep queue, then we've already been woken up, so
571 	 * just return.
572 	 */
573 	if (td->td_sleepqueue != NULL) {
574 		mtx_unlock_spin(&sc->sc_lock);
575 		return;
576 	}
577 
578 	/*
579 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
580 	 * already but we are still on the sleep queue, so dequeue the
581 	 * thread and return.
582 	 *
583 	 * Do the same if the real-time clock has been adjusted since this
584 	 * thread calculated its timeout based on that clock.  This handles
585 	 * the following race:
586 	 * - The Ts thread needs to sleep until an absolute real-clock time.
587 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
588 	 *   reads the RTC, and calculates a sleep duration based on that time.
589 	 *   See umtxq_sleep() for an example.
590 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
591 	 *   threads that are sleeping until an absolute real-clock time.
592 	 *   See tc_setclock() and the POSIX specification of clock_settime().
593 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
594 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
595 	 * (The declaration of td_rtcgen refers to this comment.)
596 	 */
597 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
598 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
599 		if (rtc_changed) {
600 			td->td_rtcgen = 0;
601 		}
602 		MPASS(TD_ON_SLEEPQ(td));
603 		sq = sleepq_lookup(wchan);
604 		if (sleepq_resume_thread(sq, td, 0)) {
605 #ifdef INVARIANTS
606 			/*
607 			 * This thread hasn't gone to sleep yet, so it
608 			 * should not be swapped out.
609 			 */
610 			panic("not waking up swapper");
611 #endif
612 		}
613 		mtx_unlock_spin(&sc->sc_lock);
614 		return;
615 	}
616 #ifdef SLEEPQUEUE_PROFILING
617 	if (prof_enabled)
618 		sleepq_profile(td->td_wmesg);
619 #endif
620 	MPASS(td->td_sleepqueue == NULL);
621 	sched_sleep(td, pri);
622 	thread_lock_set(td, &sc->sc_lock);
623 	SDT_PROBE0(sched, , , sleep);
624 	TD_SET_SLEEPING(td);
625 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
626 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
627 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
628 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
629 }
630 
631 /*
632  * Check to see if we timed out.
633  */
634 static int
635 sleepq_check_timeout(void)
636 {
637 	struct thread *td;
638 	int res;
639 
640 	td = curthread;
641 	THREAD_LOCK_ASSERT(td, MA_OWNED);
642 
643 	/*
644 	 * If TDF_TIMEOUT is set, we timed out.  But recheck
645 	 * td_sleeptimo anyway.
646 	 */
647 	res = 0;
648 	if (td->td_sleeptimo != 0) {
649 		if (td->td_sleeptimo <= sbinuptime())
650 			res = EWOULDBLOCK;
651 		td->td_sleeptimo = 0;
652 	}
653 	if (td->td_flags & TDF_TIMEOUT)
654 		td->td_flags &= ~TDF_TIMEOUT;
655 	else
656 		/*
657 		 * We ignore the situation where timeout subsystem was
658 		 * unable to stop our callout.  The struct thread is
659 		 * type-stable, the callout will use the correct
660 		 * memory when running.  The checks of the
661 		 * td_sleeptimo value in this function and in
662 		 * sleepq_timeout() ensure that the thread does not
663 		 * get spurious wakeups, even if the callout was reset
664 		 * or thread reused.
665 		 */
666 		callout_stop(&td->td_slpcallout);
667 	return (res);
668 }
669 
670 /*
671  * Check to see if we were awoken by a signal.
672  */
673 static int
674 sleepq_check_signals(void)
675 {
676 	struct thread *td;
677 
678 	td = curthread;
679 	THREAD_LOCK_ASSERT(td, MA_OWNED);
680 
681 	/* We are no longer in an interruptible sleep. */
682 	if (td->td_flags & TDF_SINTR)
683 		td->td_flags &= ~TDF_SINTR;
684 
685 	if (td->td_flags & TDF_SLEEPABORT) {
686 		td->td_flags &= ~TDF_SLEEPABORT;
687 		return (td->td_intrval);
688 	}
689 
690 	return (0);
691 }
692 
693 /*
694  * Block the current thread until it is awakened from its sleep queue.
695  */
696 void
697 sleepq_wait(void *wchan, int pri)
698 {
699 	struct thread *td;
700 
701 	td = curthread;
702 	MPASS(!(td->td_flags & TDF_SINTR));
703 	thread_lock(td);
704 	sleepq_switch(wchan, pri);
705 	thread_unlock(td);
706 }
707 
708 /*
709  * Block the current thread until it is awakened from its sleep queue
710  * or it is interrupted by a signal.
711  */
712 int
713 sleepq_wait_sig(void *wchan, int pri)
714 {
715 	int rcatch;
716 	int rval;
717 
718 	rcatch = sleepq_catch_signals(wchan, pri);
719 	rval = sleepq_check_signals();
720 	thread_unlock(curthread);
721 	if (rcatch)
722 		return (rcatch);
723 	return (rval);
724 }
725 
726 /*
727  * Block the current thread until it is awakened from its sleep queue
728  * or it times out while waiting.
729  */
730 int
731 sleepq_timedwait(void *wchan, int pri)
732 {
733 	struct thread *td;
734 	int rval;
735 
736 	td = curthread;
737 	MPASS(!(td->td_flags & TDF_SINTR));
738 	thread_lock(td);
739 	sleepq_switch(wchan, pri);
740 	rval = sleepq_check_timeout();
741 	thread_unlock(td);
742 
743 	return (rval);
744 }
745 
746 /*
747  * Block the current thread until it is awakened from its sleep queue,
748  * it is interrupted by a signal, or it times out waiting to be awakened.
749  */
750 int
751 sleepq_timedwait_sig(void *wchan, int pri)
752 {
753 	int rcatch, rvalt, rvals;
754 
755 	rcatch = sleepq_catch_signals(wchan, pri);
756 	rvalt = sleepq_check_timeout();
757 	rvals = sleepq_check_signals();
758 	thread_unlock(curthread);
759 	if (rcatch)
760 		return (rcatch);
761 	if (rvals)
762 		return (rvals);
763 	return (rvalt);
764 }
765 
766 /*
767  * Returns the type of sleepqueue given a waitchannel.
768  */
769 int
770 sleepq_type(void *wchan)
771 {
772 	struct sleepqueue *sq;
773 	int type;
774 
775 	MPASS(wchan != NULL);
776 
777 	sleepq_lock(wchan);
778 	sq = sleepq_lookup(wchan);
779 	if (sq == NULL) {
780 		sleepq_release(wchan);
781 		return (-1);
782 	}
783 	type = sq->sq_type;
784 	sleepq_release(wchan);
785 	return (type);
786 }
787 
788 /*
789  * Removes a thread from a sleep queue and makes it
790  * runnable.
791  */
792 static int
793 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
794 {
795 	struct sleepqueue_chain *sc __unused;
796 
797 	MPASS(td != NULL);
798 	MPASS(sq->sq_wchan != NULL);
799 	MPASS(td->td_wchan == sq->sq_wchan);
800 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
801 	THREAD_LOCK_ASSERT(td, MA_OWNED);
802 	sc = SC_LOOKUP(sq->sq_wchan);
803 	mtx_assert(&sc->sc_lock, MA_OWNED);
804 
805 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
806 
807 	/* Remove the thread from the queue. */
808 	sq->sq_blockedcnt[td->td_sqqueue]--;
809 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
810 
811 	/*
812 	 * Get a sleep queue for this thread.  If this is the last waiter,
813 	 * use the queue itself and take it out of the chain, otherwise,
814 	 * remove a queue from the free list.
815 	 */
816 	if (LIST_EMPTY(&sq->sq_free)) {
817 		td->td_sleepqueue = sq;
818 #ifdef INVARIANTS
819 		sq->sq_wchan = NULL;
820 #endif
821 #ifdef SLEEPQUEUE_PROFILING
822 		sc->sc_depth--;
823 #endif
824 	} else
825 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
826 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
827 
828 	td->td_wmesg = NULL;
829 	td->td_wchan = NULL;
830 	td->td_flags &= ~TDF_SINTR;
831 
832 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
833 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
834 
835 	/* Adjust priority if requested. */
836 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
837 	if (pri != 0 && td->td_priority > pri &&
838 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
839 		sched_prio(td, pri);
840 
841 	/*
842 	 * Note that thread td might not be sleeping if it is running
843 	 * sleepq_catch_signals() on another CPU or is blocked on its
844 	 * proc lock to check signals.  There's no need to mark the
845 	 * thread runnable in that case.
846 	 */
847 	if (TD_IS_SLEEPING(td)) {
848 		TD_CLR_SLEEPING(td);
849 		return (setrunnable(td));
850 	}
851 	return (0);
852 }
853 
854 #ifdef INVARIANTS
855 /*
856  * UMA zone item deallocator.
857  */
858 static void
859 sleepq_dtor(void *mem, int size, void *arg)
860 {
861 	struct sleepqueue *sq;
862 	int i;
863 
864 	sq = mem;
865 	for (i = 0; i < NR_SLEEPQS; i++) {
866 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
867 		MPASS(sq->sq_blockedcnt[i] == 0);
868 	}
869 }
870 #endif
871 
872 /*
873  * UMA zone item initializer.
874  */
875 static int
876 sleepq_init(void *mem, int size, int flags)
877 {
878 	struct sleepqueue *sq;
879 	int i;
880 
881 	bzero(mem, size);
882 	sq = mem;
883 	for (i = 0; i < NR_SLEEPQS; i++) {
884 		TAILQ_INIT(&sq->sq_blocked[i]);
885 		sq->sq_blockedcnt[i] = 0;
886 	}
887 	LIST_INIT(&sq->sq_free);
888 	return (0);
889 }
890 
891 /*
892  * Find thread sleeping on a wait channel and resume it.
893  */
894 int
895 sleepq_signal(void *wchan, int flags, int pri, int queue)
896 {
897 	struct sleepqueue_chain *sc;
898 	struct sleepqueue *sq;
899 	struct threadqueue *head;
900 	struct thread *td, *besttd;
901 	int wakeup_swapper;
902 
903 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
904 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
905 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
906 	sq = sleepq_lookup(wchan);
907 	if (sq == NULL)
908 		return (0);
909 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
910 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
911 
912 	head = &sq->sq_blocked[queue];
913 	if (flags & SLEEPQ_UNFAIR) {
914 		/*
915 		 * Find the most recently sleeping thread, but try to
916 		 * skip threads still in process of context switch to
917 		 * avoid spinning on the thread lock.
918 		 */
919 		sc = SC_LOOKUP(wchan);
920 		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
921 		while (besttd->td_lock != &sc->sc_lock) {
922 			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
923 			if (td == NULL)
924 				break;
925 			besttd = td;
926 		}
927 	} else {
928 		/*
929 		 * Find the highest priority thread on the queue.  If there
930 		 * is a tie, use the thread that first appears in the queue
931 		 * as it has been sleeping the longest since threads are
932 		 * always added to the tail of sleep queues.
933 		 */
934 		besttd = td = TAILQ_FIRST(head);
935 		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
936 			if (td->td_priority < besttd->td_priority)
937 				besttd = td;
938 		}
939 	}
940 	MPASS(besttd != NULL);
941 	thread_lock(besttd);
942 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
943 	thread_unlock(besttd);
944 	return (wakeup_swapper);
945 }
946 
947 static bool
948 match_any(struct thread *td __unused)
949 {
950 
951 	return (true);
952 }
953 
954 /*
955  * Resume all threads sleeping on a specified wait channel.
956  */
957 int
958 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
959 {
960 	struct sleepqueue *sq;
961 
962 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
963 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
964 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
965 	sq = sleepq_lookup(wchan);
966 	if (sq == NULL)
967 		return (0);
968 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
969 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
970 
971 	return (sleepq_remove_matching(sq, queue, match_any, pri));
972 }
973 
974 /*
975  * Resume threads on the sleep queue that match the given predicate.
976  */
977 int
978 sleepq_remove_matching(struct sleepqueue *sq, int queue,
979     bool (*matches)(struct thread *), int pri)
980 {
981 	struct thread *td, *tdn;
982 	int wakeup_swapper;
983 
984 	/*
985 	 * The last thread will be given ownership of sq and may
986 	 * re-enqueue itself before sleepq_resume_thread() returns,
987 	 * so we must cache the "next" queue item at the beginning
988 	 * of the final iteration.
989 	 */
990 	wakeup_swapper = 0;
991 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
992 		thread_lock(td);
993 		if (matches(td))
994 			wakeup_swapper |= sleepq_resume_thread(sq, td, pri);
995 		thread_unlock(td);
996 	}
997 
998 	return (wakeup_swapper);
999 }
1000 
1001 /*
1002  * Time sleeping threads out.  When the timeout expires, the thread is
1003  * removed from the sleep queue and made runnable if it is still asleep.
1004  */
1005 static void
1006 sleepq_timeout(void *arg)
1007 {
1008 	struct sleepqueue_chain *sc __unused;
1009 	struct sleepqueue *sq;
1010 	struct thread *td;
1011 	void *wchan;
1012 	int wakeup_swapper;
1013 
1014 	td = arg;
1015 	wakeup_swapper = 0;
1016 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1017 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1018 
1019 	thread_lock(td);
1020 
1021 	if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) {
1022 		/*
1023 		 * The thread does not want a timeout (yet).
1024 		 */
1025 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1026 		/*
1027 		 * See if the thread is asleep and get the wait
1028 		 * channel if it is.
1029 		 */
1030 		wchan = td->td_wchan;
1031 		sc = SC_LOOKUP(wchan);
1032 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1033 		sq = sleepq_lookup(wchan);
1034 		MPASS(sq != NULL);
1035 		td->td_flags |= TDF_TIMEOUT;
1036 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1037 	} else if (TD_ON_SLEEPQ(td)) {
1038 		/*
1039 		 * If the thread is on the SLEEPQ but isn't sleeping
1040 		 * yet, it can either be on another CPU in between
1041 		 * sleepq_add() and one of the sleepq_*wait*()
1042 		 * routines or it can be in sleepq_catch_signals().
1043 		 */
1044 		td->td_flags |= TDF_TIMEOUT;
1045 	}
1046 
1047 	thread_unlock(td);
1048 	if (wakeup_swapper)
1049 		kick_proc0();
1050 }
1051 
1052 /*
1053  * Resumes a specific thread from the sleep queue associated with a specific
1054  * wait channel if it is on that queue.
1055  */
1056 void
1057 sleepq_remove(struct thread *td, void *wchan)
1058 {
1059 	struct sleepqueue *sq;
1060 	int wakeup_swapper;
1061 
1062 	/*
1063 	 * Look up the sleep queue for this wait channel, then re-check
1064 	 * that the thread is asleep on that channel, if it is not, then
1065 	 * bail.
1066 	 */
1067 	MPASS(wchan != NULL);
1068 	sleepq_lock(wchan);
1069 	sq = sleepq_lookup(wchan);
1070 	/*
1071 	 * We can not lock the thread here as it may be sleeping on a
1072 	 * different sleepq.  However, holding the sleepq lock for this
1073 	 * wchan can guarantee that we do not miss a wakeup for this
1074 	 * channel.  The asserts below will catch any false positives.
1075 	 */
1076 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1077 		sleepq_release(wchan);
1078 		return;
1079 	}
1080 	/* Thread is asleep on sleep queue sq, so wake it up. */
1081 	thread_lock(td);
1082 	MPASS(sq != NULL);
1083 	MPASS(td->td_wchan == wchan);
1084 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1085 	thread_unlock(td);
1086 	sleepq_release(wchan);
1087 	if (wakeup_swapper)
1088 		kick_proc0();
1089 }
1090 
1091 /*
1092  * Abort a thread as if an interrupt had occurred.  Only abort
1093  * interruptible waits (unfortunately it isn't safe to abort others).
1094  */
1095 int
1096 sleepq_abort(struct thread *td, int intrval)
1097 {
1098 	struct sleepqueue *sq;
1099 	void *wchan;
1100 
1101 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1102 	MPASS(TD_ON_SLEEPQ(td));
1103 	MPASS(td->td_flags & TDF_SINTR);
1104 	MPASS(intrval == EINTR || intrval == ERESTART);
1105 
1106 	/*
1107 	 * If the TDF_TIMEOUT flag is set, just leave. A
1108 	 * timeout is scheduled anyhow.
1109 	 */
1110 	if (td->td_flags & TDF_TIMEOUT)
1111 		return (0);
1112 
1113 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1114 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1115 	td->td_intrval = intrval;
1116 	td->td_flags |= TDF_SLEEPABORT;
1117 	/*
1118 	 * If the thread has not slept yet it will find the signal in
1119 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1120 	 * we have to do it here.
1121 	 */
1122 	if (!TD_IS_SLEEPING(td))
1123 		return (0);
1124 	wchan = td->td_wchan;
1125 	MPASS(wchan != NULL);
1126 	sq = sleepq_lookup(wchan);
1127 	MPASS(sq != NULL);
1128 
1129 	/* Thread is asleep on sleep queue sq, so wake it up. */
1130 	return (sleepq_resume_thread(sq, td, 0));
1131 }
1132 
1133 void
1134 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1135 {
1136 	struct sleepqueue_chain *sc;
1137 	struct sleepqueue *sq, *sq1;
1138 	int i, wakeup_swapper;
1139 
1140 	wakeup_swapper = 0;
1141 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1142 		if (LIST_EMPTY(&sc->sc_queues)) {
1143 			continue;
1144 		}
1145 		mtx_lock_spin(&sc->sc_lock);
1146 		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1147 			for (i = 0; i < NR_SLEEPQS; ++i) {
1148 				wakeup_swapper |= sleepq_remove_matching(sq, i,
1149 				    matches, 0);
1150 			}
1151 		}
1152 		mtx_unlock_spin(&sc->sc_lock);
1153 	}
1154 	if (wakeup_swapper) {
1155 		kick_proc0();
1156 	}
1157 }
1158 
1159 /*
1160  * Prints the stacks of all threads presently sleeping on wchan/queue to
1161  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1162  * printed.  Typically, this will equal the number of threads sleeping on the
1163  * queue, but may be less if sb overflowed before all stacks were printed.
1164  */
1165 #ifdef STACK
1166 int
1167 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
1168     int *count_stacks_printed)
1169 {
1170 	struct thread *td, *td_next;
1171 	struct sleepqueue *sq;
1172 	struct stack **st;
1173 	struct sbuf **td_infos;
1174 	int i, stack_idx, error, stacks_to_allocate;
1175 	bool finished;
1176 
1177 	error = 0;
1178 	finished = false;
1179 
1180 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1181 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1182 
1183 	stacks_to_allocate = 10;
1184 	for (i = 0; i < 3 && !finished ; i++) {
1185 		/* We cannot malloc while holding the queue's spinlock, so
1186 		 * we do our mallocs now, and hope it is enough.  If it
1187 		 * isn't, we will free these, drop the lock, malloc more,
1188 		 * and try again, up to a point.  After that point we will
1189 		 * give up and report ENOMEM. We also cannot write to sb
1190 		 * during this time since the client may have set the
1191 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1192 		 * malloc as we print to it.  So we defer actually printing
1193 		 * to sb until after we drop the spinlock.
1194 		 */
1195 
1196 		/* Where we will store the stacks. */
1197 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1198 		    M_TEMP, M_WAITOK);
1199 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1200 		    stack_idx++)
1201 			st[stack_idx] = stack_create(M_WAITOK);
1202 
1203 		/* Where we will store the td name, tid, etc. */
1204 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1205 		    M_TEMP, M_WAITOK);
1206 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1207 		    stack_idx++)
1208 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1209 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1210 			    SBUF_FIXEDLEN);
1211 
1212 		sleepq_lock(wchan);
1213 		sq = sleepq_lookup(wchan);
1214 		if (sq == NULL) {
1215 			/* This sleepq does not exist; exit and return ENOENT. */
1216 			error = ENOENT;
1217 			finished = true;
1218 			sleepq_release(wchan);
1219 			goto loop_end;
1220 		}
1221 
1222 		stack_idx = 0;
1223 		/* Save thread info */
1224 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1225 		    td_next) {
1226 			if (stack_idx >= stacks_to_allocate)
1227 				goto loop_end;
1228 
1229 			/* Note the td_lock is equal to the sleepq_lock here. */
1230 			stack_save_td(st[stack_idx], td);
1231 
1232 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1233 			    td->td_tid, td->td_name, td);
1234 
1235 			++stack_idx;
1236 		}
1237 
1238 		finished = true;
1239 		sleepq_release(wchan);
1240 
1241 		/* Print the stacks */
1242 		for (i = 0; i < stack_idx; i++) {
1243 			sbuf_finish(td_infos[i]);
1244 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1245 			stack_sbuf_print(sb, st[i]);
1246 			sbuf_printf(sb, "\n");
1247 
1248 			error = sbuf_error(sb);
1249 			if (error == 0)
1250 				*count_stacks_printed = stack_idx;
1251 		}
1252 
1253 loop_end:
1254 		if (!finished)
1255 			sleepq_release(wchan);
1256 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1257 		    stack_idx++)
1258 			stack_destroy(st[stack_idx]);
1259 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1260 		    stack_idx++)
1261 			sbuf_delete(td_infos[stack_idx]);
1262 		free(st, M_TEMP);
1263 		free(td_infos, M_TEMP);
1264 		stacks_to_allocate *= 10;
1265 	}
1266 
1267 	if (!finished && error == 0)
1268 		error = ENOMEM;
1269 
1270 	return (error);
1271 }
1272 #endif
1273 
1274 #ifdef SLEEPQUEUE_PROFILING
1275 #define	SLEEPQ_PROF_LOCATIONS	1024
1276 #define	SLEEPQ_SBUFSIZE		512
1277 struct sleepq_prof {
1278 	LIST_ENTRY(sleepq_prof) sp_link;
1279 	const char	*sp_wmesg;
1280 	long		sp_count;
1281 };
1282 
1283 LIST_HEAD(sqphead, sleepq_prof);
1284 
1285 struct sqphead sleepq_prof_free;
1286 struct sqphead sleepq_hash[SC_TABLESIZE];
1287 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1288 static struct mtx sleepq_prof_lock;
1289 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1290 
1291 static void
1292 sleepq_profile(const char *wmesg)
1293 {
1294 	struct sleepq_prof *sp;
1295 
1296 	mtx_lock_spin(&sleepq_prof_lock);
1297 	if (prof_enabled == 0)
1298 		goto unlock;
1299 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1300 		if (sp->sp_wmesg == wmesg)
1301 			goto done;
1302 	sp = LIST_FIRST(&sleepq_prof_free);
1303 	if (sp == NULL)
1304 		goto unlock;
1305 	sp->sp_wmesg = wmesg;
1306 	LIST_REMOVE(sp, sp_link);
1307 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1308 done:
1309 	sp->sp_count++;
1310 unlock:
1311 	mtx_unlock_spin(&sleepq_prof_lock);
1312 	return;
1313 }
1314 
1315 static void
1316 sleepq_prof_reset(void)
1317 {
1318 	struct sleepq_prof *sp;
1319 	int enabled;
1320 	int i;
1321 
1322 	mtx_lock_spin(&sleepq_prof_lock);
1323 	enabled = prof_enabled;
1324 	prof_enabled = 0;
1325 	for (i = 0; i < SC_TABLESIZE; i++)
1326 		LIST_INIT(&sleepq_hash[i]);
1327 	LIST_INIT(&sleepq_prof_free);
1328 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1329 		sp = &sleepq_profent[i];
1330 		sp->sp_wmesg = NULL;
1331 		sp->sp_count = 0;
1332 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1333 	}
1334 	prof_enabled = enabled;
1335 	mtx_unlock_spin(&sleepq_prof_lock);
1336 }
1337 
1338 static int
1339 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1340 {
1341 	int error, v;
1342 
1343 	v = prof_enabled;
1344 	error = sysctl_handle_int(oidp, &v, v, req);
1345 	if (error)
1346 		return (error);
1347 	if (req->newptr == NULL)
1348 		return (error);
1349 	if (v == prof_enabled)
1350 		return (0);
1351 	if (v == 1)
1352 		sleepq_prof_reset();
1353 	mtx_lock_spin(&sleepq_prof_lock);
1354 	prof_enabled = !!v;
1355 	mtx_unlock_spin(&sleepq_prof_lock);
1356 
1357 	return (0);
1358 }
1359 
1360 static int
1361 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1362 {
1363 	int error, v;
1364 
1365 	v = 0;
1366 	error = sysctl_handle_int(oidp, &v, 0, req);
1367 	if (error)
1368 		return (error);
1369 	if (req->newptr == NULL)
1370 		return (error);
1371 	if (v == 0)
1372 		return (0);
1373 	sleepq_prof_reset();
1374 
1375 	return (0);
1376 }
1377 
1378 static int
1379 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1380 {
1381 	struct sleepq_prof *sp;
1382 	struct sbuf *sb;
1383 	int enabled;
1384 	int error;
1385 	int i;
1386 
1387 	error = sysctl_wire_old_buffer(req, 0);
1388 	if (error != 0)
1389 		return (error);
1390 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1391 	sbuf_printf(sb, "\nwmesg\tcount\n");
1392 	enabled = prof_enabled;
1393 	mtx_lock_spin(&sleepq_prof_lock);
1394 	prof_enabled = 0;
1395 	mtx_unlock_spin(&sleepq_prof_lock);
1396 	for (i = 0; i < SC_TABLESIZE; i++) {
1397 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1398 			sbuf_printf(sb, "%s\t%ld\n",
1399 			    sp->sp_wmesg, sp->sp_count);
1400 		}
1401 	}
1402 	mtx_lock_spin(&sleepq_prof_lock);
1403 	prof_enabled = enabled;
1404 	mtx_unlock_spin(&sleepq_prof_lock);
1405 
1406 	error = sbuf_finish(sb);
1407 	sbuf_delete(sb);
1408 	return (error);
1409 }
1410 
1411 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1412     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1413 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1414     NULL, 0, reset_sleepq_prof_stats, "I",
1415     "Reset sleepqueue profiling statistics");
1416 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1417     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1418 #endif
1419 
1420 #ifdef DDB
1421 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1422 {
1423 	struct sleepqueue_chain *sc;
1424 	struct sleepqueue *sq;
1425 #ifdef INVARIANTS
1426 	struct lock_object *lock;
1427 #endif
1428 	struct thread *td;
1429 	void *wchan;
1430 	int i;
1431 
1432 	if (!have_addr)
1433 		return;
1434 
1435 	/*
1436 	 * First, see if there is an active sleep queue for the wait channel
1437 	 * indicated by the address.
1438 	 */
1439 	wchan = (void *)addr;
1440 	sc = SC_LOOKUP(wchan);
1441 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1442 		if (sq->sq_wchan == wchan)
1443 			goto found;
1444 
1445 	/*
1446 	 * Second, see if there is an active sleep queue at the address
1447 	 * indicated.
1448 	 */
1449 	for (i = 0; i < SC_TABLESIZE; i++)
1450 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1451 			if (sq == (struct sleepqueue *)addr)
1452 				goto found;
1453 		}
1454 
1455 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1456 	return;
1457 found:
1458 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1459 	db_printf("Queue type: %d\n", sq->sq_type);
1460 #ifdef INVARIANTS
1461 	if (sq->sq_lock) {
1462 		lock = sq->sq_lock;
1463 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1464 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1465 	}
1466 #endif
1467 	db_printf("Blocked threads:\n");
1468 	for (i = 0; i < NR_SLEEPQS; i++) {
1469 		db_printf("\nQueue[%d]:\n", i);
1470 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1471 			db_printf("\tempty\n");
1472 		else
1473 			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1474 				      td_slpq) {
1475 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1476 					  td->td_tid, td->td_proc->p_pid,
1477 					  td->td_name);
1478 			}
1479 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1480 	}
1481 }
1482 
1483 /* Alias 'show sleepqueue' to 'show sleepq'. */
1484 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1485 #endif
1486